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ABSTRACT

In this work, we explore proof theoretical connections between sequent, nested and labelled calculi.
In particular, we show a semantical characterisation of intuitionistic, normal and non-normal modal
logics for all these systems, via a case-by-case translation between labelled nested to labelled sequent
systems.

1 INTRODUCTION

The quest of finding analytic proof systems for different logics has been the main research topic for
proof theorists since Gentzen’s seminal work [Gentzen 1969]. One of the best known formalisms for
proposing analytic proof systems is Gentzen’s sequent calculus. While its simplicity makes it an ideal
tool for proving meta-logical properties, sequent calculus is not expressive enough for constructing
analytic calculi for many logics of interest. The case of modal logic is particularly problematic, since
sequent systems for such logics are usually not modular, and they mostly lack relevant properties such
as separate left and right introduction rules for the modalities. These problems are often connected to
the fact that the modal rules in such calculi usually introduce more than one connective at a time, e.g.
as in the rule k for modal logic K:

B1, . . . , Bn ⊢ A
□B1, . . . ,□Bn ⊢ □A k

One way of solving this problem is by considering extensions of the sequent framework that are
expressive enough for capturing these modalities using separate left and right introduction rules. This
is possible e.g. in labelled sequents [Viganò 2000] or in nested sequents [Brünnler 2009]. In the
labelled sequent framework, usually the semantical characterisation is explicitly added to sequents.
In the nested framework in contrast, a single sequent is replaced with a tree of sequents, where
successors of a sequent (nestings) are interpreted under a given modality. The nesting rules of these
calculi govern the transfer of formulae between the different sequents, and they are local, in the sense
that it is sufficient to transfer only one formula at a time. As an example, the labelled and nested
versions for the necessity right rule (□R) are

ℛ, xRy, X ⊢ Y, y : A
ℛ, X ⊢ Y, x :□A

□l
R

Γ ⊢ ∆, [· ⊢ A]
Γ ⊢ ∆,□A

□n
R

where y is a fresh variable in the □l
R rule. Reading bottom up, while the labelled system creates a

new variable y related to x via a relation R and changes the label of A to y, in □n
R a new nesting is

created, and A is moved there. It seems clear that nestings and semantical structures are somehow
related. Indeed, a direct translation between proofs in labelled and nested systems for the modal logic
of provability (a.k.a. the Gödel-Löb provability logic) is presented in [Goré and Ramanayake 2012],
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:2 Elaine Pimentel

while in [Fitting 2014] it is shown how to relate nestings with Kripke structures for intuitionistic
logic (via indexed tableaux systems). In this work, we show this relationship for intuitionistic logic
and some normal modal logics, using only sequent based systems.

Since nested systems have been also proposed for other modalities, such as the non-normal
ones [Chellas 1980], an interesting question is whether this semantical interpretation can be gen-
eralised to other systems as well. In [Negri 2017] a labelled approach was used for setting the
grounds for proof theory of some non-normal modal systems based on neighbourhood semantics. In
parallel, we have proposed [Lellmann and Pimentel 2017] modular systems based on nestings for
several non-normal modal logics. We will relate these two approaches for the logics M and E, hence
clarifying the nesting-semantics relationship for such logics.

Finally, in [Lellmann et al. 2018], we showed that a class of nested systems can be transformed into
sequent systems via a linearisation procedure, where sequent rules can be seen as nested macro-rules.
By relating nested and sequent systems, we are able to extend the semantical interpretation also to the
sequent case, hence closing the relationship between systems and shedding light on the semantical
interpretation of several sequent based systems.

Organisation and contributions. Sec. 2 presents the basic notation for sequent systems; Sec. 3
presents nested systems and summarizes the results for their sequentialisation; Sec 4 presents the
basic notation for labelled systems; Sec. 5, 6 and 7 show the results under the particular views of
intuitionistic, normal and non-normal logics; Sec. 8 concludes the paper.

2 SEQUENT SYSTEMS

Contemporary proof theory started with Gentzen’s work [Gentzen 1969], and it has had a continuous
development with the proposal of several proof systems for many logics.

