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Çiğdem Gencer
Istanbul Aydın University

Istanbul, Turkey

Abstract
We introduce a new inference problem for topological
logics, the unifiability problem. Our main result is that,
within the context of the mereotopology of all regular
closed polygons of the real plane, unifiable formulas
always have finite complete sets of unifiers.
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1 Introduction
Topological logics (TLs) are formalisms for reasoning
about topological relations between regions [7, 21–23].
Their languages are obtained from the language of Boo-
lean algebras by the addition of predicates representing
these relations. Interpreted over mereotopological spaces,
the formulas of these languages describe configurations
of concrete objects. Recently, the validity problem de-
termined by different classes of mereotopological spaces
has been intensively investigated [13, 14].
We introduce a new inference problem for TLs, the unifi-
ability problem, which extends the validity problem by
allowing one to replace variables by terms before testing
for validity. There are different motivations for consider-
ing the unifiability problem in logics. In a semantically-
presented logic, it can be defined as follows [3] : determine
whether a given formula becomes valid after replacing
its variables by appropriate expressions. An important
question in unification theory is [8] : when a formula
is unifiable, has it a minimal complete set of unifiers?
When the answer is “yes”, how large is this set?
There is a wide variety of situations where unifiability
problems arise. Let us explain our motivation for consid-
ering them within the context of geographic information
systems. Suppose the formula φ(p1, . . . , pm) describes
a given geographic configuration of constant regions
p1, . . . , pm and the formula ψ(x1, . . . , xn) represents a de-
sirable geographic property of variable regions x1, . . . , xn.
It may happen that φ(p1, . . . , pm) → ψ(x1, . . . , xn) is not
valid in the considered geographic environment. Hence,
one may ask whether there are n-tuples (a1, . . . , an) of
terms such that φ(p1, . . . , pm) → ψ(a1, . . . , an) is valid
in this environment. Moreover, one may be interested to
obtain the most general n-tuples (a1, . . . , an) of terms
such that φ(p1, . . . , pm) → ψ(a1, . . . , an) is valid.
We adapt to the problem of unifiability with constants
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in TLs the line of reasoning developed by Balbiani and
Gencer [6] within the simpler context of the problem of
unifiability without constants in Boolean Region Con-
nection Calculus. This adaptation is far from obvious.
Our main result is that, within the context of the mereo-
topology of all regular closed polygons of the real plane,
unifiable formulas always have finite complete sets of
unifiers.

2 Syntax
It is now time to present the language we will work with.

Terms Let CON be a countable set of constants (p,
q, etc) and V AR be a countable set of variables (x, y,
etc). Let (p1, p2, . . .) be an enumeration of CON without
repetitions and (x1, x2, . . .) be an enumeration of V AR
without repetitions. An atom is either a constant, or a
variable. The Boolean terms (a, b, etc) are defined by

• a, b ::= p | x | 0 | a⋆ | (a ∪ b).
The other Boolean constructs for terms (for instance,
1 and ∩) are defined as usual. We adopt the standard
rules for omission of the parentheses. Reading terms as
regions, the constructs 0, ⋆ and ∪ should be regarded
as the empty region, the complement operation and
the union operation. As a result, the constructs 1 and ∩
should be regarded as the full region and the intersection
operation. For all m,n ≥ 0, let TERm,n be the set of
all terms whose constants form a subset of {p1, . . . , pm}
and whose variables form a subset of {x1, . . . , xn}. Let
TER be the set of all terms.

Formulas The formulas (φ, ψ, etc) are defined by

• φ,ψ ::= C(a, b) | a ≡ b | ⊥ | ¬φ | (φ ∨ ψ).
Here, a and b are terms whereas C is the predicate of
contact and ≡ is the predicate of equality. We use the
notation a ≤ b for a ∪ b ≡ b. For C(a, b) and a ≡ b, we
propose the readings “a is in contact with b” and “a
is equal to b”. The other connectives for formulas (for
instance, ⊤ and ∧) are defined as usual. We adopt the
standard rules for omission of the parentheses. A formula
is equational iff ≡ is the only predicate possibly occurring
in it. For all m,n ≥ 0, let FORm,n be the set of all
formulas whose constants form a subset of {p1, . . . , pm}
and whose variables form a subset of {x1, . . . , xn}. Let
FOR be the set of all formulas and FOReq be the set
of all equational formulas. Note that FOR and FOReq

are denoted C and B in [13, 14].
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3 Semantics
The semantics can be given by interpreting terms and
formulas in mereotopological spaces.

