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Modal logics are extensions of classical logic with a unary
operator ⊔⊓. The operator ♢ is the dual of ⊔⊓: given a
formula φ, ♢φ is defined as ¬⊔⊓¬φ. The usual reading of
⊔⊓ (resp. ♢) is that of necessity (resp. possibility). Formu-
lae are interpreted over Kripke Structures, that is, a tuple
(W ,R ,π ), whereW is a non-empty set; R ⊆ W ×W is a
binary relation; and π : W → (P → {true, false}) is a
function which associates to each world w ∈ W a truth-
assignment to propositional symbols in a denumerable set
P = {p,q, r , . . . ,p1,q1, r1, . . .}.

In recent work [2], we have proposed a resolution-based
method for the basic normal multimodal logic Kn , where
clauses are annotated with the modal level in which they
occur. The calculus was implemented in the form of KSP [3].
The prover performs well if the set of propositional sym-
bols is uniformly distributed over the modal levels. However,
when there is a high number of propositional symbols in a
particular level, the performance deteriorates. One reason
is that the specific normal form we use always generates
satisfiable sets of literal clauses (clauses without modal op-
erators). Saturation, i.e. computing the closure of such a set
of clauses under the resolution rule, can then be very time
consuming. In order to try to ameliorate the performance
of KSP, we are currently investigating the use of the combi-
nation of the resolution procedure and Boolean Satisfiability
Solvers, or SAT solvers, for short. SAT solvers can often solve
hard structured problems with over a million variables and
several million constraints in reasonable time [1].

Our implementation, a work in progress, uses MiniSat [5],
a SAT solver based on thewell-knownConflict-DrivenClause
Learning (CDCL) algorithm [4]. Very briefly, in the attempt
of finding an assignment which satisfies the input, a CDCL-
based SAT prover analyses the clauses and the partial assign-
ments which have generated a conflict (i.e. a contradiction)
by applications of unit resolution. From such analysis, a new
clause may be learnt and is added to the clause set, often
abbreviating the time spent in the search for further satisfi-
able assignments. As we already know that the set of clauses
we will input to MiniSat is satisfiable, we are not interested
in the model provided by the SAT prover, but in the learnt
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clauses themselves. To illustrate how we make use of the
SAT prover, consider the following set of labelled clauses:

1. 1 : l1 ⇒ ⊔⊓¬p1
2. 1 : l2 ⇒ ⊔⊓¬p2
3. 1 : l3 ⇒ ♢¬p3
4. 2 : p1 ∨ p2 ∨ ¬p4
5. 2 : p1 ∨ ¬p5

6. 2 : p4 ∨ p5 ∨ p6
7. 2 : ¬p6 ∨ ¬p7
8. 2 : p3 ∨ p8
9. 2 : p4 ∨ p7 ∨ ¬p8

Applying resolution to the set of literal clauses generates
66 new clauses. However, by feeding the SAT prover with
Clauses 4 to 9 and assuming the initial partial assignment to
be V (p1) = V (p2) = V (p3) = false, a contradiction is gener-
ated. The clause 2 : (p1 ∨ p2 ∨ p3) is then learnt and added
to the clause set. Not only saturation by the modal prover is
improved (15% less clauses are generated), but modal resolu-
tion can be immediately applied: the learnt clause is resolved
with Clauses 1–3, generating the clause 1 : ¬l1 ∨ ¬l2 ∨ ¬l3.
Moreover, and very importantly, from the soundness of the
CDCL we can also obtain the corresponding resolution proof
that would have generated the learnt clause, which allows to
provide full proofs if a contradiction from the whole set of
clauses is found. Although the combination might be costly
(e.g. besides system calls, there is some overhead in translat-
ing the problems to MiniSat and back to KSP), we believe that
by carefully choosing the set of clauses to be used as input
for MiniSat we may be able to reduce the time KSP spends
during the search for a proof.
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