Definition 2.1. A sequent is an expression of the form Γ ⊢ ∆ where Γ (the antecedent) and ∆ (the
succedent) are finite sets of formulae. A sequent calculus (SC) consists of a set of rule schemas, of
the form

S 1 · · · S k

S
r

where the sequent S is the conclusion inferred from the premise sequents S 1, . . . , S k in the rule r. If
the set of premises is empty, then r is an axiom. An instance of a rule is a rule application.

A derivation is a finite directed tree with nodes labelled by sequents and a single root, axioms
at the top nodes, and where each node is connected with the (immediate) successor nodes (if any)
according to the application of rules. The height of a derivation is the greatest number of successive
applications of rules in it, where an axiom has height 0.

In this work we will consider only fully structural sequent systems, i.e. allowing freely applications
of the schemas init and W bellow

Γ, P ⊢ P,∆ init
Γ ⊢ ∆

Γ,Γ′ ⊢ ∆,∆′
W

where P is atomic.
As an example, Fig. 1 presents SCmLJ [Maehara 1954], a multiple conclusion sequent system

for propositional intuitionistic logic. The rules are exactly the same as in classical logic, except for
the implication right rule, that forces all formulae in the succedent of the conclusion sequent to be
previously weakened. This guarantees that, on applying the (→R) rule on A → B, the formula B
should be proved assuming only the pre-existent antecedent context extended with the formula A,
creating an interdependency between A and B.
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A semantical view of sequent based systems :3

Γ ⊢ A,∆ Γ, B ⊢ ∆
Γ, A→ B ⊢ ∆

→L
Γ, A ⊢ B
Γ ⊢ A→ B

→R
Γ, A, B ⊢ ∆
Γ, A ∧ B ⊢ ∆

∧L

Γ ⊢ A,∆ Γ ⊢ B,∆
Γ ⊢ A ∧ B,∆

∧R
Γ, A, ⊢ ∆ Γ, B ⊢ ∆
Γ, A ∨ B ⊢ ∆

∨L
Γ ⊢ A, B,∆
Γ ⊢ A ∨ B,∆

∨R
Γ,⊥ ⊢ ∆

⊥L

Fig. 1. Multi-conclusion intuitionistic calculus SCmLJ.

3 NESTED SYSTEMS

Nested systems [Brünnler 2009; Poggiolesi 2009] are extensions of the sequent framework where a
single sequent is replaced with a tree of sequents.

Definition 3.1. A nested sequent is defined inductively as follows:
(i) if Γ ⊢ ∆ is a sequent, then it is a nested sequent;

(ii) if Γ ⊢ ∆ is a sequent and G1, . . . ,Gk are nested sequents, then Γ ⊢ ∆, [G1], . . . , [Gk] is a nested
sequent.

A nested system (NS) consists of a set of inference rules acting on nested sequents.

For readability, we will denote by Γ,∆ sequent contexts and by Λ sets of nestings. In this way,
every nested sequent has the shape Γ ⊢ ∆,Λ where elements of Λ have the shape [Γ′ ⊢ ∆′,Λ′] and so
on. We will denote by Υ an arbitrary nested sequent.

Application of rules and schemas in nested systems will be represented using holed contexts.

Definition 3.2. A nested-holed context is a nested sequent that contains a hole of the form { } in
place of nestings. We represent such a context as 𝒮 { }. Given a holed context and a nested sequent Υ,
we write 𝒮 {Υ} to stand for the nested sequent where the hole { } has been replaced by [Υ], assuming
that the hole is removed if Υ is empty and if 𝒮 is empty then 𝒮 {Υ} Υ. The depth of 𝒮 { }, denoted
by dp

(︀
𝒮 { }
)︀
, is the number of nodes on a branch of the nesting tree of 𝒮 { } of maximal length.

For example, Γ ⊢ ∆, { }{Γ′ ⊢ ∆′} Γ ⊢ ∆, [Γ′ ⊢ ∆′] while { }{Γ′ ⊢ ∆′} Γ′ ⊢ ∆′.
The definition of application of nested rules and derivations in a NS are natural extensions of the

one for SC, only replacing sequents by nested sequents. In this work we will assume that nested
systems are fully structural, i.e., including the following nested versions for the initial axiom and
weakening 1

𝒮 {Γ, P ⊢ ∆, P,Λ} initn
𝒮 {Γ ⊢ ∆,Λ}

𝒮 {Γ,Γ′ ⊢ ∆,∆′,Λ,Λ′}
Wn

Fig. 2 presents the NSmLJ [Fitting 2014], a nested system for mLJ.

