
First-Order vs. Second-Order Encodings for
LTLf -to-Automata: An Extended Abstract
Shufang Zhu, Geguang Pu
East China Normal University

Shanghai, China

Moshe Y. Vardi
Rice University
Texas, USA

Abstract
Translating formulas of Linear Temporal Logic (LTL) over
finite traces, or LTLf , to symbolic Deterministic Finite Au-
tomata (DFA) plays an important role not only in LTLf syn-
thesis, but also in synthesis for Safety LTL formulas. The
translation is enabled by usingMONA, a sophisticated tool
for symbolic DFA construction from logic specifications. Re-
cent works used a first-order encoding of LTLf formulas to
translate LTLf to First Order Logic (FOL), which is then fed
toMONA to construct the symbolic DFA. This encoding was
shown to perform well, but other encodings have not been
studied. Specifically, the natural question of whether second-
order (MSO) encoding, which has significantly simpler quan-
tificational structure, can outperform first-order (FOL) en-
coding remained open.
In this paper we meet this challenge and study MSO en-

coding for LTLf formulas. We introduce a specific MSO en-
coding, and show that this encoding and its simplicity indeed
allow more potential than FOL for optimization, thus benefit-
ing symbolic DFA construction. We then show by empirical
evaluations that, surprisingly, the FOL encoding outperforms
in practice the MSO encodings. We analyze the results and
explain how to improveMONA in order to allow the MSO
encoding to outperform the FOL encoding.

1 Introduction
Synthesis from temporal specifications [19] is a fundamental
problem in Artificial Intelligence and Computer Science [5].
A popular specification is Linear Temporal Logic (LTL) [18].
The standard approach to solving LTL synthesis requires,
however, both determinization of automata on infinite words
and solving parity games, both challenging algorithmic prob-
lems [14]. Thus a major barrier of temporal synthesis has
been algorithmic difficulty. One approach to combating this
difficulty is to focus on using fragments of LTL, such as
the GR(1) fragment, for which temporal synthesis has lower
computational complexity [1].

A new logic for temporal synthesis, called LTLf , was pro-
posed recently in [4, 5]. The focus there is not on limiting
the syntax of LTL, but on interpreting it semantically on
finite traces, rather than infinite traces as in [18]. Such inter-
pretation allows the executions being arbitrarily long, but

WiL’17, July 06–19,2018, Oxford, UK
2018.

not infinite. While limiting the semantics to finite traces
does not change the computational complexity of temporal
synthesis (2EXPTIME), the algorithms for LTLf are much
simpler. The reason is that those algorithms require deter-
minization of automata on finite words (rather than infinite
words), and solving reachability games (rather than parity
games) [5]. Another application, as shown in [23], is that
temporal synthesis of Safety LTL formulas, a syntactic frag-
ment of LTL expressing safety properties, can be reduced
to reasoning about finite words (see also [13, 16]). This ap-
proach has been implemented in [24] for LTLf synthesis
and in [23] for synthesis of Safety LTL formulas, and has
been shown to outperform existing temporal-synthesis tools
such as Acacia+ [2]. The key algorithmic building block in
all these approaches is a translation of LTLf to symbolic
Deterministic Finite Automata (DFA).
The method utilized in [23, 24] for such translation of

LTLf to symbolic DFA used an encoding of LTLf to First-
Order Logic (FOL) that captures directly the semantics of
temporal connectives, and MONA [10], a sophisticated tool,
for symbolic DFA construction from logical specifications.
This approach was shown to outperform explicit tools such
as SPOT [9], but other encodings have not been studied. How-
ever, the FOL encoding relies on a syntax-driven translation
that involves an arbitrary alternation of quantifiers, which
limits the potential for optimization. Such fact leads us to
study translations of LTLf to Monadic Second Order (MSO)
logic of one successor over finite words (called M2L-STR
in [12]). Indeed, one possible advantage of using MSO is the
simpler quantificational structure such that the MSO encod-
ing requires only a sequence of existential monadic second-
order quantifiers followed by a single universal first-order
quantifier. Moreover, instead of the syntax-driven translation
of FOL encoding, the MSO encoding employs a semantics-
driven translation which allows more space for optimization.
The natural question arises is whether second-order (MSO)
encoding outperforms first-order (FOL) encoding.
To answer this question, we study MSO encodings for

LTLf formulas. We start by introducing an MSO encoding
relying on having a second-order variable for each temporal
operator appearing in the LTLf formula and proving the
correctness. We then show that this encoding allows more
potential for optimization than the FOL encoding, described
in [23]. In particular, we study the following optimizations
that were introduced in [17, 22]: in the variable form, where

1

WiL’17, July 06–19,2018, Oxford, UK Shufang Zhu, Geguang Pu and Moshe Y. Vardi

a Lean encoding introduces less variables than the standard
Full encoding; and in the constraint form, where the Sloppy
encoding allows less constraints than the standard Fussy
encoding. In addition, we present in this paper the first eval-
uation of the spectrum of encodings for LTLf -to-automata
from FOL to MSO.

