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Abstract
The ZX-Calculus is a graphical language for diagrammatic reason-
ing in quantum mechanics and quantum information theory. An
axiomatisation has recently been proven to be complete for an
approximatively universal fragment of quantum mechanics, the
so-called Clifford+T fragment. We focus here on the expressive
power of this axiomatisation beyond Clifford+T Quantum mechan-
ics. We consider the full pure qubit quantummechanics, and mainly
prove two results: (i) First, the axiomatisation for Clifford+T quan-
tum mechanics is also complete for all equations involving some
kind of linear diagrams. The linearity of the diagrams reflects the
phase group structure, an essential feature of the ZX-calculus. In
particular all the axioms of the ZX-calculus are involving linear
diagrams. (ii) We also show that the axiomatisation for Clifford+T
is not complete in general but can be completed by adding a sin-
gle (non linear) axiom, providing a simpler axiomatisation of the
ZX-calculus for pure quantum mechanics than the one recently
introduced by Ng&Wang.

CCS Concepts • Theory of computation → Quantum com-
putation theory; Logic; Semantics and reasoning;
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1 Introduction
The ZX-calculus, introduced by Coecke and Duncan [4] is a graph-
ical language for pure state qubit quantum mechanics. The ZX-
calculus has multiple applications in quantum information theory
[6], including the foundations [2, 9], measurement-based quan-
tum computation [8, 12, 16] or quantum error correcting codes
[3, 7, 10, 11], and can be used through the interactive theorem
prover Quantomatic [19, 20].

The ZX-calculus is universal: any quantum evolution can be
represented by a ZX-diagram. ZX-diagrams are parametrised by
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angles, and various fragments of the language have been consid-
ered, based on some restrictions on the angles: the π

p -fragment
consists in considering only the diagrams made with angles mul-
tiple of π

p . The
π
2 -fragment (resp. π -) corresponds to stabilizer

quantum mechanics (resp. real stabilizer quantum mechanics) and
are not universal for quantum mechanics, even approximately. The
π
4 -fragment corresponds to the so called Clifford+T quantum me-
chanics and is approximately universal: any quantum evolution
can be approximated in this fragment with arbitrary accuracy.

The ZX-calculus also comes with a powerful axiomatisation
which can be used to transform a diagram into another diagram
representing the same quantum evolution. The axioms of the ZX-
calculus are given in Figure 1. Some of the axioms are parametrised
by variables, meaning that the axioms are true for all possible values
of these variables. Notice that all the variables are used in a linear
fashion, i.e. all the angles are some linear combinations of variables
and constants, like in (S1) or (SUP) for instance. The use of such
linear diagrams in the axiomatisation captures the phase group
structure, one of the two fundamental quantum features (with the
complementary observables) of the ZX-calculus [4].

Completeness of the axiomatisation is an essential feature: the
axiomatisation is complete if for any pair of diagrams representing
the same quantum evolution, one can use the axioms of the lan-
guage to transform one diagram into the other. The ZX-calculus
has been proved to be complete for the π - and π

2 -fragments of the
ZX-calculus [1, 13]. Recently the axiomatisation given in Figure 1
has been proved to be completed for the π

4 -fragment, providing
the first complete axiomatisation for an approximately universal
fragment of the ZX-calculus [17]. This last result relies on the com-
pleteness of another graphical language which represents integer
matrices, called ZW-Calculus [14]. The ZW-Calculus has since been
extended to represent all matrices over C [15]. This achievement
gave hope for a universal completion of the ZX-Calculus, and soon
enough, a first result appeared [22]. To make the ZX-calculus com-
plete for the full quantum mechanics, two new generators and a
large amount of axioms (32 axioms versus 12 for the axiomatisation
for Clifford+T quantum mechanics) have been introduced, some of
them being non linear.

One canwonder whether this result can be improved.We address
this question in two steps: (i) First, we prove that the complete
axiomatisation for Clifford+T quantum mechanics can also be used
to prove a significant amount of equations beyond this fragment: all
true equations involving diagrams which are linear with constants
that are multiples of π

4 can be derived. We point out with several
examples that this result can be used to derive some new non-
trivial equations. (ii) Then we show that this axiomatisation is not
complete in general, and we propose an axiomatisation for the full
pure qubit quantum mechanics which consists in adding a single
(non-linear) axiom.
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The paper is structured as follows. The ZX-calculus is presented
in section 2. Section 3 is dedicated to the proof that any true equa-
tion involving diagrams linear in some variables with constants
that are multiples of π

4 can be derived in the ZX-calculus. In sec-
tions 4 and 5 we show how this result can be used to prove that
some non trivial equations can be derived in the ZX-calculus, in
a non-necessarily constructive way. Section 6 is dedicated to the
completion of the ZX-calculus for the full pure qubit quantum me-
chanics: first, we prove that the ZX-calculus is not complete for pure
qubit quantum mechanics; then, using an interpretation from the
ZX-calculus to the ZW-Calculus we show that a single additional
axiom suffices to make the language complete.

2 ZX-Calculus
2.1 Syntax and Semantics
AZX-diagramD : k → l withk inputs and l outputs is generated by:

R
(n,m)
Z (α) : n →m α

· · ·

· · ·

n

m

R
(n,m)
X (α) : n →m α

· · ·

· · ·

n

m

H : 1 → 1 e : 0 → 0

I : 1 → 1 σ : 2 → 2

ϵ : 2 → 0 η : 0 → 2

where n,m ∈ N and α ∈ R. The generator e is the empty diagram.

and the two compositions:
• Spacial Composition: for any D1 : a → b and D2 : c → d ,
D1 ⊗ D2 : a + c → b + d consists in placing D1 and D2 side
by side, D2 on the right of D1.

• Sequential Composition: for any D1 : a → b and D2 : b → c ,
D2 ◦ D1 : a → c consists in placing D1 on the top of D2,
connecting the outputs of D1 to the inputs of D2.