3.1 Sequentialising nested systems

In [Lellmann et al. 2018] we identified general conditions under which a nested calculus can be
transformed into a sequent calculus by restructuring the nested sequent derivation (proof) and
shedding extraneous information to obtain a derivation of the same formula in the sequent calculus.
These results were formulated generally so that they apply to calculi for intuitionistic, normal and
non-normal modal logics. Here we will briefly explain the main ideas in that work.

First of all, we restrict our attention to shallow directed nested systems, in with rules are restricted
so to falling in one of the following mutually exclusive schemas:

1All over this text, we will use n as a superscript, etc for indicating “nested”. Hence e.g.,→n
R will be the designation of the

implication right rule in the nesting framework.
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𝒮 {Γ ⊢ ∆, A,Λ} 𝒮 {Γ, B ⊢ ∆,Λ}
𝒮 {Γ, A→ B ⊢ ∆,Λ}

→n
L
𝒮 {Γ ⊢ ∆,Λ, [A ⊢ B]}
𝒮 {Γ ⊢ A→ B,∆,Λ}

→n
R

𝒮 {Γ, A, B ⊢ ∆,Λ}
𝒮 {Γ, A ∧ B ⊢ ∆,Λ}

∧n
L
𝒮 {Γ ⊢ A,∆,Λ} 𝒮 {Γ ⊢ B,∆,Λ}

𝒮 {Γ ⊢ A ∧ B,∆,Λ}
∧n

R

𝒮 {Γ, A ⊢ ∆,Λ} 𝒮 {Γ, B ⊢ ∆,Λ}
𝒮 {Γ, A ∨ B ⊢ ∆,Λ}

∨n
L
𝒮 {Γ ⊢ A, B,∆,Λ}
𝒮 {Γ ⊢ A ∨ B,∆,Λ}

∨n
R

𝒮 {Γ ⊢ ∆,Λ, [Γ′, A ⊢ ∆′,Λ′]}
𝒮 {Γ, A ⊢ ∆,Λ, [Γ′ ⊢ ∆′,Λ′]} lift

n
𝒮 {Γ,⊥ ⊢ ∆,Λ}

⊥n
L

Fig. 2. Nested system NSmLJ.

i. sequent-like rules
𝒮 {Γ1 ⊢ ∆1} · · · 𝒮 {Γk ⊢ ∆k}

𝒮 {Γ ⊢ ∆}

ii nested-like rules
ii.a creation rules

𝒮 {Γ ⊢ ∆, [Γ1 ⊢ ∆1]}
𝒮 {Γ ⊢ ∆}

ii.b upgrade rules
𝒮
{︁
Γ′ ⊢ ∆′,

[︁
Γ′1 ⊢ ∆

′
1

]︁}︁
𝒮 {Γ ⊢ ∆, [Γ1 ⊢ ∆1]}

The nesting in the premise of a creation rule is called the auxiliary nesting.
The following extends the definition of permutability to the nested setting.

Definition 3.3. Let NS be shallow directed, r1, r2 be applications rules and Υ be a nested sequent.
We say that r2 permutes down r1 (r2 ↓ r1) if, for every derivation in which r1 operates on Υ and
r2 operates on one or more of r1’s premises (but not on auxiliary formulae/nesting of r1), there
exists another derivation of Υ in which r2 operates on Υ and r1 operates on zero or more of r2’s
premises (but not on auxiliary formulae/nesting of r2). If r2 ↓ r1 and r1 ↓ r2 we will say that r1, r2 are
permutable, denoted by r1 ↕ r2. Finally, NS is said fully permutable if r1 ↕ r2 for any pair of rules.

Finally, the next result shows that fully permutable, shallow directed systems can be sequen-
tialised [Lellmann et al. 2018].

Theorem 3.4. Let NS be fully permutable, shallow and directed. There is a normalisation proce-
dure of proofs in NS transforming maximal blocks of applications of nested-like rules into sequent
rules.

4 LABELLED PROOF SYSTEMS

While it is widely accepted that nested systems carry the Kripke structure on nestings for intuitionistic
and normal modal logics, it is not clear what is the relationship between nestings and semantics for
other systems.