Yet, our empirical evaluations show the superiority of the
FOL encoding as a way to getMONA to generate a symbolic
DFA, which surprisingly violates the intuition of MSO en-
coding. We analyze the way MONA handles quantifiers and
observe that it processes a full block of like quantifiers one
by one, rather than processing the whole block at once. This
indicates that the current version ofMONA is not the best
choice for MSO encoding of LTLf . Therefore with optimized
quantifier elimination strategies, MSO encoding may out-
perform FOL encoding for symbolic DFA construction from
LTLf on MONA. Thus a further contribution of the paper is
providing opportunities for the improvement of MONA.

In Section 2 we give preliminaries and notations. Section 3
introduces MSO encoding and corresponding variations in
terms of optimizations and proves their correctness. Empir-
ical evaluation results are presented in Section 4. Finally,
Section 5 concludes and discusses. The proofs are omitted
due to page limit.

2 Preliminaries
2.1 LTLf Basics
Linear Temporal Logic over finite traces (LTLf) has the same
syntax as LTL [4]. Given a set P of atoms, the syntax of
LTLf formulas is as follows: ϕ ::= ⊤ | ⊥ | p | ¬ϕ | ϕ1 ∧
ϕ2 | Xϕ | ϕ1Uϕ2 , where p ∈ P. We use ⊤ and ⊥ to denote
true and false respectively. X (Next) andU (Until) are tempo-
ral operators, whose dual operators are N (Weak Next) and R
(Release) respectively, defined as Nϕ ≡ ¬X¬ϕ and ϕ1Rϕ2 ≡
¬(¬ϕ1U¬ϕ2). The abbreviations (Eventually) Fϕ ≡ ⊤Uϕ and
(Globally) Gϕ ≡ ⊥Rϕ are defined as usual. We assume stan-
dard semantics as defined in [4] and write ρ |= ϕ if ρ ∈ (2P)∗
satisfies ϕ, where trace ρ = ρ[0], ρ[1], . . . , ρ[e] is a finite
sequence of propositional assignments. Every LTLf formula
can be written in Boolean Normal Form (BNF) or Negation
Normal Form (NNF). BNF rewrites the input formula using
only ¬, ∧, ∨,X , andU . NNF pushes negations inwards, intro-
ducing the dual temporal operators N and R, until negation
is applied only to atoms.

2.2 Symbolic DFA and MONA

We start by defining the concept of symbolic Deterministic
Finite Automata (DFA) [24], where a boolean formula is used
to represent the transition function of a DFA. A symbolic
DFA F = (P,X,X0,η, f) corresponding to an explicit DFA
D = (2P , S, s0,δ , F) is defined as follows: P is the set of
atoms; X is a set of state variables where |X| = ⌈log2 |S |⌉;
X0 ∈ 2X is the initial state corresponding to s0; η : 2X×2P →

2X is a boolean transition function corresponding to δ ; f
is the acceptance condition expressed as a boolean formula
over X such that f is satisfied by an assignment X iff X
corresponds to a final state s ∈ F .
The MONA tool [10] is an efficient implementation for

translating FOL and MSO formulas over finite words into
minimized symbolic DFAs. Therefore, in this paper we eval-
uate FOL and MSO encodings on MONA .

2.3 LTLf to FOL Encoding
First Order Logic (FOL) encoding of LTLf translates LTLf into
FOL over finite linear order with monadic predicates. In this
paper, we utilize the FOL encoding proposed in [4], where
the translation returns an FOL formula fol(ϕ, 0) asserting
the truth of LTLf formula ϕ at point 0 of the linear order.
For more details on FOL encoding, we refer to [4]. Given a
finite trace ρ, we denote the corresponding finite linear or-
dered FOL interpretation of ρ by Iρ . The following theorem
guarantees the correctness of FOL encoding of LTLf .