The standard interpretation of the ZX-diagrams associates to any
diagram D : n → m a linear map ⟦D⟧ : C2

n → C2m inductively
defined as follows: ⟦.⟧

⟦D1 ⊗ D2⟧ := ⟦D1⟧ ⊗ ⟦D2⟧ ⟦D2 ◦ D1⟧ := ⟦D2⟧ ◦ ⟦D1⟧� �
:= (1)

� �
:=

(1 0
0 1

) � �
:=

1
√
2

(1 1
1 −1

)
� �

:=
©­­«
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

ª®®¬
� �

:= (1 0 0 1)
� �

:=
©­­«
1
0
0
1

ª®®¬
For any α ∈ R, ⟦ α ⟧ :=

(
1 + eiα

)
, and for any n,m ≥ 0 such that

n +m > 0:

���� α

· · ·

· · ·

n

m

���� :=

2n︷                 ︸︸                 ︷©­­­­­«
1 0 · · · 0 0
0 0 · · · 0 0
...
...
. . .
...
...

0 0 · · · 0 0
0 0 · · · 0 eiα

ª®®®®®¬

2m

������ α

· · ·

· · ·

n

m

������ :=

� �⊗m
◦

���� α

· · ·

· · ·

n

m

���� ◦ � �⊗n
(
whereM⊗0 = (1) andM⊗k = M ⊗ M⊗k−1 for any k ∈ N∗

)
.

To simplify, the red and green nodes will be represented empty
when holding a 0 angle:

· · ·

· · ·
0

· · ·

· · ·
:= and

· · ·

· · ·
0

· · ·

· · ·
:=

2.2 Complete axiomatisation for Clifford+T
The complete axiomatisation of the ZX-calculus for Clifford+T
introduced in [17] is given in Figure 1.

These rules come together with a set of implicit axioms aggre-
gated under the paradigm “Only Topology Matters”, which states
that the way the wires are bent or cross each other does not matter.
What only matters is whether two dots are connected or not. Such
rules are:

= = = ==

= ==

The equality between diagrams is preserved when axioms are
applied locally, which means that for any three diagrams of the
ZX-Calculus, D1,D2, and D, if ZX ⊢ D1 = D2, then:

•ZX ⊢ D1 ◦ D = D2 ◦ D •ZX ⊢ D ◦ D1 = D ◦ D2
•ZX ⊢ D1 ⊗ D = D2 ⊗ D •ZX ⊢ D ⊗ D1 = D ⊗ D2

where ZX ⊢ D1 = D2 means that D1 can be transformed into D2
using the axioms of the ZX-Calculus.

Notice that some rules are specific to the π
4 angle, like (E) or (BW),

whereas some others, (S1), (H), (K), (SUP) and (C) are parametrised
by angles that can take whatever value in R. In the following, ZX
will denote either the set of general diagrams (with angles in R) or
the set of general rules in Figure 1.

2.3 Variables and Constants
It is customary to view some angles in the ZX-diagrams as variables,
in order to prove families of equalities. For instance, the rule (S1)
displays two variables α and β , and potentially gives an infinite
number of equalities. Notice that in the axioms of the ZX-calculus,
the variables are used in a linear way, reflecting the phase group
structure.

Definition 2.1. A ZX-diagram is linear in α1, . . . ,αk with con-
stants inC ⊆ R, if it is generated by R(n,m)

Z (E), R(n,m)
X (E), H , e , I, σ ,

ϵ , η, and the spacial and sequential compositions, where n,m ∈ N,
and E is of the form

∑
i niαi + c , with ni ∈ Z and c ∈ C .

Notice that all the diagrams in Figure 1 are linear in α , β ,γ
with constants in π

4 Z. A diagram linear in α1, . . . ,αk is denoted
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· ·
· = α+β

β

· · ·
α
· · ·

(S1)
· · ·

· · ·

· · ·

· · ·

=
(S2)

=
(S3)

=
(B1)

=
(B2) −π

4

π
4

=
(E)

π
2

π
2

-π
2

=
(EU)

α

· · ·

= α

· · ·

· · ·

· · ·
(H)

=
π

α

-α

πα

π(K)

α α+π

=

2α+π

(SUP) βα π

βγ

-γ

α
=

α

απ

β -γ

γ

β(C)

π
4

π
4

π
4

−π
2

π
4

π
4

π
4

=
π
4π

π
2

π
4

π
4

π

π
4(BW)

Figure 1. Set of rules for the Clifford+T ZX-Calculus with scalars. All of these rules also hold when flipped upside-down, or with the colours
red and green swapped. The right-hand side of (E) is an empty diagram. (...) denote zero or more wires, while ( · · · ) denote one or more wires.

D(α1, . . . ,αk ), or more compactly D( ®α) with ®α = α1, . . . ,αk . Ob-
viously, if D(α) is a diagram linear in α , D(π/2) denotes the ZX-
diagram where all occurrences of α are replaced by π/2.

3 Proving Equalities beyond Clifford+T
While the set of rules of Figure 1 is complete for the Clifford+T frag-
ment of the ZX-calculus, it can also prove a lot of equalities for the
general ZX-calculus, when the rules (S1), (H), (K), (C) are supposed
to hold for all angles rather than angles in the π

4 -fragment.
In fact, it can prove all equalities that are valid for linear diagrams

with constants in π
4 Z, in the following sense:

Theorem 3.1. For any ZX-diagrams D1( ®α) and D2( ®α) linear in ®α =
α1, . . . ,αk with constants in π

4 Z,

∀ ®α ∈ Rk ,
�
D1( ®α)

�
=
�
D2( ®α)

�
⇔ ∀ ®α ∈ Rk ,ZX ⊢ D1( ®α) = D2( ®α)

The proof essentially relies on the completeness of the π/4-
fragment of the ZX-calculus: the variables are first turned into
inputs of the diagrams (Prop. 3.3 and 3.10) and then replaced by
some constant diagram in the π

4 -fragment (Lem. 3.5 and 3.8). To
simplify the proofs, we will first consider the case where a single
variable – with potentially several occurrences – is involved in the
equation, the general case being similar and addressed in section
3.2.2.