In this work we will relate labelled nested systems [Goré and Ramanayake 2012] with labelled
systems [Viganò 2000]. While the results for intuitionistic and some normal modal logics are not
new [Fitting 2014; Goré and Ramanayake 2012], we give a complete different approach for these
results, and present the first semantical interpretation for nestings in non-normal modal logics. In this
section we shall recall some of the terminology for labelled systems.
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A semantical view of sequent based systems :5

ℛ, xRy, X, y : A ⊢ Y, y : B
ℛ, X ⊢ Y, x : A→ B

TL→n
R
ℛ, X, ⊢ x : A,Y X, x : B ⊢ Y
ℛ, X, x : A→ B ⊢ Y

TL→n
L

ℛ, X, x : A, x : B ⊢ Y
ℛ, X, x : A ∧ B ⊢ Y

TL∧n
L
ℛ, X ⊢ x : A,Y X ⊢ x : B,Y
ℛ, X ⊢ x : A ∧ B,Y

TL∧n
R

ℛ, X, x : A, ⊢ Y X, x : B ⊢ Y
ℛ, X, x : A ∨ B ⊢ Y

TL∨n
L
ℛ, X ⊢ x : A, x : B,Y
ℛ, X ⊢ x : A ∨ x : B,Y

TL∨n
R

ℛ, X, x : A ⊢ x : A,Y TLinitn
ℛ, X, x :⊥ ⊢ Y

TL⊥n
L
ℛ, xRy, X, y : A ⊢ Y
ℛ, xRy, X, x : A ⊢ Y TLlift

n

Fig. 3. Labelled nested system LbNSmLJ.

Labelled nested systems. Let SV a countable infinite set of state variables (denoted by x, y, z, . . .),
disjoint from the set of propositional variables. A labelled formula has the form x : A where x ∈ SV
and A is a formula. If Γ {A1, . . . , Ak} is a set of formulae, then x : Γ denotes the set {x : A1, . . . , x : Ak}

of labelled formulae. A (possibly empty) set of relation terms (i.e. terms of the form xRy, where
x, y ∈ SV) is called a relation set. For a relation set ℛ, the frame Frℛ defined by ℛ is given by |ℛ|,ℛ
where |ℛ| {x | xRy ∈ ℛ or yRx ∈ ℛ for some y ∈ SV}. We say that a relation set ℛ is treelike if the
frame defined by ℛ is a tree or ℛ is empty.

Definition 4.1. A labelled nested sequent LbNS is a labelled sequent ℛ, X ⊢ Y where
(1) ℛ is treelike;
(2) if ℛ ∅ then X has the form x : A1, . . . , x : Ak and Y has the form x : B1, . . . , x : Bm for some

x ∈ SV;
(3) if ℛ , ∅ then every state variable y that occurs in either X or Y also occurs in ℛ.

A labelled nested sequent calculus is a labelled calculus whose initial sequents and inference rules
are constructed from LbNS.

As in [Goré and Ramanayake 2012], labelled nested systems can be automatically generated from
nested systems.

Definition 4.2. Given Γ ⊢ ∆ and Γ′ ⊢ ∆′ sequents, we define Γ ⊢ ∆ ⊗ Γ′ ⊢ ∆′ to be Γ,Γ′ ⊢ ∆,∆′.
For a state variable x, define the mapping TLx from NS to LbLNS as follows

TLxΓ ⊢ ∆, [Υ1] , . . . , [Υn] xRx1, . . . , xRxn, x :Γ ⊢ x :∆ ⊗
TLx1Υ1 ⊗ . . . ⊗ TLxnΥn

TLx[Γ ⊢ ∆] x :Γ ⊢ x :∆

with all state variables pairwise distinct.

The following result follows readily by transforming derivations bottom-up [Goré and Ramanayake
2012].

Theorem 4.3. The mapping TLx preserves open derivations, that is, there is a 1-1 correspondence
between derivations in a nested sequent system NS and in its labelled translation LbNS.

Some rules of the labelled nested system LbNSmLJ are depicted in Fig. 3.