Theorem 2.1 ([11]). Let ϕ be an LTLf formula and ρ be a
finite trace. Then ρ |= ϕ iff Iρ |= fol(ϕ, 0).

3 MSO Encodings
One immediate drawback of the FOL encoding is that it
involves an arbitrary alternation of quantifiers due to the
syntax-driven translation. This leads to limited optimization
space in the sense that simplifying the translation such that
benefiting subsequent symbolic DFA construction. By ap-
plying a semantics-driven translation to LTLf , we obtain an
MSO encoding that allows more optimization space. Intu-
itively speaking, MSO encoding deals with LTLf formula
by interpreting every operator with corresponding subfor-
mulas following exactly the semantics of the operator. We
now define MSO encodings that translate LTLf formula ϕ
to MSO asserting the truth of ϕ at point 0 of the linear or-
der. The MSO formula is then fed to MONA to produce a
symbolic DFA. We first show the basic MSO encoding in
Section 3.1, then describe variations of it in the following.

3.1 LTLf to MSO Encoding
MSO is an extension of FOL that allows quantification over
monadic predicates [12]. We first restrict our interest to
monadic structure. Consider a finite trace ρ = ρ[0]ρ[1] · · · ρ[e]
where for x such that 0 ≤ x ≤ e , ρ[x] indicates the set
of atoms of P that are true at position x . Then the corre-
sponding monadic structure Iρ = (∆I , <, ·I) describes ρ as
follows. ∆I = {0, 1, 2, · · · , last}, where last = e . The linear
order < is defined over ∆I in the standard way [12]. The nota-
tion ·I indicates the set of monadic predicates that describe
the atoms of P, where the interpretation of each p ∈ P is
pI = {x : p ∈ ρ[x]}. Intuitively, pI is interpreted as the set
of positions where p is true in ρ.

2

First-Order vs. Second-Order Encodings for LTLf -to-Automata: An Extended Abstract WiL’17, July 06–19,2018, Oxford, UK

We now present MSO encoding of LTLf . For an LTLf for-
mula ϕ over a set P of atoms, let cl(ϕ) denote the set of sub-
formulas ofϕ. We define atomic formulas as atomsp ∈ P. For
every subformula in cl(ϕ) we introduce monadic predicate
symbols as follows: for each atomic subformula p ∈ P, we
have a monadic predicate symbol Qp ; for each non-atomic
subformula θi ∈ {θ1, . . . ,θm}, we haveQθi . Intuitively speak-
ing, each monadic predicate indicates the positions where
the corresponding subformula is true along the linear order.

Letmso(ϕ) be the translation function that given an LTLf
formula ϕ returns a corresponding MSO formula asserting
the truth of ϕ at position 0. We define mso(ϕ) as follow-
ing:mso(ϕ) = (∃Qθ1) · · · (∃Qθm)(Qϕ (0) ∧ (∀x)(∧m

i=1 t(θi ,x)),
where x indicates the position along the finite linear or-
der. Here t(θi ,x) asserts that the truth of every non-atomic
subformula θi of ϕ at position x relies on the truth of corre-
sponding subformulas at x such that follows the semantics
of LTLf . Therefore, t(θi ,x) is defined as follows:

• If θi = (¬θ j), then t(θi ,x) = (Qθi (x) ↔ ¬Qθ j (x))
• If θi = (θ j ∧ θk), then t(θi ,x) = (Qθi (x) ↔ (Qθ j (x) ∧
Qθk (x)))

• If θi = (Xθ j), then t(θi ,x) = (Qθi (x) ↔ ((x , last) ∧
Qθ j (x + 1)))

• If θi = (θ jUθk), then t(θi ,x) = (Qθi (x) ↔ (Qθk (x) ∨
((x , last) ∧Qθ j (x) ∧Qθi (x + 1))))

In the translation above, the successor function +1 and the
variable last can be defined in terms of <. The following
theorem asserts the correctness of the MSO encoding.

Theorem 3.1. Let ϕ be an LTLf formula, ρ be a finite trace.
Then ρ |= ϕ iff Iρ |= mso(ϕ).

