Authors: Laure Daviaud, Marcin Jurdzinski and Ranko Lazic
Paper Information
Title: | A pseudo-quasi-polynomial algorithm for solving mean-payoff parity games |
Authors: | Laure Daviaud, Marcin Jurdzinski and Ranko Lazic |
Proceedings: | LICS PDF files |
Editors: | Anuj Dawar and Erich Grädel |
Keywords: | parity games, mean-payoff games, computational complexity, progress measure, succinct ordered tree coding |
Abstract: | ABSTRACT. In a mean-payoff parity game, one of the two players aims both to achieve a qualitative parity objective and to minimize a quantitative long-term average of payoffs (aka. mean payoff). The game is zero-sum and hence the aim of the other player is to either foil the parity objective or to maximize the mean payoff. Our main technical result is a pseudo-quasi-polynomial algorithm for solving mean-payoff parity games. All algorithms for the problem that have been developed for over a decade have a pseudo-polynomial and an exponential factors in their running times; in the running time of our algorithm the latter is replaced with a quasi-polynomial one. Our main conceptual contributions are the definitions of strategy decompositions for both players, and a notion of progress measures for mean-payoff parity games that generalizes both parity and energy progress measures. The former provides normal forms for and succinct representations of winning strategies, and the latter enables the application to mean-payoff parity games of the order-theoretic machinery that underpins a recent quasi-polynomial algorithm for solving parity games. |
Pages: | 10 |
Talk: | Jul 09 14:20 (Session 49D) |
Paper: |