3.1 From variables to inputs
We show in this section that, given an equation involving diagrams
linear in some variable α , the variables can be extracted, splitting

the diagrams into two parts: a collection of points (points α ) and a
constant diagram independent of the variables.

First we define the multiplicity of a variable in an equation:

Definition 3.2. For any D1(α),D2(α) : n →m two ZX-diagrams
linear in α , the multiplicity of α in the equation D1(α) = D2(α) is
defined as:

µα = max
i ∈{1,2}

(
µ+α (Di (α))

)
+ max
i ∈{1,2}

(
µ−α (Di (α))

)
where µ+α (D) (resp. µ−α (D)) is the number of occurrences of α (resp.
-α ) in D, inductively defined as

µ+α (R
(n,m)
Z (ℓα + c)) = µ+α (R

(n,m)
X (ℓα + c)) =

{
ℓ if ℓ > 0
0 otherwise

µ−α (R
(n,m)
Z (ℓα + c)) = µ−α (R

(n,m)
X (ℓα + c)) =

{
−ℓ if ℓ < 0
0 otherwise

∀⋄ ∈ {+,−}, µ⋄α (D ⊗ D ′) = µ⋄α (D ◦ D ′) = µ⋄α (D) + µ⋄α (D ′)
µ⋄α (H ) = µ⋄α (e) = µ⋄α (I) = µ⋄α (σ ) = µ⋄α (ϵ) = µ⋄α (η) = 0

Proposition 3.3. For any D1(α),D2(α) : n →m two ZX-diagrams
linear in α with constants in π

4 Z, there exist D
′
1,D

′
2 : r → n +m two

ZX-diagrams with angles multiple of π
4 such that, for any α ∈ R, the

equivalence

ZX ⊢ D1(α) = D2(α) ⇐⇒ ZX ⊢ D ′
1 ◦ θr (α) = D ′

2 ◦ θr (α) (1)

is provable using the axioms of the ZX-calculus, where r is the multi-

plicity of α in D1(α) = D2(α), and θr (α) =
(
R
(0,1)
Z (α)

)⊗r
.
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Pictorially:

ZX ⊢
· · ·

· · ·
D1(α) =

· · ·
D2(α)
· · ·

⇐⇒ ZX ⊢
α α· · ·
D ′
1

· · ·

r

=
αα

D ′
2

· · ·

r

· · ·

Proof. The proof consists in transforming the equation D1(α) =
D2(α) into the equivalent equation D ′

1 ◦ θr (α) = D ′
1 ◦ θr (α) using

axioms of the ZX-calculus. This transformation involves 6 steps:
– Turn inputs into outputs. First, each input can be bent to an output
using η:

D1(α)
· · ·

· · ·
=

· · ·
D2(α)
· · ·

⇐⇒

· · ·

· · ·
D1(α) · · · = D2(α) · · ·

· · ·

· · ·

–Make the red spiders green. All red spiders R(k,l )X (nα + c) are trans-
formed into green spiders using the axioms (S1) and (H):

nα+c

· · ·

· · ·
= nα+c

· · ·

· · ·

– Expanding spiders. All spiders RZ (nα + c) are expended using (S1)

so that all the occurrences of α are
α
or

-α
:

nα+c

· · ·

· · ·
= c

· · ·

· · · ±α

±α

... |n |

– Changing the sign. Using (K) all occurrences of
-α

are replaced

as follows:
-α

7→
α
π -α

π

. Notice that this rule is not applied
recursively, which would not terminate. After this step all the orig-

inal −α have been replaced by an α and as many scalars
π

-α
have been created. So far, we have shown:

D1(α)
· · ·

· · ·
=

· · ·
D2(α)
· · ·

⇐⇒ · · ·
D ′′
1

α α

(
-α

π
)⊗µ−α (D1)

=

⊗µ−α (D2)

-α

(
π

)
α α· · ·
D ′′
2

– (Re)moving scalars. The scalar
π

α
has an inverse for ⊗, which

is
π

-α
. This has for consequence:

• ZX ⊢ π

-α
D1 = D2 ⇐⇒ ZX ⊢ D1 =

π

α
D2

• ZX ⊢ π

α
D1 =

π

α
D2 ⇐⇒ ZX ⊢ D1 = D2

The scalars
π

-α
are eliminated by adding max

i ∈{1,2}

(
µ−α (Di )

)
times the scalar

π

α
on both sides, then simplifying when we

have a scalar and its inverse.

⇐⇒

⊗
max
i∈{1,2}

(
µ−α (Di )

)
−µ−α (D1)π

α

( )
· · · αα

D ′′
1

=

)
α

(
π

⊗
max
i∈{1,2}

(
µ−α (Di )

)
−µ−α (D2)

αα · · ·
D ′′
2

– Balancing the variables. At this step the number of occurrences
of α might be different on both sides of the equation. Indeed, one
can check that the side of Di has µ+α (Di ) + max

j ∈{1,2}

(
µ−α (D j )

)
occur-

rences of α . One can then use the simple equation
α

=

max
j ∈{1,2}

(
µ+α (D j )

)
− µ+α (Di ) times on the side of Di . We hence end up

with µα = max
i ∈{1,2}

(
µ+α (Di (α))

)
+ max
i ∈{1,2}

(
µ−α (Di (α))

)
occurrences of

α on both sides. D ′
i is defined as:

· · ·
D ′
i

· · ·
:=

· · ·
D ′′
i

· · ·
π π

max
j∈{1,2}

(
µ−α (Dj )

)
−µ−α (Di )

max
j∈{1,2}

(
µ+α (Dj )

)
−µ+α (Di )

· · · · · ·

· · · · · ·

□

Proposition 3.3 implies in particular that if the equation D ′
1 ◦

θr (α) = D ′
2 ◦ θr (α) is provable using the axioms of the ZX-calculus,

then so is D1(α) = D2(α). Proposition 3.3 also implies that if
⟦D1(α)⟧ = ⟦D2(α)⟧, then

�
D ′
1 ◦ θr (α)

�
=

�
D ′
2 ◦ θr (α)

�
, thanks

to the soundness of the ZX-calculus.