3.2 Variations of MSO Encoding
The basic MSO encoding defined in Section 3.1 translates
LTLf to MSO in a naive way, in the sense that introducing
a second-order predicate for each non-atomic subformula
and employing the ↔ constraint. Inspired by [17, 22], we
define in this section several optimizations to simplify such
encoding thus benefiting symbolic DFA construction. We
name MSO encoding with different optimizations variation.
These variations are combinations of three independent com-
ponents: (1) the Normal Form (choose between BNF or NNF);
(2) the Constraint Form (choose between Fussy or Sloppy);
(3) the Variable Form (choose between Full or Lean). In each
component one can choose either of two options to make.

Thus for example, the variation described in Section 3.1 is
BNF-Fussy-Full. Note that BNF-Sloppy are incompatible, as
described below, and so there are 23 − 2 = 6 viable combina-
tions. We next describe the variations in details.
Constraint Form The translation described in Section 3.1
translating LTLf formula ϕ to MSO formulamso(ϕ) employs
an iff constraint, of the form t(θi ,x) = (Qθi (x) ↔ (Qθ j (x) ∧
Qθk (x))) if θi = (θ j ∧ θk) for example. We refer to this as
Fussy variation. We now introduce Sloppy variation, inspired

by [22], which allows looser constraints with correctness
guarantee that may speed up the symbolic DFA construction.
For LTLf formulas in NNF, the Sloppy variation requires

only a single implication constraint→, yielding ts (θi ,x) =
(Qθi (x) → (Qθ j (x) ∧Qθk (x))) for the same example. Sloppy
variation msos (ϕ) returns MSO formula (∃Qθ1) · · · (∃Qθm)
(Qϕ (0)∧(∀x)(∧m

i=1 ts (θi ,x))), where ts (θi) is defined just like
t(θi), replacing the ↔ by →. The following theorem asserts
the correctness of the Sloppy variation.

Theorem 3.2. Let ϕ be an LTLf formula in NNF, ρ be a finite
trance. Then ρ |= ϕ iff Iρ |= msos (ϕ).

Sloppy variation cannot be applied to LTLf formulas in
BNF since the↔ constraint defined in function t(θi) is needed
only to handle negation correctly. BNF requires a general
handling of negation. For LTLf formulas in NNF, negation is
applied only to atomic formulas such that handled implicitly
by the base case ρ,x |= p ↔ ρ,x ⊭ ¬p. Therefore, translating
LTLf formulas in NNF does not require the↔ constraint. For
example, consider LTLf formula ϕ = ¬Fa (in BNF), where a
is an atom. The corresponding BNF-Sloppy variation gives
MSO formula (∃Q¬Fa)(∃QFa)(Q¬Fa(0) ∧ ((∀x)((Q¬Fa(x) →
¬QFa(x))∧(QFa(x) → (Qa(x)∨((x , last)∧QFa(x+1)))))))
viamsos (ϕ). Consider finite trace ρ = (a = 0), (a = 1), ρ |= ϕ
iff ρ |= msos (ϕ) does not hold since ρ ⊭ ¬Fa. This happens
because ¬Fa requires (Q¬Fa(x) ↔ ¬QFa(x)) as Fa is an non-
atomic subformula. Therefore, Sloppy variation can only be
applied to LTLf formulas in NNF.
Variable Form So far, we introduced the Full variationmethod,
in which each non-atomic subformula in cl(ϕ) involves a
monadic predicate. We now introduce Lean variation, a new
variable form, aiming at decreasing the number of quantified
monadic predicates. Less quantifiers on monadic predicates
could benefit symbolic DFA construction a lot since quan-
tifier elimination inMONA takes heavy cost. The key idea
of Lean variation is introducing monadic predicates only for
atomic subformulas and non-atomic subformulas of the form
ϕ jRθk or ϕ jUθk (named as R- orU -subformula respectively).

For non-atomic subformulas that are not U - or R- subfor-
mulas, we can construct second-order terms using already
defined monadic predicates to capture the semantics of them.
Function lean(θi) is defined to give such second-order terms.
Intuitively speaking, lean(θi) indicates the same positions
where θi is true as Qθi does, instead of having Qθi explicitly.
We use built-in second-order operators inMONA to simplify
the definition of lean(θi). ALIVE is defined to collect all in-
stances along the finite trace.MONA also allows to apply set
union, intersection, and difference for second-order terms,
as well as the −1 operation (which shifts a monadic predi-
cate backwards by one position). lean(θi) is defined over the
structure of θi as following:

• If θi = (¬θ j), then lean(θi) = (ALIVE\lean(θ j))
• Ifθi = (θ j∧θk), then lean(θi) = (lean(θ j) inter lean(θk))

3

WiL’17, July 06–19,2018, Oxford, UK Shufang Zhu, Geguang Pu and Moshe Y. Vardi

• Ifθi = (θ j∨θk), then lean(θi) = (lean(θ j) union lean(θk))
• If θi = (Xθ j), then lean(θi) = ((lean(θ j) − 1)\{last})
• Ifθi = (Nθ j), then lean(θi) = ((lean(θ j)−1) union {last})
• If θi = (θ jUθk) or θi = (θ jRθk), then lean(θi) = Qθa ,
where Qθa is the corresponding monadic predicate.

