FLOC 2018: FEDERATED LOGIC CONFERENCE 2018
WIL SHORT PAPERS AND ABSTRACTS: PAPERS WITH ABSTRACTS

Editors: Valeria de Paiva, Amy Felty and Ursula Martin

Authors, Title and AbstractPaperTalk

ABSTRACT. Modelling in psychometrics has become increasingly reliant on computer software; at the same time, many offline decisions that a researcher makes remain unrecorded and perhaps, unreconciled to anything more than the researcher’s intuition or best guess. The aim of this paper is to set out a logic that accounts for and guides accounting for decision procedures in psychometric research practices. Such a logic is informed by the integration of three systematic viewpoints under a view of constraints-based practice: i) bounded rationality (Gigerenzer & Goldstein, 1996); ii) axiomatic measurement theory with specific focus on handling measurement uncertainty (Suppes, 2002, 2006, 2016); and iii) a constructive approach to mathematical set theory (Ferreiros, 2016). The integration of these three viewpoints under an overall perspective that is characterised by inference from the best systematisation (Rescher, 2016) is reviewed, and compared to current researcher practices, with particular reference to the problems for psychometric and biometric sciences that are revealed in the Reproducibility Project (Open Science Collaboration, 2012) outcomes. Our conclusion for the overall system is that the constraints characterised by constructive mathematics offer unique tools to researcher communities in accounting for their decision procedures, and a proposal for a software tool that handles the decision protocol is presented. In characterising the decision procedures, we also explore the way that rough set theory (Pawlak, 1998) is integrated into decision procedures to provide insight into database fields or variables that hold some import but may otherwise remain hidden in research outcome reporting.

Jul 08 16:30

ABSTRACT. In this work, we explore proof theoretical connections between sequent, nested and labelled calculi. In particular, we show a semantical characterisation of intuitionistic, normal and non-normal modal logics for all these systems, via a case-by-case translation between labelled nested to labelled sequent systems.

Jul 08 11:30

ABSTRACT. In a recent work we have proposed a calculus for the multimodal logic K, where clauses are labelled by the level in which they occur. The calculus has been implemented and the evaluation shows that the prover performs well if the propositional symbols are uniformly distributed over the levels. However, by construction, the set of propositional clauses is always satisfiable. We are investigating the combination of SAT provers with our prover, in order to extract relevant information that could help reducing the time currently used during saturation.

Jul 08 16:00

ABSTRACT. Brouwer developed the notion of mental constructions based on his view of mathematical truth as experienced truth. These constructions extend the traditional practice of constructive mathematics, and we believe they have the potential to provide a broader and deeper foundation for various constructive theories.We here illustrate mental constructions in two well studied theories – computability theory and plane geometry – and discuss the resulting extended mathematical structures. Further, we demonstrate how these notions can be embedded in an implemented formal framework, namely the constructive type theory of the Nuprl proof assistant. Additionally, we point out several similarities in both the theory and implementation of the extended structures.

Jul 08 11:00

ABSTRACT. Proving properties about proof systems is a necessary task to make sure that they are sound and satisfy basic criteria for the application being considered. Nevertheless, it is a tedious and error-prone task. In this talk, I will present on-going work on the development of a trustworthy system that helps with the verification of proof calculi's properties. This system allows for a natural specification of sequent-style calculi and visualization of rules in LaTeX. The user is also able to construct simple proof trees. Moreover, it can be used to check identity expansion, cut-elimination and permutation lemmas with the click of a button. Our goal is to free researchers from having to write down big and repetitive proofs, and move towards the use of mechanized proofs when meta-theory of proof systems is concerned.

Jul 08 15:00

ABSTRACT. We introduce a new inference problem for topological logics, the unifiability problem. Our main result is that, within the context of the mereotopology of all regular closed polygons of the real plane, unifiable formulas always have finite complete sets of unifiers.

Jul 08 12:00

ABSTRACT. We propose a new type system for deadlock-free session-typed π-calculus, a core concurrent programming language, by integrating for the first time, two separate lines of work. The first is the propositions-as-types approach by Caires and Pfenning, which provides a linear logic foundation for session types and guarantees deadlock-freedom. The second is Kobayashi’s approach in which types are annotated with priorities for detecting cyclic dependencies between communication operations. The outcome is a new and more expressive variant of classical linear logic with a proof assignment that gives a session type system with Kobayashi-style priorities.

Jul 08 10:15

ABSTRACT. Intuitionistic logics are very useful in practise, they are for example valuable for proof assistants. Nevertheless, they have been regarded controversial. David Hilbert wrote that: "Taking the principle of excluded middle from the mathematician would be the same, say, as proscribing the telescope to the astronomer or to the boxer the use of his fists."[5] Indeed, this property of intuitionistic logic may cause problems when trying to embed them in higher-order logic. The talk will give a short overview about this challenge and discuss possible solutions.

Jul 08 16:15

ABSTRACT. Transitive closure logic is obtained by a modest addition to first-order logic that affords enormous expressive power. Most importantly, it provides a uniform way of capturing finitary inductive definitions. Thus, particular induction principles do not need to be added to the logic; instead, all induction schemes are available within a single, unified language. We here present a non-well-founded proof system for transitive closure logic which is complete for the standard semantics. This system captures implicit induction, and its soundness is underpinned by the principle of infinite descent. We also consider its subsystem of cyclic proofs.

Jul 08 15:15

ABSTRACT. Translating formulas of Linear Temporal Logic (LTL) over finite traces, or LTLf, to symbolic Deterministic Finite Automata (DFA) plays an important role not only in LTLf synthesis, but also in synthesis for Safety LTL formulas. The translation is enabled by using MONA, a sophisticated tool for symbolic DFA construction from logic specifications. Recent works used a first-order encoding of LTLf formulas to translate LTLf to First Order Logic (FOL), which is then fed to MONA to construct the symbolic DFA. This encoding was shown to perform well, but other encodings have not been studied. Specifically, the natural question of whether second-order (MSO) encoding, which has significantly simpler quantificational structure, can outperform first-order (FOL) encoding remained open.

In this paper we meet this challenge and study MSO encoding for LTLf formulas. We introduce a specific MSO encoding, and show that this encoding and its simplicity indeed allow more potential than FOL for optimization, thus benefiting symbolic DFA construction. We then show by empirical evaluations that, surprisingly, the FOL encoding outperforms in practice the MSO encodings. We analyze the results and explain how to improve MONA in order to allow the MSO encoding to outperform the FOL encoding.

Jul 08 10:00

ABSTRACT. We present a labelled deduction for intuitionistic modal logic that comes with two relation symbols, one for the accessible world relation associated with the Kripke semantics for modal logics, and one for the preorder relation associated with the Kripke semantics for intuitionistic logic. Thus, our labelled system is in close correspondence to the birelational Kripke models.

Jul 08 11:45