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Structural proof theoretic accounts of intuitionistic modal
logic can adopt the paradigm of labelled deduction in the
form of labelled natural deduction and sequent systems [3],
or the one of unlabelled deduction in the form of sequent [1]
or nested sequent systems [7] (for a survey see [4, Chap. 3]).
Simpson’s labelled sequents make use only of relational

atoms referring to the accessibility relation of a Kripkemodel.
In this short note we propose a system that represents both
the accessibility relation (for modal logics) and the preorder
relation (for intuitionistic logic), using the full power of the
bi-relational semantics for intuitionistic modal logics [5, 6],
and developing fully the idea of [2].
A bi-relational frame [5, 6] B is a triple ⟨W ,R, ≤⟩ of a

non-empty set of worldsW equipped with an accessibility
relation R and a preorder ≤, satisfying:
(F1) For all worlds x , y, z, if xRy and y ≤ z, there exists a u

such that x ≤ u and uRz.
(F2) For all worlds x , y, z, if xRy and x ≤ z, there exists a u

such that y ≤ u and zRu.
Reflecting this definition, we define our two-sided intu-

itionistic labelled sequents, similarly to [2], to be of the form
B,L ⇒ R with B a set of relational atoms xRy and preorder
atoms x ≤ y, and L,R multi-sets of labelled formulas x : A
(for x ,y labels and A an intuitionistic modal formula).

Furthermore, our system has to incorporate the two se-
mantic conditions into deductive rules as follows:

B,xRy,y ≤ z,x ≤ u,uRz,L ⇒ R
F1 u fresh

B,xRy,y ≤ z,L ⇒ R

B,xRy,x ≤ z,y ≤ u, zRu,L ⇒ R
F2 u fresh

B,xRy,x ≤ z,L ⇒ R

In the intuitionistic setting, the validity of a modal formula
has to be defined using both the R and the ≤ relation as:
x ⊩ □A iff for all y and z s.t. x ≤ y and yRz, z ⊩ A.
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Again, our system reflects exactly this definition in the
rules introducing the □-operator:

B,x ≤ y,yRz,L,x : □A, z : A ⇒ R
□L

B,L,x ≤ y,yRz,x : □A ⇒ R

B,x ≤ y,yRz,L ⇒ R, z : A
□R y , z fresh

B,L ⇒ R,x : □A
By complementing these rules with the standard labelled

rules for intuitionistic modal logic of [3], we get a system
that is sound and complete wrt. the birelational semantics.

In [6], Plotkin and Stirling give a correspondence result for
intuitionistic modal logic extended with a family of axioms
wrt. some classes of bi-relational frames. For example, the
frames that validate the axiom 4^ : ^^A ⊃ ^A are exactly
the ones satisfying the condition:
(|4) ifwRv and vRu, there exists a u ′ s.t. u ≤ u ′ andwRu ′.
Incorporating the preorder symbol into the syntax of our

sequents allows us to also obtain a sound and complete proof
system for the intuitionistic modal logic extendedwith axiom
4^ , by designing the following rule:

B,wRv,vRu,u ≤ u ′,wRu ′,L ⇒ R
|4 u′ fresh

B,wRv,vRu,L ⇒ R

Therefore, we decompose further the formalism of labelled
sequents and extend the reach of labelled deduction to the
logics studied in [6]. These systems enjoy cut-elimination
via usual arguments, the generality of the result is subject of
ongoing study.
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