The following lemma ensures that lean(θi) keeps the in-
terpretation of each non-atomic subformula θi ∈ cl(ϕ).

Lemma 3.3. Let ϕ be an LTLf formula, ρ be a finite trace.
Then ρ,x |= θi iff lean(θi)(x), where x is the position in ρ.

Finally, we define Lean variation based on function lean(ϕ).
Lean variationmsoλ(ϕ) returnsMSO formula (∃Qθ1) . . . (∃Qθn)
(lean(ϕ)(0) ∧ ((∀x)(∧n

a=1 tλ(θa ,x)))), where n is the number
of U - and R- subformulas θa ∈ cl(ϕ), and tλ(θa ,x) is de-
fined as follows: if θa = (θ jUθk), then tλ(θa ,x) = (Qθa (x) ↔
(lean(θk)(x) ∨ ((x , last) ∧ lean(θ j)(x) ∧ Qθa (x + 1)))); if
θa = (θ jRθk), then tλ(θa ,x) = (Qθa (x) ↔ (lean(θk)(x) ∧
((x = last) ∨ lean(θ j)(x) ∨Qθa (x + 1)))). Then the following
theorem guarantees the correctness of Lean variation.

Theorem 3.4. Let ϕ be an LTLf formula, ρ be a finite trace.
Then ρ |= ϕ iff Iρ |= msoλ(ϕ).

4 Experimental Evaluation
Having defined MSO encoding with various variations that
allow potential optimization, we now evaluate the perfor-
mance of them by comparing against FOL encoding. We
implemented all parsers for LTLf formulas using C++. The
entire framework consists of two steps: the encoding and
the symbolic DFA construction. The parser first accepts an
LTLf formula as input, then translates to a corresponding
FOL or MSO formula. We feed this formula toMONA [10]
to construct the symbolic DFA.

4.1 Experimental Methodology
Benchmarks We performed the experiment in the context
of LTLf -to-DFA, thus only satisfiable but not valid formulas
are interesting. Therefore we first ran an LTLf satisfiability
checker on LTLf formulas and their negations to filter the
valid or unsatisfiable formulas. We collected 5690 formu-
las, which consist of two classes of benchmarks: 765 LTLf -
specific benchmarks, including 700 scalable LTLf pattern
formulas from [7] and 65 randomly conjuncted common
LTLf formulas from [3, 8, 20] in the style described in [15];
and 4925 LTL-as-LTLf formulas from [21, 22], since LTL for-
mulas share the same syntax as LTLf .
Experimental Setup As described in Section 3, there are
6 viable combinations (yielding 6 MSO encodings) of 3 in-
dependent variations: (1) the Normal Form (BNF or NNF);
(2) the Constraint Form (Fussy or Sloppy); (3) the Variable
Form (Full or Lean). To explore the comparison between
FOL andMSO for LTLf -to-DFA translation, for each LTLf for-
mula, we performed LTLf -to-DFA using all six MSO encod-
ings described in Section 3 and two FOL encodings (BNF and

 0

 1000

 2000

 3000

 4000

 5000

 0.01 0.1 1 10 100 1000

N
u
m

b
e
r

o
f

co
n
v
e
rt

e
d
 i
n
st

a
n
ce

s

CPU time(s)

BNF-Fussy-Lean
NNF-Fussy-Lean

NNF-Sloppy-Lean
NNF-Fussy-Full
BNF-Fussy-Full

NNF-Sloppy-Full

Figure 1. Comparison of 6 MSO encodings

 0

 1000

 2000

 3000

 4000

 5000

 0.01 0.1 1 10 100 1000

N
u
m

b
e
r

o
f

co
n
v
e
rt

e
d
 i
n
st

a
n
ce

s

CPU time(s)

Best MSO (BNF-Fussy-Lean)
FOL (BNF)