Topological spaces The best way to understand the
meaning of C is by interpreting it in topological spaces,
i.e. structures of the form (X, τ) where X is a nonempty
set and τ is a set of subsets of X such that the following
conditions hold : ∅ is in τ ; X is in τ ; if {Ai : i ∈ I}
is a finite subset of τ then

⋂
{Ai : i ∈ I} is in τ ; if

{Ai : i ∈ I} is a subset of τ then
⋃
{Ai : i ∈ I} is in τ .

The subsets of X in τ are called open sets whereas their
complements are called closed sets. In this paper, we will
mainly interest with the topological space RR2, i.e. the
real plane RR2 together with its ordinary topology.

Regular closed subsets Let (X, τ) be a topological
space. Let Intτ and Clτ denote the interior operator
and the closure operator in (X, τ). A subset A of X
is regular closed iff Clτ (Intτ (A)) = A. Regular closed
subsets of X will also be called regions. It is well-known
that the set RC(X, τ) of all regular closed subsets of X
forms a Boolean algebra (RC(X, τ), 0X , ⋆X ,∪X) where
for all A,B ∈ RC(X, τ) : 0X = ∅ ; A⋆X = Clτ (X \A) ;
A ∪X B = A ∪B. As a result, for all A,B ∈ RC(X, τ),
1X = X and A∩X B = Clτ (Intτ (A∩B)). Since regions
are regular closed subsets of X, then two regions are in
contact iff they have a nonempty intersection. For this
reason, we define the relation C(X,τ) on RC(X, τ) by
C(X,τ)(A,B) iff A ∩B ̸= ∅.

Mereotopologies Let (X, τ) be a topological space. A
mereotopology over (X, τ) is a Boolean subalgebra M of
RC(X, τ) such that for all P ∈ X and for all A ∈ τ , if
P ∈ A then there exists B ∈ M such that P ∈ B and
B ⊆ A. A mereotopological space over (X, τ) is a struc-
ture (X, τ,M) where M is a mereotopology over (X, τ).
Over the topological space RR2, several mereotopologies
can be considered [16]. One can consider the mereotopo-
logy consisting of the set RC(RR2) of all regular closed
subsets of RR2. Nevertheless, as regions are supposed to
be parts of the real plane occupied by concrete objects,
it is clear that some of the regular closed subsets of RR2

cannot count as regions. For this reason, one can con-
sider the more concrete mereotopology consisting of the
set RCS(RR2) of all regular closed semi-algebraic subsets
of RR2, i.e. those regular closed subsets of RR2 definable
by a first-order formula in the language of arithmetic
interpreted over RR. The main property of this mereo-
topology is that any of its elements is a finite union
of semi-algebraic cells, i.e. semi-algebraic subsets of RR2

homeomorphic to a closed disc. But RCS(RR2) is not the
only candidate for a region-based model of space. In this
paper, we will consider the mereotopology consisting of
the set RCP (RR2) of all regular closed polygons of RR2,

i.e. those regular closed subsets of RR2 definable by a
finite union of finite intersections of closed half-planes.
Although this mereotopology may seem overly simple,
its study from the perspective of the unifiability problem
will turn out to be relatively interesting.

Models Let (X, τ,M) be a mereotopological space. A
valuation on (X, τ,M) is a map associating with ev-
ery atom a regular closed subset of X in M . Given a
valuation V on (X, τ,M), we define :

• V̄(p) = V(p),
• V̄(x) = V(x),
• V̄(0) = ∅,
• V̄(a⋆) = Clτ (X \ V̄(a)),
• V̄(a ∪ b) = V̄(a) ∪ V̄(b).

As a result, V̄(1) = X and V̄(a ∩ b) = Clτ (Intτ (V̄(a) ∩
V̄(b))). Thus, V interprets every term as a regular closed
subset of X in M . A model on (X, τ,M) is a structure
M = (X, τ,M,V) where V is a valuation on (X, τ,M).
The connectives ⊥, ¬ and ∨ being classically interpreted,
the satisfiability of φ ∈ FOR in M (in symbols M |= φ)
is defined as follows :

• M |= C(a, b) iff C(X,τ)(V̄(a), V̄(b)),
• M |= a ≡ b iff V̄(a) = V̄(b).