3.2 Removing the variables
Given D1(α) and D2(α) linear in α with constants in π

4 Z, if α has
multiplicity 1 in D1(α) = D2(α), then according to Prop. 3.3, the
equation can be transformed into the following equivalent equation
involving a single occurrence of α :

D ′
1

· · ·

α

D ′
2

α

=
· · ·

(2)

where D ′
1 and D ′

2 are in the π
4 -fragment. Notice that equation (2)

holds if and only if
�
D ′
1
�
=

�
D ′
2
�
, since

(
,
π

)
forms a basis.

Thus, a variable of multiplicity 1 can easily be removed, leading
to an equivalent equation in the complete π

4 -fragment of the ZX-
calculus.

When a variable has a multiplicity r > 1 in an equation, the

variable cannot be removed similarly as
(
α

)⊗r
does not generate

a basis of the 2r dimensional space when r > 1. However these
dots can be replaced by an appropriate projector on the subspace
generated by these dots, as described in the following.
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3.2.1 When multiplicity is 2
Consider the following diagram R:

R :=

−π
4

−π
4

π
2π π

4
π
4

One can check that ⟦R⟧ = ©­­«
1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1

ª®®¬. This matrix basically mixes

the second and third elements of any size-4 vector. We can then
show:

Lemma 3.4. For any α ∈ R, ZX ⊢ R ◦ θ2(α) = θ2(α), i.e. pictorially:

∀α ∈ R, ZX ⊢ R = α α

α α

Lemma 3.5. For any two ZX-diagrams D1,D2 : 2 → n,
(∀α ∈ R, ⟦D1 ◦ θ2(α)⟧ = ⟦D2 ◦ θ2(α)⟧) ⇔ ⟦D1 ◦ R⟧ = ⟦D2 ◦ R⟧
i.e.,

©­­«∀α ∈ R,

��� D1

α α
��� =

��� D2

α α
���ª®®¬ ⇔

������ R

D1

������ =
������

D2

R

������
where α does not appear in D1 or D2.

Proof. The proof consists in showing that ⟦R⟧ is a projector onto
S = span{⟦θ2(α)⟧ | α ∈ R}. According to Lemma 3.4, ⟦R⟧ is the
identity on S , moreover it is easy to show that ⟦R⟧ is a matrix
of rank 3 and that ⟦θ2(0)⟧ , ⟦θ2(π/2)⟧ , ⟦θ2(π )⟧ are three linearly
independent vectors in the image of ⟦R⟧. □

3.2.2 Arbitrary multiplicity
We now want to generalise Lemma 3.5 to any multiplicity r of α .
It turns out that there is no obvious generalization for r wires of
the matrix ⟦R⟧ expressible using angles multiple of π

4 , so we will
rather use the following family (Pr )r ≥2 of diagrams, inductively
defined as:

P2 :=
π
4

−π
2

π
4

π
4

−π
4

Pr :=

· · ·

· · ·
· · ·

· · ·
Pr−1

P2

P2
· · ·

· · ·

=

· · ·

P2 · · ·

· · ·

· ·
·

··
·

P2

P2 P2

P2

P2

P2

P2 P2

For the reader convenience, here are the interpretations of P2
and P3:

⟦P2⟧ =
©­­«
1 0 0 0
0 0 1 0
0 0 1 0
0 0 0 1

ª®®¬ ⟦P3⟧ =

©­­­­­­­­«

1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

ª®®®®®®®®¬
Lemma 3.6. For any r ≥ 2 and any α ∈ R, ZX ⊢ Pr ◦θr (α) = θr (α)
i.e.,

ZX ⊢ Pr = α α

α α

· · ·

· · ·

· · ·

Proof. Notice that ⟦P2 ◦ R⟧ = ⟦R⟧, so by completeness of the ZX-
calculus for the π

4 fragment, ZX ⊢ P2◦R = R, so ZX ⊢ P2◦R◦θ2(α) =
R◦θ2(α). According to Lemma 3.4, it implies ZX ⊢ P2◦θ2(α) = θ2(α).
The proof for r > 2 is by induction on r . □

Lemma 3.7. For any r ≥ 2, ⟦Pr ⟧ is a matrix of rank at most r + 1.

We can now prove a similar statement as in lemma 3.5:

Lemma 3.8. For any r ≥ 2 and any D1,D2 : r → n,
(∀α ∈ R, ⟦D1 ◦ θr (α)⟧ = ⟦D2 ◦ θr (α)⟧) ⇔ ⟦D1 ◦ Pr ⟧ = ⟦D2 ◦ Pr ⟧
i.e.,

©­­«∀α ∈ R,

��� α α· · ·

· · ·
D1

��� =
��� α α· · ·

· · ·
D2

���ª®®¬ ⇔

�������
· · ·

· · ·

· · ·
Pr

D1

������� =
�������

· · ·

· · ·

· · ·
Pr

D2

�������
where α does not appear in D1 nor D2.

Proof. The proof consists in showing that ⟦Pr ⟧ is a projector onto
Sr = span{⟦θr (α)⟧ | α ∈ R}. According to Lemma 3.6, ⟦Pr ⟧ is
the identity on Sr , and ⟦Pr ⟧ is of rank at most r + 1 according to
Lemma 3.7, thus to finish the proof, it is sufficient to prove that
the r + 1 vectors (θr (α (j)))j=0...r are linearly independent, where
α (j) = jπ/r .

Let λ0, ..., λr be scalars such that
∑
j λjθr (α (j)) = 0. Notice that

the 2p -th row (when rows are labeled from 1 to 2r ) of θr (α (j))
is exactly eipα

(j )
. Therefore, if we look at all 2p -th rows of the

equations, we obtain

©­­­­«
1 1 · · · 1

eiα
(0)

eiα
(1) · · · eiα

(r )

...
...