Labelled sequent systems. In the labelled sequent framework, a semantical characterisation of a
logic is explicitly added to sequents via the labelling of formulae [Dyckhoff and Negri 2012; Mints
1997; Negri 2005, 2017; Viganò 2000]. In the case of world based semantics, the forcing relation
x ⊩ A is represented as the labelled formula x : A and sequents have the form ℛ, X ⊢ Y , where ℛ is a
relation set and X,Y are multisets of labelled formulae.
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:6 Elaine Pimentel

ℛ, x ≤ y, X, x : A→ B ⊢ y : A,Y ℛ, x ≤ y, X, y : B ⊢ Y
ℛ, x ≤ y, X, x : A→ B ⊢ Y

→t
L

ℛ, x ≤ y, X, y : A ⊢ Y, y : B
ℛ, X ⊢ Y, x : A→ B

→t
R ℛ, X, x ≤ y, x : P ⊢ Y, y : P initt

(a) y is fresh in→R and P is atomic in init.

xRx,ℛ, X ⊢ Y
ℛ, X ⊢ Y Ref

xRz, xRy, yRz,ℛ, X ⊢ Y
xRy, yRz,ℛ, X ⊢ Y Trans

(b) Relation rules.

Fig. 4. Some rules of the labelled system G3I

The rules of the labelled calculus G3I are obtained from the inductive definition of validity in a
Kripke frame (Fig. 4a), together with the rules describing a partial order, presented in Fig. 4b.

5 INTUITIONISTIC LOGIC

In this section we will relate various proof systems for intuitionistic logic by applying the results
presented in the last sections.

Theorem 5.1. All rules in NSmLJ are height-preserving invertible and NSmLJ is fully permutable.

The results in the previous sections entail the following.

Theorem 5.2. Systems NSmLJ, mLJ and LbNSmLJ are equivalent.

Observe that the proof uses syntactical arguments only, differently from e.g. [Fitting 2014].
For establishing a comparison between labels in G3I and LbNSmLJ, first observe that applications of

rule Trans in G3I can be restricted to the leaves (i.e. just before an instance of the initial axiom). Also,
since weakening is admissible in G3I and the monotonicity property: x ⊩ A and x ≤ y implies y ⊩ A
is derivable in G3I (Lemma 4.1 in [Dyckhoff and Negri 2012]), the next result follows.

Lemma 5.3. The following rules are derivable in G3I up to weakening.
ℛ, X, x : A→ B ⊢ x : A,Y ℛ, X, x : B ⊢ Y

ℛ, X, x : A→ B ⊢ Y
→L′

ℛ, X, x : P ⊢ Y, x : P init′

Moreover, the rule
ℛ, x ≤ y, X, y : A ⊢ Y
ℛ, x ≤ y, X, x : A ⊢ Y lift

′

is admissible in G3I.

Using an argument similar to the one in [Goré and Ramanayake 2012], it is easy to see that, in the
presence of the primed rules shown above, the relational rules are admissible. Moreover, labels are
preserved.

Theorem 5.4. G3I is label-preserving equivalent to LbNSmLJ.

That is, nestings in NSmLJ and LNSmLJ correspond to worlds in the Kripke structure where the
sequent is valid and this is the semantical interpretation of the nested system for intuitionistic
logic [Fitting 2014].

Observe that, since mLJ derivations are equivalent to normal NSmLJ derivations, the semantical
analysis for LNSmLJ also hold for mLJ, that is, an application of the→R rule over Γ ⊢ A→ B in mLJ
corresponds to creating a new world w in the Kripke structure and setting the forcing relation to A, B
and all the formulae in Γ.

We will now show how this approach on different proof systems can be smoothly extended to
normal as well as non-normal modalities, using propositional classical logic as the base logic.
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A semantical view of sequent based systems :7

K □A→ B→ □A→ □B A
□A

nec D ¬□⊥ T □A→ A 4 □A→ □□A

Fig. 5. Modal axiom K, necessitation rule nec and extensions D,T, 4.

𝒮 {Γ, A ⊢ B,∆,Λ}
𝒮 {Γ ⊢ A→ B,∆,Λ}

→n
R

𝒮 {Γ ⊢ ∆, [Γ′, A ⊢ ∆′] ,Λ}
𝒮 {Γ,□A ⊢ ∆, [Γ′ ⊢ ∆′] ,Λ}

□n
L

𝒮 {Γ ⊢ ∆,Λ, [ ⊢ A]}
𝒮 {Γ ⊢ ∆,□A,Λ}

□n
R

Fig. 6. Nested system NSK. The rules→n
L,∧

n
R,∧

n
L,∨

n
R,∨

n
L and ⊥n

L are the same as in Fig. 2.

