Diagrammatic Reasoning beyond Clifford+T Quantum Mechanics

Authors: Emmanuel Jeandel, Simon Perdrix and Renaud Vilmart

Paper Information

Title:Diagrammatic Reasoning beyond Clifford+T Quantum Mechanics
Authors:Emmanuel Jeandel, Simon Perdrix and Renaud Vilmart
Proceedings:LICS PDF files
Editors: Anuj Dawar and Erich Grädel
Keywords:Categorical Quantum Mechanics, Quantum Computing, Diagrammatic Reasoning

ABSTRACT. The ZX-Calculus is a graphical language for diagrammatic reasoning in quantum mechanics and quantum information theory. An axiomatisation has recently been proven to be complete for an approximatively universal fragment of quantum mechanics, the so-called Clifford+T fragment. We focus here on the expressive power of this axiomatisation beyond Clifford+T Quantum mechanics. We consider the full pure qubit quantum mechanics, and mainly prove two results: (i) First, the axiomatisation for Clifford+T quantum mechanics is also complete for all equations involving some kind of linear diagrams. The linearity of the diagrams reflects the phase group structure, an essential feature of the ZX-calculus. In particular all the axioms of the ZX-calculus are involving linear diagrams. (ii) We also show that the axiomatisation for Clifford+T is not complete in general but can be completed by adding a single (non linear) axiom, providing a simpler axiomatisation of the ZX-calculus for pure quantum mechanics than the one recently introduced by Ng&Wang.

Talk:Jul 12 10:20 (Session 70D)