. . .
...

einα
(0)

einα
(1) · · · einα

(r )

ª®®®®¬
©­­­«
λ0
λ1
...
λr

ª®®®¬ = 0
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However, the first matrix is a Vandermonde matrix, with eiα
(j )
=

eiα
(l )

iff j = l , which is enough to state that this matrix is in-

vertible

(
its determinant is

∏
0≤j<l ≤r

(
eiα

(j ) − eiα
(l )

)
[21]

)
. There-

fore all λ(j) are equal to 0 and the vectors θr (α (j)) are linearly
independent. □

We are now ready to prove the main theorem in the particular
case of a single variable:

Proposition 3.9. For any D1(α),D2(α) ZX-diagrams linear in α
with constants in π

4 Z,

∀α ∈ R, ⟦D1(α)⟧ = ⟦D2(α)⟧ ⇔ ∀α ∈ R,ZX ⊢ D1(α) = D2(α)

Proof. [⇐] is a direct consequence of the soundness of the ZX-
calculus. [⇒] Assume ∀α ∈ R, ⟦D1(α)⟧ = ⟦D2(α)⟧. According to
Proposition 3.3, ∀α ∈ R,

�
D ′
1 ◦ θr (α)

�
=

�
D ′
2 ◦ θr (α)

�
where D ′

i
are in the π

4 -fragment of the ZX-calculus. It implies, according to
Lemma 3.8, that

�
D ′
1 ◦ Pr

�
=
�
D ′
2 ◦ Pr

�
. Thanks to the complete-

ness of the ZX-calculus for the π
4 -fragment, ZX ⊢ D ′

1 ◦Pr = D ′
2 ◦Pr ,

so ∀α ∈ R,ZX ⊢ D ′
1 ◦Pr ◦θr (α) = D ′

2 ◦Pr ◦θr (α). Thus, by Lemma
3.6, ∀α ∈ R,ZX ⊢ D ′

1 ◦ θr (α) = D ′
2 ◦ θr (α), which is equivalent to

∀α ∈ R,ZX ⊢ D1(α) = D2(α) according to Proposition 3.3. □

3.3 Multiple variables
Proposition 3.3 can be straighforwardly extended to multiple vari-
ables:

Proposition 3.10. For anyD1(α),D2(α) : n →m two ZX-diagrams
linear in ®α = α1, . . . ,αk with constants in π

4 Z, there exist D
′
1,D

′
2 :

(∑k
i=1 ri ) → n +m two ZX-diagrams with angles multiple of π

4 such
that, for any ®α ∈ Rk ,

D1( ®α) = D2( ®α) ⇔ D ′
1 ◦ θ®r ( ®α) = D ′

2 ◦ θ®r ( ®α) (3)

is provable using the axioms of the ZX-calculus, where ri is the mul-
tiplicity of αi in D1( ®α) = D2( ®α), ®r := r1, . . . , rk , and θ®r ( ®α) :=
θr1 (α1) ⊗ . . . ⊗ θrk (αk ).

Pictorially:

ZX ⊢
· · ·

· · ·
D1( ®α) =

· · ·
D2( ®α)
· · ·

⇐⇒

ZX ⊢
α1 α1· · ·

D ′
1

· · ·

r1

αk · · · αk
rk

· · ·
· · ·

=

· · ·

· · · · · ·αk αk· · ·α1

D ′
2

rkr1

α1

· · ·

Similarly Lemma 3.8 can also be extended to multiple variables:

Lemma 3.11. For any k ≥ 0, any ®r = r1, . . . , rk ∈ Nk and any
D1,D2 : (

∑
i ri ) → n,

(∀ ®α ∈ Rk,
�
D1 ◦ θ®r ( ®α)

�
=
�
D2 ◦ θ®r ( ®α)

�
) ⇔

�
D1 ◦ P®r

�
=
�
D2 ◦ P®r

�
where no αi appear in D1 or D2, and Pr1, ...,rk = Pr1 ⊗ . . . ⊗ Prk .

Using Proposition 3.10 and Lemma 3.11, the proof of Theorem
3.1 is a straightforward generalization of the single variable case
(Proposition 3.9).

Notice that Theorem 3.1 implies that if ∀ ®α ∈ Rk ,
�
D1( ®α)

�
=�

D2( ®α)
�
thenD1( ®α) = D2( ®α) has a uniform proof in the ZX-calculus

in the sense that the structure of the proof is the same for all the

values of ®α ∈ Rk . Indeed, following the proof of Theorem 3.1, the
sequence of axioms which leads to a proof of D1( ®α) = D2( ®α) is
independent of the particular values of ®α . Notice, however, that
Theorem 3.1 is non constructive.

4 Finite case-based reasoning
In order to prove that ∀ ®α ∈ Rk ,ZX ⊢ D1( ®α) = D2( ®α) using
Theorem 3.1, one has to double check the semantic condition�
D1( ®α)

�
=

�
D2( ®α)

�
for all ®α ∈ Rk , which might not be easy in

practice. We show in the following two alternative ways to prove
∀ ®α ∈ Rk ,ZX ⊢ D1( ®α) = D2( ®α) based on a finite case-based reason-
ing in the ZX-calculus.

4.1 Considering a basis
Theorem 4.1. For any ZX-diagrams D1( ®α),D2( ®α) : 1 →m linear
in ®α = α1, . . . ,αk with constants in π

4 Z, if

∀j ∈ {0, 1},∀ ®α ∈ Rk ,ZX ⊢ D1( ®α) ◦ RX (jπ ) = D2( ®α) ◦ RX (jπ )

then

∀ ®α ∈ Rk ,ZX ⊢ D1( ®α) = D2( ®α)

Proof. Assume ZX ⊢ D1( ®α) ◦ RX (jπ ) = D2( ®α) ◦ RX (jπ ) for any
j ∈ {0, 1} and any ®α ∈ Rk . It implies that for x ∈

{( 1
0
)
,
( 0
1
)}
,�

D1( ®α)
�
x =

�
D2( ®α)

�
x , so

�
D1( ®α)

�
=
�
D2( ®α)

�
, which implies ac-

cording to Theorem 3.1 ∀ ®α ∈ Rk ,ZX ⊢ D1( ®α) = D2( ®α). □

Notice that the Theorem 4.1 can be applied recursively: in or-
der to prove the equality between two diagrams with n inputs,m
outputs, and constants in π

4 Z, one can consider the 2n+m ways to
fix these inputs/outputs in a standard basis states. It reduces the
existence of a proof between two diagrams with constants in π

4 Z
to the existence of proofs on scalar diagrams (diagrams with no
input and no output).

Corollary 4.2.