𝒮 {Γ ⊢ ∆, [A ⊢ ] ,Λ}
𝒮 {Γ,□A ⊢ ∆,Λ} dn 𝒮 {Γ, A ⊢ ∆,Λ}

𝒮 {Γ,□A ⊢ ∆,Λ} tn
𝒮 {Γ ⊢ ∆, [Γ′,□A ⊢ ∆′] ,Λ}
𝒮 {Γ,□A ⊢ ∆, [Γ′ ⊢ ∆′] ,Λ} 4n

NSK𝒜 : {□n
R,□

n
L} ∪ 𝒜 for𝒜 ⊆ {D,T, 4}

Fig. 7. Nested sequent rules for extensions of K.

6 NORMAL MODAL LOGICS

The next natural step on investigating the relationship between frame semantics and nested sequent
systems is to consider modal systems.

The normal modal logic K is obtained from classical propositional logic by adding the unary modal
connective □ to the set of classical connectives, together with the necessitation rule and the K axiom
(see Fig. 5 for the Hilbert-style axiom schemata) to the set of axioms for propositional classical logic.

The nested framework provides an elegant way of formulating modal systems, since no context
restriction is imposed on rules. Fig. 6 presents the modal rules for the nested sequent calculus NSK
for the modal logic K [Brünnler 2009; Poggiolesi 2009].

Observe that there are two rules for handling the box operator (□L and □R), which allows the
treatment of one formula at a time. Being able to separate the left/right behaviour of the modal
connectives is the key to modularity for nested calculi [Straßburger 2013]. Indeed, K can be modularly
extended by adding to NSK the nested corresponding to other modal axioms. In this paper, we will
consider the axioms D,T and 4 (Fig 5). Fig. 7 shows the modal nested rules for such extensions: for
a logic K𝒜 with𝒜 ⊆ {D,T, 4} the calculus NSK𝒜 extends NSK with the corresponding nested modal
rules.

Note that rule tn is actually a sequent-like rule. On the other hand, □n
R and dn are creation rules

while □n
L and 4n are upgrade rules. It is straightforward to verify that NSK𝒜 is shallow directed and

fully permutable. Moreover, a nested block containing the application of one of the creation rules
and possible several applications of the upgrade rules has one of the following shapes

𝒮 {Γ′ ⊢ ∆′, [□Γ4,ΓK ⊢ A]}
𝒮 {□Γ4,□ΓK,Γ

′ ⊢ ∆′, [⊢ A]}
□n

L, 4
n

𝒮 {□Γ4,□ΓK,Γ
′ ⊢ ∆′,□A}

□n
R

𝒮 {Γ′ ⊢ ∆′, [□Γ4,ΓK, A ⊢]}
𝒮 {□Γ4,□ΓK,Γ

′ ⊢ ∆′, [A ⊢]}
□n

L, 4
n

𝒮 {□Γ4,□ΓK,□A,Γ′ ⊢ ∆′} dn

where □n
L acted in the context ΓK and 4n in the context Γ4. Observe that 4n maps a boxed left formula

into itself, □n
L maps left formulae into the boxed versions and there are no context relations on right

formulae. Hence sequentialising the nested system NSK𝒜 (Fig. 7) results in the sequent system SCK𝒜
(shown as rule schemas in Fig. 8).

Finally, Def. 4.2 of Sec. 4 can be extended to the normal modal case in a trivial way, resulting in
the labelled nested system LbNSK𝒜 (Fig. 9).
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Γ ⊢ A
□Γ ⊢ □A k

Γ, A ⊢ ∆
Γ,□A ⊢ ∆ t

Γ, A ⊢
□Γ,□A ⊢ d

□Γ4,ΓK ⊢ A
□Γ4,□ΓK ⊢ □A k4

□Γ4,ΓK, A ⊢
□Γ4,□ΓK,□A ⊢ d4

SCK { k } SCKT { k, t } SCKD { k, d } SCK4 { k4 } SCKD4 { d4 }

Fig. 8. Modal sequent rules for normal modal logics SCK𝒜, for 𝒜 ⊆ {T,D, 4}.