As a result, M |= a ≤ b iff V̄(a) ⊆ V̄(b).

Validity Let (X, τ,M) be a mereotopological space.
A formula φ is valid in (X, τ,M) iff for all valuations
V on (X, τ,M), (X, τ,M,V) |= φ. Let C be a class of
mereotopological spaces. A formula φ is C-valid iff for
all mereotopological spaces (X, τ,M) in C, φ is valid in
(X, τ,M). The C-validity problem consists in determin-
ing whether a given formula is C-valid. Let Call denote
the class of all mereotopological spaces. The following
formulas are Call-valid :

• C(a, b) ∧ a ≤ a′ → C(a′, b),
• C(a, b) ∧ b ≤ b′ → C(a, b′),
• C(a ∪ a′, b) → C(a, b) ∨ C(a′, b),
• C(a, b ∪ b′) → C(a, b) ∨ C(a, b′),
• C(a, b) → a ̸≡ 0 ∧ b ̸≡ 0,
• a ̸≡ 0 → C(a, a),
• C(a, b) → C(b, a).

The validity problem is known to be coNP-complete in

Call. As for the class CRR
2

all of all mereotopological spaces

over RR2, the validity problem is known to be PSPACE-
complete in it [13, 14]. In this paper, we will mainly be
interested in the polygon-based mereotopological space
(RR2, RCP (RR2)) over RR2. As a result, from now on, when
we write “valid”, we mean “valid in the mereotopological
space (RR2, RCP (RR2))”.

Proposition 3.1. For all φ ∈ FOReq, the following
are equivalent : (1) φ is valid ; (2) for all finite Boolean
algebras B and for all valuations VB on B, (B,VB) |= φ ;
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(3) for all Boolean algebras B and for all valuations VB
on B, (B,VB) |= φ.

Proof. Let φ ∈ FOReq.
(1 ⇒ 2) This follows from the fact that every finite Boo-
lean algebra is isomorphic to a finite Boolean subalgebra
of RCP (RR2).
(2 ⇒ 3) This follows from the fact that we consider here
the quantifier-free fragment of the variety of Boolean
algebras.
(3 ⇒ 1) Obvious. □

4 Unification
The present section introduces the terminology about
unification we will need. From now on, when we write
“CPL”, we mean “Classical Propositional Logic”.

Substitutions A substitution is a function σ : V AR
−→ TER which moves at most finitely many variables.
The domain of a substitution σ (in symbols dom(σ)) is
the set of variables σ moves. Given a substitution σ, let
σ̄ : TER ∪ FOR −→ TER ∪ FOR be the endomor-
phism such that for all variables x, σ̄(x) = σ(x). The
composition of the substitutions σ and τ is the substitu-
tion σ◦τ such that for all x ∈ V AR, (σ◦τ)(x) = τ̄(σ(x)).
For all m,n ≥ 0, let Σm,n be the set of all substitutions
σ such that dom(σ) ⊆ {x1, . . . , xn} and for all positive
integers i ≤ n, σ(xi) is in TERm,n. A substitution σ
is equivalent to a substitution τ (in symbols σ ≃ τ) iff
for all variables x, σ(x) ≡ τ(x) is valid. Obviously, the
relation ≃ is reflexive, symmetric and transitive on the
set of all substitutions. A substitution σ is more general
than a substitution τ (in symbols σ ⪯ τ) iff there exists
a substitution υ such that σ ◦ υ ≃ τ . Obviously, the
relation ⪯ is reflexive and transitive on the set of all
substitutions. Moreover, it contains ≃. A set of substitu-
tions is small iff it contains finitely many non-pairwise
equivalent substitutions modulo ≃.

Proposition 4.1. For all m,n ≥ 0, Σm,n is small.

Proof. This follows from the fact that, considering terms
as formulas in CPL, finitely many atoms define finitely
many non-pairwise equivalent terms. □

Unifiable formulas A formula φ is unifiable iff there
exists a substitution σ such that σ̄(φ) is valid. In that
case, we say that σ is a unifier of φ. The unifiability
problem (in symbols UNIF) consists in determining
whether a given formula is unifiable [3]. A set of unifiers
of φ ∈ FOR is complete iff for all unifiers σ of φ, there
exists a unifier τ of φ in that set such that τ ⪯ σ. An
important question in unification theory is [8] : when
a formula is unifiable, has it a minimal complete set of
unifiers? When the answer is “yes”, how large is this
set?