∀α , β ∈ R,ZX ⊢

α

π
4

π
2

π
4

β

-β

=

-β

β

α

-β

β

α

π
4

π
4

π
2

Proof. We can prove that this equality is derivable by plugging our

basis
(
,
π

)
on the input and one of the outputs. □

4.2 Considering a finite set of angles
Theorem 4.3. For any ZX-diagrams D1( ®α),D2( ®α) : n →m linear
in ®α = α1, . . . ,αk with constants in π

4 Z, if

∀ ®α ∈ T1 × . . . ×Tk ,ZX ⊢ D1( ®α) = D2( ®α)

then

∀ ®α ∈ Rk ,ZX ⊢ D1( ®α) = D2( ®α)
with Ti a set of µi + 1 distinct angles in R/2πZ where µi is the
multiplicity of αi in D1( ®α) = D2( ®α).
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Proof. In the proof of Lemma 3.8, we actually only used µα + 1
values of α , that constitute a basis of Sµα . This extends naturally to
several variables: the dimension of Sµα1 × · · · × Sµαk is (µα1 + 1) ×
· · · × (µαk + 1), and taking ®α ∈ T1 × . . . ×Tk gives as many linearly
independent vectors in (hence a basis of) Sµα1 × · · · × Sµαk . □

Corollary 4.4.

π

α β

α β

=

α+β
π

β
α−β

Proof. Notice that µα = 2 in this equation. Hence we just need
to evaluate it for three values of α , for instance 0, π and π

2 . We
actually do not need to also evaluate β , although if we had to, since
µβ = 3, we would have needed 4 different values for this variable,
and so 12 valuations for the pair (α , β). □

Remark 1. The number of occurrences of a variable is not to be mis-
taken for its multiplicity. For instance consider the following equation:

α
=

-α

This equation is obviously wrong in general, but not for 0 and π . If
we tried to apply Theorem 4.3 with the number of occurrences (which
seems to be 1), then we might end up with the wrong conclusion. The
multiplicity (here µα = 2) prevents this.

5 Diagram substitution
Definition 5.1. A diagram D : 0 → n is symmetric if for any
permutation τ on {1, . . .n},

Qτ (⟦D⟧) = ⟦D⟧
where Qτ : C2

r → C2r is the unique morphism such that:
∀φ1, . . . ,φr ∈ C2, Qτ (φ1 ⊗ . . . ⊗ φr ) = φτ (1) ⊗ . . . ⊗ φτ (r ).

In particular for any diagram D0 : 0 → 1, D0 ⊗ . . . ⊗ D0 is a
symmetric diagram.

Theorem 5.2. For any D1( ®α),D2( ®α) : r → n and any symmetric
D( ®α) : 0 → r such that D1( ®α), D2( ®α), and D( ®α) are linear in ®α
with constants in π

4 Z, if ∀α0 ∈ R,∀ ®α ∈ Rk ,ZX ⊢ D1( ®α) ◦ θr (α0) =
D2( ®α) ◦ θr (α0) then ∀ ®α ∈ Rk ,ZX ⊢ D1( ®α) ◦ D( ®α) = D2( ®α) ◦ D( ®α)
i.e., pictorially:

∀α0 ∈ R,∀ ®α ∈ Rk , ZX ⊢ D1( ®α)
α0

· · ·

α0· · ·
= D2( ®α)

α0

· · ·

α0· · ·

⇒ ∀ ®α ∈ Rk ,ZX ⊢
D1( ®α)

D( ®α)
· · ·

· · ·

=

D2( ®α)

D( ®α)
· · ·

· · ·
Proof. If ∀α0 ∈ R,∀ ®α ∈ Rk ,ZX ⊢ D1( ®α) ◦ θr (α0) = D2( ®α) ◦ θr (α0)
then

�
D1( ®α) ◦ θr (α0)

�
=
�
D2( ®α) ◦ θr (α0)

�
, so according to Lemma

3.8,
�
D1( ®α) ◦ Pr

�
=
�
D2( ®α) ◦ Pr

�
. It implies that ZX ⊢ D1( ®α)◦Pr =

D2( ®α)◦Pr , so ZX ⊢ D1( ®α)◦Pr ◦D( ®α) = D2( ®α)◦Pr ◦D( ®α). To complete
the proof, it is enough to show that ZX ⊢ Pr ◦ D( ®α) = D( ®α).
Let S = {⟦D⟧ | D : 0 → n symmetrical}. First we show that
S is of dimension at most r + 1. Indeed, notice that if φ ∈ S,
then ∀i, j ∈ {0, . . . , 2r − 1} s.t. |i |1 = |j |1, φi = φ j , where |x |1

is the Hamming weight of the binary representation of x . As a
consequence, for any φ ∈ S, ∃a0, . . . ,ar ∈ C s.t. φ =

∑n
h=0 ahφ

(h)

where φ(h) ∈ C2r is defined as φ(h)i =

{
1 if |i |1 = h
0 otherwise

. Thus S is of

dimension at most r + 1. Moreover, for any α ∈ R, ⟦θr (α)⟧ ∈ S, so
S ⊆ Sr := span{⟦θr (α)⟧ | α ∈ R}. Since Sr is of dimension r + 1
(see proof of Lemma 3.8), S = Sr . As a consequence ⟦D⟧ ∈ Sr , so
⟦Pr⟧ ◦ �

D( ®α)
�
=

�
D( ®α)

�
, since, according to Lemma 3.6 for any

α ∈ R, ⟦Pr ◦ θr (α)⟧ = ⟦θr (α)⟧. Thus, ZX ⊢ Pr ◦ D( ®α) thanks to
Theorem 3.1. □

Corollary 5.3.