ℛ, xRy, X, y : A ⊢ Y
ℛ, xRy, X, x :□A ⊢ Y

TL□n
L

ℛ, xRy, X ⊢ Y, y : A
ℛ, X ⊢ Y, x : □A

TL□n
R

ℛ, X, x : A ⊢ Y
ℛ, X, x :□A ⊢ Y TLtn

ℛ, xRy, X, y : A ⊢ Y
ℛ, X, x :□A ⊢ Y TLdn ℛ, xRy, X, y :□A ⊢ Y

ℛ, xRy, X, x :□A ⊢ Y TL4n

Fig. 9. Modal rules for labelled indexed nested system LbNSK𝒜.

ℛ, xRy, y : A,Γ ⊢ ∆
ℛ, xRy, x : □A,Γ ⊢ ∆

□t
L

ℛ, xRy,Γ ⊢ ∆, y : A
ℛ,Γ ⊢ ∆, x : □A

□t
R

(a) Modal rules.

ℛ, xRx,Γ ⊢ ∆
ℛ,Γ ⊢ ∆

Ref
ℛ, xRz,Γ ⊢ ∆
ℛ, xRy, yRz,Γ ⊢ ∆ Trans

ℛ, xRy,Γ ⊢ ∆
ℛ,Γ ⊢ ∆

Ser

(b) Modal relational rules. y is fresh in Ser.

Fig. 10. Some rules of the labelled system G3K𝒜.

Theorem 6.1. Systems NSK𝒜, SCK𝒜 and LbNSK𝒜 are equivalent.

Figs. 10a and 10b present the modal and relational rules of G3K𝒜 [Negri 2005], a sound and
complete labelled sequent system for K𝒜.

The next results follow the same lines as the ones in Sec 5.

Lemma 6.2. The rules TLdn,TLtn,TL4n are derivable in G3K𝒜.

Theorem 6.3. G3K𝒜 is label-preserving equivalent to LbNSK𝒜.

This means that labels in NSK𝒜 represent worlds in a Kripke-frame, and this extends the results
in [Goré and Ramanayake 2012] for modal logic of provability to normal modal logics K𝒜.

7 NON-NORMAL MODAL SYSTEMS

We now move our attention to non-normal modal logics, i.e., modal logics that are not extensions
of K. In this work, we will consider the classical modal logic E and the monotone modal logic
M . Although our approach is general enough for considering nested, linear nested and sequent
systems for several extensions of such logics (such as the classical cube or the modal tesseract –
see [Lellmann and Pimentel 2017]), there are no satisfactory labelled sequent calculi in the literature
for such extensions.

For constructing nested calculi for these logics, the sequent rules should be decomposed into
their different components. However, there are two complications compared to the case of normal
modal logics: the need for (1) a mechanism for capturing the fact that exactly one boxed formula
is introduced on the left hand side; and (2) a way of handling multiple premises of rules. The first
problem is solved by introducing the indexed nesting [·]e to capture a state where a sequent rule
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A semantical view of sequent based systems :9

Γ ⊢ ∆,Λ, [ ⊢ B; B ⊢ ·]e

Γ ⊢ ∆,Λ,□B
□en

R
Γ,□A, ⊢ ∆,Λ, [Σ, A ⊢ Π] Γ,□A, ⊢ ∆,Λ, [Ω ⊢ Θ, A]

Γ,□A ⊢ ∆,Λ, [Σ ⊢ Π;Ω ⊢ Θ]e □en
L

Γ ⊢ ∆,Λ, [Σ ⊢ Π;Ω,⊥⊢ Θ]e

Γ ⊢ ∆,Λ, [Σ ⊢ Π;Ω ⊢ Θ]e Mn

Fig. 11. Modal rules for systems NSE and NSM.

A ⊢ B B ⊢ A
□A ⊢ □B E A ⊢ B

□A ⊢ □B M

Fig. 12. Modal sequent rules for non-normal modal logics SCE and SCM.