Unification types A unifiable formula φ is finitary
iff there exists a finite complete set of unifiers of φ but
there exists no with cardinality 1. A unifiable formula φ
is unitary iff there exists a unifier σ of φ such that for
all unifiers τ of φ, σ ⪯ τ . In that case, we say that σ is
a most general unifier of φ.

Proposition 4.2. For all unifiable φ ∈ FOR, the fol-
lowing are equivalent : (1) φ is either finitary, or unitary ;
(2) there exists a small set Σ of substitutions such that
for all unifiers σ of φ, there exists a unifier τ of φ in Σ
such that τ ⪯ σ.

Proof. By well-known properties of substitutions. □

Proposition 4.3. Let φ ∈ FOR, n ≥ 2 and σ1, . . . , σn
be substitutions. If the following hold then φ is finitary :
(1) for all positive integers i ≤ n, σi is a unifier of
φ ; (2) for all positive integers i, j ≤ n, if i ̸= j then
σi ̸⪯ σj ; (3) σ1, . . . , σn form a complete set of unifiers
of φ.

Proof. By well-known properties of substitutions. □

From now on, for all a in TER, when we write “a0”, we
mean “a⋆” and when we write “a1”, we mean “a”.

5 Examples
Some unifiable formulas are unitary. Typically, all formu-
las of the form a1 ≡ b1 ∧ . . .∧ ak ≡ bk : if such a formula
is unifiable then it is unitary. Why? Simply because Boo-
lean unifiability is unitary [15]. For some other formulas,
if they are unifiable then they are finitary. Luckily, in
many cases, this can be easily proved. For example, let
us consider the formula

φ01 := x ≡ 0 ∨ x ≡ 1.

Let σ0 and σ1 be the substitutions such that σ0(x) = 0,
σ1(x) = 1 and for all variables y, if x ̸= y then σ0(y) = y
and σ1(y) = y.

Lemma 5.1. • σ0 and σ1 are unifiers of φ01

• neither σ0 ⪯ σ1, nor σ1 ⪯ σ0,
• σ0 and σ1 form a complete set of unifiers of φ01.

Proof. For the sake of the contradiction, let τ be a unifier
of φ01 such that neither σ0 ⪯ τ , nor σ1 ⪯ τ . Hence,
neither 0 ≡ τ(x) is valid, nor 1 ≡ τ(x) is valid. Thus,
by Proposition 3.1, there exists a finite Boolean algebra
B0 and a valuation VB0

on B0 such that ¯VB0
(τ(x)) ̸=

0B0 and there exists a finite Boolean algebra B1 and a
valuation VB1 on B1 such that ¯VB1(τ(x)) ̸= 1B1 . Let B
be the product of B0 and B1 and VB be the valuation
on B such that for all constants q ∈ CON , VB(q) =
(VB0

(q),VB1
(q)) and for all variables y ∈ V AR, VB(y) =

(VB0
(y),VB1

(y)). The reader may easily verify that for all
terms a, V̄B(a) = ( ¯VB0(a),

¯VB1(a)). Since
¯VB0(τ(x)) ̸=
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0B0 and ¯VB1(τ(x)) ̸= 1B1 , then V̄B(τ(x)) ̸= 0B and
V̄B(τ(x)) ̸= 1B. Consequently, τ(x) ≡ 0∨ τ(x) ≡ 1 is not
valid. Hence, τ is not a unifier of φ01 : a contradiction.

□

Proposition 5.2. φ01 is finitary.

Proof. By Proposition 4.3 and Lemma 5.1. □

Unfortunately, there are unifiable formulas for which the
proof that they are finitary can be more involved. For
example, let us consider the formula

φpq := C(p, q) → x ̸≡ 0 ∧ x ≤ p ∪ q.
Let σp and σq be the substitutions such that σp(x) =
p ∪ (q ∩ x), σq(x) = q ∪ (p ∩ x) and for all variables y, if
x ̸= y then σp(y) = y and σq(y) = y.

Lemma 5.3. • σp and σq are unifiers of φpq,
• if p ̸= q then neither σp ⪯ σq, nor σq ⪯ σp,
• if p ̸= q then σp and σq form a complete set of
unifiers of φpq.

Proof. Similiar to the proof of Lemma 5.1. □

Proposition 5.4. If p ̸= q then φpq is finitary.