∀α , β ∈ R2, ZX ⊢

β α βα

π

=

π
α β

β α

Proof. Indeed, simply by decomposing the colour-swapped version
of (SUP) using (S1), we can derive:

∀α ∈ R, ZX ⊢ =

α α

π

α α
π

Now we just need to apply Theorem 5.2 with

β αα β

:=D(α , β)

which is clearly symmetrical, and use (S1) to merge the adjacent
red nodes. □

6 Completion of ZX-calculus for general
quantum mechanics

6.1 Incompleteness
The axiomatisation of ZX-calculus (figure 1) is complete for the
Clifford+T quantum mechanics –i.e. the π

4 -fragment–, but is not
complete in general:

Theorem 6.1. There exist two ZX-diagrams D1 and D2 such that:

⟦D1⟧ = ⟦D2⟧ and ZX ⊬ D1 = D2

Proof. Consider the following equation:
2π
3

4π
3 =

This equation is sound, it represents

(1 + ei
2π
3 )(1 + ei

4π
3 ) = 1 + ei

2π
3 + ei

4π
3 + ei

6π
3 = 1

However, consider the interpretation ⟦.⟧9 that multiplies all the
angles by 9. All the multiples of π

4 remain unchanged (kπ4 × 9 =
kπ
4 + 2kπ =

kπ
4 ). It is then easy to show that all the rules in Figure

1 hold with this interpretation. However:�
4π
3

2π
3

�
9
= , =

� �
9

Indeed the left hand side amounts to 4 while the right hand side
amounts to 1. Since all the rules in Figure 1 hold with this interpre-
tation, if the calculus were complete, then it would prove the above
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equation and so its interpretation would hold. It does not, so the
ZX-Calculus is not complete. □

Notice that thanks to Theorem 3.1, a completion of the ZX cal-
culus would imply to add either non linear axioms, or axioms with
constants that are not multiples of π/4. Such potential axioms have
already been discovered, for instance the cyclotomic supplementar-
ity [18]:

=
α+ 2π

n
α+

n−1
n 2πα

· · ·

nα+
(n−1)π

· · · (SUPn )

Adding this family of axioms to those of Figure 1 would nullify the
counterexample in the proof of 6.1 (the equality is derivable from
ZX+(SUP3)). However, the ZX-Calculus, with this set of axioms,
would still be incomplete. Indeed, the argument given in [18] still
holds here.

In the following, we actually show that adding one axiom to
the set in Figure 1 is sufficient to get the completeness in general.
Contrary to the previous family of axioms, this one manipulates
angles in a non-linear fashion.

6.2 A complete axiomatisation
We add a new axiom (A) to the previous set of axioms, and define
ZXc as the resulting set of axioms. This set is given in Figure 2. The
side condition 2eiθ3 cos(γ ) = eiθ1 cos(α) + eiθ2 cos(β) forces this
axiom to be non-linear. As announced:

Theorem 6.2. The set of rules ZXc (Figure 2) is complete. For any
two ZX-diagrams D1 and D2:

⟦D1⟧ = ⟦D2⟧ ⇐⇒ ZXc ⊢ D1 = D2

The rest of the article is dedicated to the proof of this theorem.

6.2.1 ZW-Calculus
To do so, as in [17, 22], we will use the completeness of another
graphical calculus for quantummechanics called ZW-Calculus, that
we present in this section.

The GHZ/W-Calculus, developed by Coecke and Kissinger [5],
has been turned into another language, called ZW-Calculus by Haz-
ihasanovic, who also proved its completeness [14]. This language
initially dealt with matrices over Z, but it has been expanded later
on, and its more universal version deals with C [15]. It is generated

· ·
· = α+β

β

· · ·
α
· · ·

(S1)
· · ·

· · ·

· · ·

· · ·

=
(S2)

=
(S3) −π

4

π
4

=
(E)

=
(B1)

=
(B2)

=
π

α

-α

πα

π(K)

π
2

π
2

-π
2

=
(EU)

α

· · ·

= α

· · ·

· · ·

· · ·
(H) βα π

βγ

-γ

α
=

α

απ

β -γ

γ

β(C)

α α+π

=

2α+π

(SUP)

π
4

π
4

π
4

−π
2

π
4

π
4

π
4

=
π
4π

π
2

π
4

π
4

π

π
4(BW)

θ2θ1

α-α β -β

=

γ
-γ

2eiθ3 cos(γ ) = eiθ1 cos(α) + eiθ2 cos(β)

π
2

π
4

π
4

θ3

π
4 π

4

(A)

Figure 2. Set of rules for the general ZX-Calculus with scalars, denoted ZXc . All of these rules also hold when flipped upside-down, or with
the colours red and green swapped. The right-hand side of (E) is an empty diagram. (...) denote zero or more wires, while ( · · · ) denote one or
more wires.
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by:

Te =


· · ·

· · ·
r

n

m

, , , , , , , ,


n,m∈N,r ∈C

and diagrams are created thanks to the two same – spacial and
sequential – compositions.

The diagrams represent matrices, in accordance to the standard
interpretation, that associates to any diagram of the ZW-Calculus
D with n inputs andm outputs, a linear map ⟦D⟧ : C2

n → C2
m
,

inductively defined as:
⟦.⟧

⟦D1 ⊗ D2⟧ := ⟦D1⟧ ⊗ ⟦D2⟧ ⟦D2 ◦ D1⟧ := ⟦D2⟧ ◦ ⟦D1⟧� �
:= (1)

� �
:=

(1 0
0 1

) � �
:= (1 0 0 1)

� �
:=

©­­«
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

ª®®¬
� �

:=
©­­«
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

ª®®¬� �
:=

©­­«
1
0
0
1

ª®®¬
� �

:=
(0 1
1 0

) � �
:=

©­­«
0 1
1 0
1 0
0 0

ª®®¬
⟦r ⟧ = (1 + r )

���� · · ·

· · ·
r

n

m

���� =
2n︷             ︸︸             ︷©­­­­­«

1 0 · · · 0 0
0 0 · · · 0 0
...
...
. . .
...
...

0 0 · · · 0 0
0 0 · · · 0 r

ª®®®®®¬

2m

(n +m > 0)

We use the same notation for the two standard interpretations, from
either one of the two languages to their corresponding matrices.