Figure 2. Comparison of FOL and MSO encodings

NNF). We ran each formula for every encoding on a node
within a high performance cluster. These nodes contain 12
processor cores at 2.2 GHz each with 8GB of RAM per core.
Time out was set to be 1000 seconds. Cases that cannot gen-
erate the DFA within 1000 seconds generally fail even if the
time limit is extended, since in these cases, MONA typically
cannot handle the symbolic DFA construction.
Correctness The correctness of the implementation of dif-
ferent encodings was evaluated by comparing the DFAs in
terms of the number of states and transitions generated from
each encoding. No inconsistencies were discovered.
Best FOL We first compared the impact on performance of
the two LTLf normal forms (BNF and NNF) of FOL encoding.
It turns out that the normal form does not have a measurable
impact on the performance of the first-order encoding. Since
FOL-BNF encoding performs slightly better than FOL-NNF,
the best FOL encoding refers to FOL-BNF.

4.2 Experimental Results
The experiments were divided into two parts and resulted
in two major findings. First we explored the benefits of var-
ious variations and showed that the most effective one is
the Lean variation. Then we compared the best performing
MSO encoding against the FOL encoding and showed that
FOL encoding, unexpectedly, outperforms theMSO encoding.
We report as follows.
Lean variation is more effective for MSO encoding. Fig-
ure 1 presents the number of converted instances of each

4

First-Order vs. Second-Order Encodings for LTLf -to-Automata: An Extended Abstract WiL’17, July 06–19,2018, Oxford, UK

MSO encoding, where the upper three are all applied with
Lean variation and the lower ones are with Full variation.
The choice of BNF or NNF did not have a major impact,
and neither did the choice of Fussy or Sloppy. The one vari-
ation that was particularly effective is that of Lean. The
best-performing MSO encoding was enabled by combination
BNF-Fussy-Lean.
FOL encoding dominatesMSO encodings.As presented in
Figure 2, FOL encoding shows its superiority over MSO en-
codings. Thus, the use of second-order logic, even under
sophisticated optimization, did not prove its value in terms
of performance. This is discussed extensively in next section.

5 Discussion
In this paper we presented the first encodings of LTLf to
symbolic automata based on MSO, and the first comparison
of FOL against MSO in the context of LTLf -to-automata
translation. We showed that MSO encoding allows a signifi-
cantly simpler quantificational structure, which requires only
a block of existential second-order quantifiers, followed by a
single universal first-order quantifier, while FOL encoding
involves an arbitrary alternation of quantifiers. Neverthe-
less, empirical evaluations showed that first-order encoding,
in general, outperforms the second-order encodings. This
finding contradicts our initial intuition.

One reason for this contradiction might be that MONA is
an “aggressive minimizer”: after each quantifier elimination,
MONA re-minimizes the DFA under construction. Thus, the
fact that the MSO encoding starts with a block of existential
second-order quantifiers offers no computational advantage,
as MONA eliminates the second-order quantifiers one by
one, performing computationally heavy minimization after
each quantifier. A possible improvement to MONA would
enable it to eliminate a whole block of quantifiers of the same
type (existential or universal) in one operation, involving
only one minimization. We conjecture that with such im-
provement to MONA, the MSO encoding would outperform
the FOL encoding. We leave this to future work.

Beyond the possibility of performance gained via second-
order encodings, another motivation for studying such en-
codings is their greater expressivity. The fact that LTLf has
equivalent expressiveness with FOL [11] tells us that its ex-
pressiveness is limited. For this reason it is advocated in [4] to
use Linear Dynamic Logic (LDLf) to specify ongoing behav-
ior. LDLf is expressively equivalent to MSO, which is more
expressive than FOL. Thus, automata-theoretic reasoning for
LDLf , for example, reactive synthesis [5], cannot be done
via first-order encoding and requires second-order encoding.
Similarly, synthesis of LTLf with incomplete information
requires the usage of second-order encoding [6]. We leave
this too to future research.
Acknowledgments.Work supported in part by NSF grants
CCF-1319459 and IIS-1527668, and by NSF Expeditions in

Computing project "ExCAPE: Expeditions in Computer Aug-
mented Program Engineering", NSFC Projects No. 61572197
and No. 61632005, MOST NKTSP Project 2015BAG19B02.
Special thanks to Dror Fried for useful discussions.