Proof. By Proposition 4.3 and Lemma 5.3. □

6 Monomials
The purpose of this section is to introduce definitions and
properties about terms. These definitions and properties
are purely Boolean. They will be used later in Sections 7
and 8. Let k,m, n ≥ 0 be such that n ≤ k. An m-vector
is a map s⃗ associating with every positive integer i ≤ m
an element s⃗(i) of {0, 1}. A (k,m, n)-correspondence is
a map f associating with every m-vector s⃗ a surjective
function fs⃗ : {0, 1}k −→ {0, 1}n. An n-monomial is a

term of the form xβ1

1 ∩ . . . ∩ xβn
n where (β1, . . . , βn) ∈

{0, 1}n. For all m-vectors s⃗, considering a term a in
TERm,n as a formula in CPL, let mons⃗(n, a) be the

set of all n-monomials xβ1

1 ∩ . . . ∩ xβn
n such that a is a

tautological consequence of p
s⃗(1)
1 ∩ . . . ∩ ps⃗(m)

m ∩ xβ1

1 ∩
. . . ∩ xβn

n .

Proposition 6.1. Let a ∈ TERm,n. Considered as for-

mulas in CPL, the terms a and
⋃
{ps⃗(1)1 ∩ . . . ∩ ps⃗(m)

m ∩
xα1
1 ∩ . . .∩xαn

n : s⃗ is an m-vector and xα1
1 ∩ . . .∩xαn

n ∈
mons⃗(n, a)} are equivalent.

Proof. By well-known properties of CPL. □

For all positive integers i ≤ n, let πi : {0, 1}n −→ {0, 1}
be the function such that for all (β1, . . . , βn) ∈ {0, 1}n,
πi(β1, . . . , βn) = βi. Let f be a (k,m, n)-correspondence.
For all m-vectors s⃗, for all (β1, . . . , βn) ∈ {0, 1}n and for
all positive integers i ≤ n, let f−1

s⃗ (β1, . . . , βn) be the set

of all (α1, . . . , αk) ∈ {0, 1}k such that fs⃗(α1, . . . , αk) =

(β1, . . . , βn), ∆s⃗,i be the set of all (α1, . . . , αk) ∈ {0, 1}k
such that πi(fs⃗(α1, . . . , αk)) = 1 and cs⃗,i be the term⋃
{xα1

1 ∩ . . . ∩ xαk

k : (α1, . . . , αk) ∈ ∆s⃗,i}. Remark that
∆s⃗,i and cs⃗,i depend on f — more precisely, on fs⃗ — too.

Proposition 6.2. For all m-vectors s⃗ and for all (β1,
. . . , βn) ∈ {0, 1}n, considered as formulas in CPL, the
terms

⋃
{xα1

1 ∩ . . . ∩ xαk

k : (α1, . . . , αk) ∈ f−1
s⃗ (β1, . . . ,

βn)} and cβ1

s⃗,1 ∩ . . . ∩ c
βn

s⃗,n are equivalent.

Proof. By well-known properties of CPL. □

7 Tuples of terms
Let k,m, n ≥ 0 be such that n ≤ k. Let (a1, . . . , an) ∈
TERn

m,k. For all m-vectors s⃗, we define on {0, 1}k the

equivalence relation ∼k,s⃗
(a1,...,an)

by (α1, . . . , αk)

∼k,s⃗
(a1,...,an)

(α′
1, . . . , α

′
k) iff for all positive integers i ≤ n,

xα1
1 ∩ . . . ∩ xαk

k ∈ mons⃗(k, ai) iff x
α′

1
1 ∩ . . . ∩ x

α′
k

k ∈
mons⃗(k, ai).

Proposition 7.1. For all m-vectors s⃗, ∼k,s⃗
(a1,...,an)

has

at most 2n equivalence classes on {0, 1}k.

Proof. By the definition of ∼k,s⃗
(a1,...,an)

. □

Proposition 7.2. There exists a (k,m, n)-correspon-
dence f such that for all m-vectors s⃗ and for all (α1, . . . ,
αk), (α

′
1, . . . , α

′
k) ∈ {0, 1}k, if fs⃗(α1, . . . , αk) = fs⃗(α

′
1,

. . . , α′
k) then (α1, . . . , αk) ∼k,s⃗

(a1,...,an)
(α′

1, . . . , α
′
k).