When a white dot has no visible parameter, then 1 is implicitly
used.

The ZW-Calculus comes with its own set of axioms (see [14]).
The paradigm “only topology matters” still stands here, and gives a
number of implicit rules, the sameway it does with the ZX-Calculus,
but for one node, , for which the order of inputs and outputs
matters. Here again, one can transform a diagram into an equiva-
lent one by locally applying the axioms of the ZW: For any three
diagrams of the ZW-Calculus, D1,D2, and D, if ZW ⊢ D1 = D2,
then:

•ZW ⊢ D1 ◦ D = D2 ◦ D •ZW ⊢ D ◦ D1 = D ◦ D2
•ZW ⊢ D1 ⊗ D = D2 ⊗ D •ZW ⊢ D ⊗ D1 = D ⊗ D2

6.2.2 Interpretations from ZX to ZW and back
Both the ZX-Calculus and the ZW-Calculus are universal for com-
plex matrices, so there exists a pair of translations between the
two languages which preserve the semantics ([.]X : ZW → ZX
and [.]W : ZX → ZW s.t. ∀D ∈ ZX , ⟦[D]W ⟧ = ⟦D⟧ and ∀D ∈
ZW , ⟦[D]X ⟧ = ⟦D⟧). The axiom (A) has been chosen so that we
can prove that ZX ⊢ [[D]W ]X = D for any generator D of the ZX-
calculus and that ZX ⊢ [D1]X = [D2]X for any axiom D1 = D2 of
the ZW calculus. The choice of the translations is however essential
as the new axiom relies on them.

The [.]W translation can be canonically defined using the normal
form of the ZW-calculus: for any generator D of the ZX one can de-
fine [D]W as the ZW normal form representation of the matrix ⟦D⟧.
It is however convenient to deviate from this canonically defined
interpretation for the green and red spiders and for the Hadamard
gate. We end up with basically the same translation from ZX to ZW
as in [22]:

[.]W

7→ 7→ 7→

7→ 7→

7→α eiα
· · · · · ·

· · · · · ·
7→ 1√

2
· · ·
α
· · ·

7→
[ ] ⊗m

W

◦
[

α
· · ·

· · ·

]
W

◦
[ ] ⊗n

W

D1 ◦ D2 7→ [D1]W ◦ [D2]W D1 ⊗ D2 7→ [D1]W ⊗ [D2]W

The [.]X translation has already been partially defined in [17].
To extend it to the generalised white spider present in ZW, the main
subtlety is the encoding of positive real numbers in the ZX-diagrams.
In [22], the authors decompose, roughly speaking, a positive real
number into its integer part and its non-integer part. Our translation
relies on a different (although not unique) decomposition:

∀z ∈ C, ∃(n,θ , β) ∈ N × [0; 2π [×
[
0;
π

2

]
, z = 2n cos(β)eiθ

[.]X

7→ 7→ 7→

7→ 7→

π7→

7→

7→

π

π
2

π
4

π
4

−π
4

−π
4

ρeiθ 7→ θ

· · ·

· · ·

· · ·

· · ·

β

-β

γ

-γ

π
⊗n ©­­­«

n := max
(
0,

⌈
log2(ρ)

⌉)
β := arccos

(
ρ
2n

)
γ := arccos

(
1
2n

) ª®®®¬( )

D1 ◦ D2 7→ [D1]X ◦ [D2]X D1 ⊗ D2 7→ [D1]X ⊗ [D2]X

Remark 2. n is well-defined: Every complex number x , 0 can be
expressed as ρeiθ where ρ ∈ R∗+. If x = 0, then n := 0. However, θ
may take any value, but it makes no difference.

We may prove the two following propositions:

Proposition 6.3.
ZXc ⊢ D = [[D]W ]X
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Proposition 6.4.

ZW ⊢ D1 = D2 ⇒ ZXc ⊢ [D1]X = [D2]X
The completeness of the calculus is now easy to prove:

Theorem 6.2. Let D1 and D2 be two diagrams of the ZX-Calculus
such that ⟦D1⟧ = ⟦D2⟧. Since [.]W preserves the the semantics,
⟦[D1]W ⟧ = ⟦[D2]W ⟧. By completeness of the ZW-Calculus, ZW ⊢
[D1]W = [D2]W . By Proposition 6.4, ZXc ⊢ [[D1]W ]X = [[D2]W ]X .
Finally, by Proposition 6.3, ZXc ⊢ D1 = D2 which completes the
proof. □

7 Discussion
Together with the 12 axioms used for the Clifford+T completeness,
the present complete axiomatisation is composed of 13 axioms,
i.e. (less than) half of the 32 axioms in [22]. Moreover our axioma-
tisation is “retro-compatible" in the sense that any proof being
derived so far with some previous version of the ZX-calculus can
be straightforwardly derived using this set of axioms. Indeed, this
set of axioms has been obtained after successive refinements of the
original axiomatisation of the ZX-calculus, where every discarded
axiom has been constructively proved to be derivable using the
remaining axioms.

The rule (A) comes with a side condition on the affected angles:
2eiθ3 cos(γ ) = eiθ1 cos(α) +eiθ2 cos(β). In order to claim that the
ZX-calculus is complete without the help of some external compu-
tations, axiom (A) must be seen as an infinite (uncountable) family
of axioms. Notice that other axioms (e.g. (S1), (K)) also involve some
operations (α + β or −α ) however these Phase group operations are
not side operations, but on the contrary fundamental properties on
which the ZX-calculus has been built. In this sense the complete
axiomatisation is “pseudo-finite", and the quest for a complete and
finite axiomatisation of the ZX-calculus for a non-approximative
universal fragment is still open. One way to achieve such finite
completeness would be to provide translations [.]X and [.]W be-
tween the ZX and ZW calculi which somehow preserve the phase
group structure of the ZX-Calculus and the ring structure of the
ZW-Calculus. Notice however that [23] and [18] are two different
kinds of evidence that such a finite complete axiomatisation may
not exist.
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