References
[1] Roderick Bloem, Stefan J. Galler, Barbara Jobstmann, Nir Piterman,

Amir Pnueli, and Martin Weiglhofer. 2007. Interactive presentation:
Automatic hardware synthesis from specifications: a case study. In
DATE. 1188–1193.

[2] Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, Naiyong Jin, and
Jean-François Raskin. 2012. Acacia+, a Tool for LTL Synthesis. In CAV.

[3] Giuseppe De Giacomo, Riccardo De Masellis, and Marco Montali. 2014.
Reasoning on LTL on Finite Traces: Insensitivity to Infiniteness. In
AAAI. 1027–1033.

[4] G. De Giacomo and Moshe Y. Vardi. 2013. Linear Temporal Logic and
Linear Dynamic Logic on Finite Traces. In IJCAI. 854–860.

[5] Giuseppe De Giacomo and Moshe Y. Vardi. 2015. Synthesis for LTL
and LDL on Finite Traces. In IJCAI. 1558–1564.

[6] Giuseppe De Giacomo and Moshe Y. Vardi. 2016. LTLf and LDLf
Synthesis under Partial Observability. In IJCAI. 1044–1050.

[7] Claudio Di Ciccio, Fabrizio Maria Maggi, and Jan Mendling. 2016.
Efficient discovery of Target-Branched Declare constraints. Inf. Syst.
56 (2016), 258–283.

[8] Claudio Di Ciccio and Massimo Mecella. 2015. On the Discovery of
Declarative Control Flows for Artful Processes. ACM Trans. Manage-
ment Inf. Syst. 5, 4 (2015), 24:1–24:37.

[9] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille,
Thibaud Michaud, Etienne Renault, and Laurent Xu. 2016. Spot 2.0 —
A Framework for LTL and ω-automata Manipulation. In ATVA.

[10] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe,
andA. Sandholm. 1995. Mona:Monadic Second-Order Logic in Practice.
In TACAS. 89–110.

[11] J.A.W. Kamp. 1968. Tense Logic and the Theory of Order. Ph.D. Disser-
tation. UCLA.

[12] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. 2000.
MONA Implementation Secrets. In CIAA. 182–194.

[13] Orna Kupferman and Moshe Y. Vardi. 2001. Model Checking of Safety
Properties. Formal Methods in System Design 19, 3 (2001), 291–314.

[14] O. Kupferman andMoshe Y. Vardi. 2005. Safraless Decision Procedures.
In FOCS. 531–540.

[15] Jianwen Li, Lijun Zhang, Geguang Pu, Moshe Y. Vardi, and Jifeng He.
2013. LTL Satisfiability Checking Revisited. In TIME. 91–98.

[16] Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. 1985. The Glory
of the Past. In Logics of Programs. 196–218.

[17] G. Pan, U. Sattler, and Moshe Y. Vardi. 2003. Optimizing a BDD-Based
Modal Solver. In Proc. 19th Int’l Conf. on Automated Deduction. 75–89.

[18] Amir Pnueli. 1977. The temporal logic of programs. 46–57.
[19] A. Pnueli and R. Rosner. 1989. On the Synthesis of a Reactive Module.

In POPL. 179–190.
[20] Johannes Prescher, Claudio Di Ciccio, and Jan Mendling. 2014. From

Declarative Processes to Imperative Models. In SIMPDA 2014. 162–173.
[21] Kristin Y. Rozier and Moshe Y. Vardi. 2007. LTL Satisfiability Checking.

In Model Checking Software, 14th International SPIN Workshop. 149–
167.

[22] Kristin Y. Rozier andMoshe Y. Vardi. 2011. AMulti-encoding Approach
for LTL Symbolic Satisfiability Checking. In FM. 417–431.

[23] Shufang Zhu, LucasM. Tabajara, Jianwen Li, Geguang Pu, andMoshe Y.
Vardi. 2017. A Symbolic Approach to Safety LTL Synthesis. In HVC.
147–162.

[24] Shufang Zhu, LucasM. Tabajara, Jianwen Li, Geguang Pu, andMoshe Y.
Vardi. 2017. Symbolic LTLf Synthesis. In IJCAI. 1362–1369.

5

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 LTLf Basics
	2.2 Symbolic DFA and MONA
	2.3 LTLf to FOL Encoding

	3 MSO Encodings
	3.1 LTLf to MSO Encoding
	3.2 Variations of MSO Encoding

	4 Experimental Evaluation
	4.1 Experimental Methodology
	4.2 Experimental Results

	5 Discussion
	References