Proof. By Proposition 7.1. □

A (k,m, n)-correspondence f is balanced iff for all m-vec-
tors s⃗ and for all (α1, . . . , αk), (α

′
1, . . . , α

′
k) ∈ {0, 1}k, if

fs⃗(α1, . . . , αk) = fs⃗(α
′
1, . . . , α

′
k) then (α1, . . . , αk)

∼k,s⃗
(a1,...,an)

(α′
1, . . . , α

′
k). By Proposition 7.2, let f be

a balanced (k,m, n)-correspondence. For all m-vectors s⃗,
by means of f — more precisely, of fs⃗ —, we define the
n-tuple (bs⃗,1, . . . , bs⃗,n) of terms by setting for all positive

integers i ≤ n, bs⃗,i =
⋃
{xβ1

1 ∩. . .∩xβn
n : xα1

1 ∩. . .∩xαk

k ∈
mons⃗(k, ai) and fs⃗(α1, . . . , αk) = (β1, . . . , βn)}. An n-
tuple (b1, . . . , bn) ∈ TERn

m,n of terms is properly ob-
tained from (a1, . . . , an) iff for all positive integers i ≤ n,

bi =
⋃
{ps⃗(1)1 ∩ . . . ∩ p

s⃗(m)
m ∩ bs⃗,i : s⃗ is an m-vector}.

For all m-vectors s⃗, for all (β1, . . . , βn) ∈ {0, 1}n and
for all positive integers i ≤ n, let f−1

s⃗ (β1, . . . , βn), ∆s⃗,i

and cs⃗,i be as in Section 6. A substitution υ is prop-
erly obtained from (a1, . . . , an) iff for all variables y, if
y ̸∈ {x1, . . . , xn} then υ(y) = y and for all positive inte-

gers i ≤ n, υ(xi) =
⋃
{ps⃗(1)1 ∩ . . . ∩ ps⃗(m)

m ∩ cs⃗,i : s⃗ is an
m-vector}.

Proposition 7.3. Let (b1, . . . , bn) ∈ TERn
m,n and υ be

a substitution. If (b1, . . . , bn) and υ are properly obtained
from (a1, . . . , an) then for all positive integers i ≤ n,
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considered as formulas in CPL, the terms ai and ῡ(bi)
are equivalent.

Proof. Suppose (b1, . . . , bn) and υ are properly obtained
from (a1, . . . , an). Let i ≤ n be a positive integer. Con-
sidered as formulas in CPL, the following terms are
equivalent :

1.
⋃
{ps⃗(1)1 ∩ . . . ∩ ps⃗(m)

m ∩ ῡ(bs⃗,i) : s⃗ is an m-vector}.
2.

⋃
{ps⃗(1)1 ∩ . . .∩ ps⃗(m)

m ∩ υ(x1)β1 ∩ . . .∩ υ(xn)βn : s⃗
is an m-vector, xα1

1 ∩ . . . ∩ xαk

k ∈ mons⃗(k, ai) and
fs⃗(α1, . . . , αk) = (β1, . . . , βn)}.

3.
⋃
{ps⃗(1)1 ∩ . . . ∩ p

s⃗(m)
m ∩ cβ1

s⃗,1 ∩ . . . ∩ cβn

s⃗,n : s⃗ is

an m-vector, xα1
1 ∩ . . . ∩ xαk

k ∈ mons⃗(k, ai) and
fs⃗(α1, . . . , αk) = (β1, . . . , βn)}.

4.
⋃
{ps⃗(1)1 ∩ . . .∩ ps⃗(m)

m ∩ xα
′
1

1 ∩ . . .∩ xα
′
k

k : s⃗ is an m-
vector, xα1

1 ∩. . .∩xαk

k ∈ mons⃗(k, ai), fs⃗(α1, . . . , αk)

= (β1, . . . , βn) and (α′
1, . . . , α

′
k) ∈ f−1

s⃗ (β1, . . . ,
βn)}.