𝒩 , xNey1, y2, X, y2 : B ⊢ y1 : B,Y
𝒩 , X ⊢ Y, x : □B

TL□en
R

𝒩 , xNey1, y2, X, y2 :⊥⊢ Y
𝒩 , xNey1, y2, X ⊢ Y TLMn

𝒩 , xNy1, y1 : A, X ⊢ Y 𝒩 , xNy2, X ⊢ Y, y2 : A
𝒩 , xNey1, y2, x : □A, X ⊢ Y

TL□en
L

Fig. 13. Modal rules for LbNSE and LbNSM with y1, y2 fresh in □e
R.

has been partly processed; the second problem is solved by making the nesting operator [·]e binary,
which permits the storage of more information about the premises. Fig. 11 presents a unified nested
system for logics NSE and NSM.

NSE and NSM are fully permutable but, since the nested-like rule □en
L has two premises, it does

not fall into the definitions of shallowness/directedness. However, since propositional rules cannot be
applied inside the indexed nestings, the modal rules naturally occur in blocks. Hence the nested rules
correspond to macro-rules equivalent to the sequent rules in Fig. 12 for SCE and SCM.

Finally, using the labelling method in Section 4, the rules in Fig. 11 correspond to the rules in
Fig. 13, where xNy and xNey1, y2 are relation terms capturing the behaviour of the nestings [·] and
[·]e respectively.

The semantical interpretation of non-normal modalities E,M can be given via neighbourhood
semantics, that smoothly extends the concept of Kripke frames in the sense that accessibility relations
are substituted by a family of neighbourhoods.

Definition 7.1. A neighbourhood frame is a pair ℱ W,N consisting of a set W of worlds and a
neighbourhood function N : W → ℘℘W. A neighbourhood model is a pairℳ ℱ ,𝒱, where𝒱 is a
valuation. We will drop the model symbol when it is clear from the context.

The truth description for the box modality in the neighbourhood framework is

w ⊩ □A iff ∃X ∈ Nw.[X ⊩∀ A ∧ A ◁ X] (1)

where X ⊩∀ A is ∀x ∈ X.x ⊩ A and A◁ X is ∀y.[y ⊩ A→ y ∈ X]. The rules for ⊩∀ and ◁ are obtained
using the geometric rule approach [Negri 2017] and are depicted in Fig. 14.

This yields the set of labelled rules presented in Fig. 15, where the rules are adapted from [Negri
2017] by collapsing invertible proof steps. Intuitively, while the box left rules create a fresh neigh-
bourhood to x, the box right rules create a fresh world in this new neighbourhood and move the
formula to it.

Theorem 7.2. G3E (resp. G3M) is label-preserving equivalent to LbNSE (resp. LbNSM).
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x ∈ a, x : A, a ⊩∀ A, X ⊢ Y
x ∈ a, a ⊩∀ A, X ⊢ Y

⊩∀
A ◁ a, X ⊢ Y, z : A z ∈ a, A ◁ a, X ⊢ Y

A ◁ a, X ⊢ Y
◁

x ∈ a, X ⊢ Y, x ∈ a initt

Fig. 14. Forcing rules, with z arbitrary in ◁L.

a ∈ Nx, a ⊩∀ A, A ◁ a, X ⊢ Y
x : □A, X ⊢ Y

□et
L

z ∈ a, a ∈ Nx, X ⊢ Y, x : □B, z : B y : B, a ∈ Nx, X ⊢ Y, x : □B, y ∈ a
a ∈ Nx, X ⊢ Y, x : □B

□et
R

a ∈ Nx, y ∈ a, X ⊢ Y, x : □B, y : B
a ∈ Nx, X ⊢ Y, x : □B

□mt
R

a ∈ Nx, a ⊩∀ A, X ⊢ Y
x : □A, X ⊢ Y

□mt
L

Fig. 15. Labelled systems G3E and G3M. a fresh in □e
L,□

m
L and y, z fresh in □e

R,□
m
R .

8 CONCLUSION

In this work we showed a semantical characterisation of intuitionistic, normal and non-normal modal
systems, via a case-by-case translation between labelled nested to labelled sequent systems. In this
way, we closed the cycle of syntax/semantic characterisation for a class of logical systems.

While some of the presented results are expected (or even not new as the semantical interpretation
of nestings in intuitionistic logic), our approach is, as far as we know, the first done entirely using
proof theoretical arguments. Indeed, the soundness and completeness results are left to the case of
labelled systems, that carry within the syntax the semantic information explicitly. Using the results
in [Lellmann et al. 2018], we were able to extend all the semantic discussion to the sequent case.
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