5.
⋃
{ps⃗(1)1 ∩ . . . ∩ ps⃗(m)

m ∩ xα1
1 ∩ . . . ∩ xαk

k : s⃗ is an
m-vector and xα1

1 ∩ . . . ∩ xαk

k ∈ mons⃗(k, ai)}.
The equivalence between 1 and 2 is a consequence of the
definition of (bs⃗,1, . . . , bs⃗,n). The equivalence between 2
and 3 is a consequence of the definition of υ. The equiva-
lence between 3 and 4 is a consequence of Proposition 6.2.
The equivalence between 4 and 5 is a consequence of the

definitions of mons⃗ and ∼k,s⃗
(a1,...,an)

and the fact that f is

balanced. The equivalence between ῡ(bi) and 1 is a conse-
quence of the definition of (b1, . . . , bn). The equivalence
between 5 and ai is a consequence of Proposition 6.1. □

Proposition 7.4. Let σ be the substitution such that
for all variables y, if y ̸∈ {x1, . . . , xn} then σ(y) = y
and for all positive integers i ≤ n, σ(xi) = ai. Let
(b1, . . . , bn) ∈ TERn

m,n and τ be the substitution such
that for all variables y, if y ̸∈ {x1, . . . , xn} then τ(y) = y
and for all positive integers i ≤ n, τ(xi) = bi. Let υ be a
substitution. If (b1, . . . , bn) and υ are properly obtained
from (a1, . . . , an) then τ ◦ υ ≃ σ.

Proof. Suppose (b1, . . . , bn) and υ are properly obtained
from (a1, . . . , an). Hence, by Proposition 7.3, for all pos-
itive integers i ≤ n, considered as formulas in CPL, the
terms ai and ῡ(bi) are equivalent. Thus, for all positive
integers i ≤ n, ῡ(τ(xi)) ≡ σ(xi) is valid. Consequently,
τ ◦ υ ≃ σ. □

Proposition 7.5. Let (b1, . . . , bn) ∈ TERn
m,n. If (b1,

. . . , bn) is properly obtained from (a1, . . . , an) then for
all valuations V on RCP (RR2), there exists a valuation
V ′ on RCP (RR2) such that for all positive integers i ≤ n,
V̄(bi) = V̄ ′(ai).

Proof. Suppose (b1, . . . , bn) is properly obtained from
(a1, . . . , an). Let V be a valuation on RCP (RR2). Let V ′

be a valuation on RCP (RR2) such that for all positive
integers i ≤ m, V ′(pi) = V(pi) and for all m-vectors

s⃗ and for all (β1, . . . , βn) ∈ {0, 1}n,
⋃
{V̄ ′(p

s⃗(1)
1 ∩ . . . ∩

p
s⃗(m)
m ∩xα1

1 ∩ . . .∩xαk

k ) : xα1
1 ∩ . . .∩xαk

k is a k-monomial

such that fs⃗(α1, . . . , αk) = (β1, . . . , βn)} = V̄(ps⃗(1)1 ∩
. . . ∩ ps⃗(m)

m ∩ xβ1

1 ∩ . . . ∩ xβn
n ). For all positive integers

i ≤ n, the following subsets of RR2 are equal :

1.
⋃
{V̄ ′(p

s⃗(1)
1 ∩ . . . ∩ ps⃗(m)

m ∩ xα1
1 ∩ . . . ∩ xαk

k ) : s⃗ is
an m-vector and xα1

1 ∩ . . . ∩ xαk

k ∈ mons⃗(k, ai)}.
2. V̄(

⋃
{ps⃗(1)1 ∩ . . . ∩ p

s⃗(m)
m ∩ xβ1

1 ∩ . . . ∩ xβn
n : s⃗ is

an m-vector, xα1
1 ∩ . . . ∩ xαk

k ∈ mons⃗(k, ai) and
fs⃗(α1, . . . , αk) = (β1, . . . , βn)}).

3. V̄(
⋃
{ps⃗(1)1 ∩ . . .∩ ps⃗(m)

m ∩ bs⃗,i : s⃗ is an m-vector}).
The equality between 1 and 2 is a consequence of the

definitions of mons⃗, ∼k,s⃗
(a1,...,an)

and V ′ and the fact that

f is balanced. The equality between 2 and 3 is a conse-
quence of the definition of (bs⃗,1, . . . , bs⃗,n). The equality
between V̄ ′(ai) and 1 is a consequence of Proposition 6.1.
The equality between 3 and V̄(bi) is a consequence of
the definition of (b1, . . . , bn). □

Proposition 7.6. Let σ be the substitution such that
for all variables y, if y ̸∈ {x1, . . . , xn} then σ(y) = y and
for all positive integers i ≤ n, σ(xi) = ai. Let φ ∈ FOR.
Let (b1, . . . , bn) ∈ TERn

m,n and τ be the substitution
such that for all variables y, if y ̸∈ {x1, . . . , xn} then
τ(y) = y and for all positive integers i ≤ n, τ(xi) = bi.
If (b1, . . . , bn) is properly obtained from (a1, . . . , an) then
σ is a unifier of φ only if τ is a unifier of φ.

Proof. Suppose (b1, . . . , bn) is properly obtained from
(a1, . . . , an) and τ is not a unifier of φ. Let V be a
valuation on RCP (RR2) such that (RCP (RR2),V) ̸|=
τ̄(φ). Hence, by Proposition 7.5, let V ′ be a valua-
tion on RCP (RR2) such that for all positive integers
i ≤ n, V̄(bi) = V̄ ′(ai). Since (RCP (RR2),V) ̸|= τ̄(φ),
then (RCP (RR2),V ′) ̸|= σ̄(φ). Thus, σ is not a unifier of
φ. □

8 Unification type
Now, we are ready to prove the main results of this
paper.

Proposition 8.1. Let φ ∈ FOR. Let m,n ≥ 0 be such
that φ’s constants form a subset of {p1, . . . , pm} and φ’s
variables form a subset of {x1, . . . , xn}. For all unifiers
σ of φ, there exists a unifier τ of φ in Σm,n such that
τ ⪯ σ.

Proof. Let σ be a unifier of φ. Without loss of generality,
we can assume that for all constants q, if q ̸∈ {p1, . . . , pm}
then for all positive integers i ≤ n, q does not oc-
cur in σ(xi) and for all variables y, if y ̸∈ {x1, . . . ,
xn} then σ(y) = y. Let k ≥ 0 and (a1, . . . , an) ∈

5
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m,k be such that n ≤ k and for all positive integers

i ≤ n, σ(xi) = ai. For all m-vectors s⃗, let ∼k,s⃗
(a1,...,an)

be as in Section 7. By Proposition 7.2, let f be a bal-
anced (k,m, n)-correspondence. For all m-vectors s⃗, for
all (β1, . . . , βn) ∈ {0, 1}n and for all positive integers
i ≤ n, let f−1

s⃗ (β1, . . . , βn), ∆s⃗,i and cs⃗,i be as in Section 6.
Let (b1, . . . , bn) ∈ TERn

m,n be an n-tuple of terms prop-
erly obtained from (a1, . . . , an). Let τ be the substitution
such that for all variables y, if y ̸∈ {x1, . . . , xn} then
τ(y) = y and for all positive integers i ≤ n, τ(xi) = bi.
Remark that τ is in Σm,n. Moreover, by Proposition 7.6,
τ is a unifier of φ. Let υ be a substitution properly ob-
tained from (a1, . . . , an). By Proposition 7.4, τ ◦ υ ≃ σ.
Hence, τ ⪯ σ. □

By Proposition 8.1, one can reduce the unifiability prob-
lem in TLs to the validity problem. Since the validity
problem in TLs is decidable [13, 14], then the unifiability
problem is decidable too, its exact complexity being still
unknown. As a consequence of Proposition 8.1, we obtain
the following

Proposition 8.2. Let φ ∈ FOR. If φ is unifiable then
φ is either finitary, or unitary.

Proof. By Propositions 4.1, 4.2 and 8.1. □

9 Conclusion
In this paper, we have adapted to the problem of unifiabil-
ity with constants in TLs the line of reasoning developed
by Balbiani and Gencer [6] within the simpler context of
the problem of unifiability without constants in Boolean
Region Connection Calculus. We anticipate a number
of further investigations. Firstly, about the choice of
the mereotopological space RCP (RR2). It remains to see
whether the line of reasoning developed in this paper will
still apply to RC(RR2) and RCS(RR2). What happens if
we consider mereotopological spaces over the topological
space RRn, i.e. the real space RRn of dimension n together
with its ordinary topology, when n ≥ 3? Secondly, about
the computability of the unifiability problem in TLs. By
Proposition 8.1, this problem is decidable. Nevertheless,
its exact complexity is still unknown. In this respect, we
believe that arguments developed in [1] could be used.
Thirdly, about adding to the language the predicate of
connectedness or the predicate of internal connectedness
considered in [13, 14, 21]. The line of reasoning developed
in this paper will still apply to these extended languages.
Nevertheless, in that case, as proved in [13, 14], the
validity problem becomes undecidable.
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