A pseudo-quasi-polynomial algorithm
for mean-payoff parity games

Laure Daviaud

Marcin Jurdzinski

Ranko Lazié

DIMAP, Department of Computer Science
University of Warwick

Abstract

In a mean-payoff parity game, one of the two players aims both to
achieve a qualitative parity objective and to minimize a quantitative
long-term average of payoffs (aka. mean payoff). The game is zero-
sum and hence the aim of the other player is to either foil the parity
objective or to maximize the mean payoft.

Our main technical result is a pseudo-quasi-polynomial algo-
rithm for solving mean-payoff parity games. All algorithms for the
problem that have been developed for over a decade have a pseudo-
polynomial and an exponential factors in their running times; in
the running time of our algorithm the latter is replaced with a quasi-
polynomial one. By the results of Chatterjee and Doyen (2012) and
of Schewe, Weinert, and Zimmermann (2018), our main technical
result implies that there are pseudo-quasi-polynomial algorithms
for solving parity energy games and for solving parity games with
weights.

Our main conceptual contributions are the definitions of strategy
decompositions for both players, and a notion of progress measures
for mean-payoff parity games that generalizes both parity and en-
ergy progress measures. The former provides normal forms for
and succinct representations of winning strategies, and the latter
enables the application to mean-payoff parity games of the order-
theoretic machinery that underpins a recent quasi-polynomial al-
gorithm for solving parity games.

ACM Reference Format:

Laure Daviaud, Marcin Jurdzinski, and Ranko Lazi¢. 2018. A pseudo-quasi-
polynomial algorithm for mean-payoff parity games. In LICS ’18: LICS ’18:
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, July 9—
12, 2018, Oxford, United Kingdom. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3209108.3209162

1 Introduction

A motivation to study zero-sum two-player games on graphs comes
from automata theory and logic, where they have been used as a
robust theoretical tool, for example, for streamlining of the initially
notoriously complex proofs of Rabin’s theorems on the comple-
mentation of automata on infinite trees and the decidability of the
monadic second-order logic on infinite trees [16, 24], and for the
development of the related theory of logics with fixpoint opera-
tors [12]. More practical motivations come from model checking

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

LICS 18, July 9-12, 2018, Oxford, United Kingdom

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5583-4/18/07...$15.00
https://doi.org/10.1145/3209108.3209162

UK

and automated controller synthesis, where they serve as a clean
combinatorial model for the study of the computational complexity
and algorithmic techniques for model checking [13], and for the
automated synthesis of correct-by-design controllers [23]. There
is a rich literature on closely related “dynamic games” in the clas-
sical game theory and Al literatures reaching back to 1950’s, and
games on graphs are also relevant to complexity theory [9] and to
competitive ratio analysis of online algorithms [25].

1.1 Mean-payoff parity games

A mean-payoff parity game is played by two players—Con and
Dis—on a directed graph. From the starting vertex, the players keep
following edges of the graph forever, thus forming an infinite path.
The set of vertices is partitioned into those owned by Con and those
owned by Dis, and it is the owner of the current vertex who picks
which outgoing edge to follow to the next current vertex. Who is
declared the winner of an infinite path formed by such interaction
is determined by the labels of vertices and edges encountered on
the path. Every vertex is labelled by a positive integer called its
priority and every edge is labelled by an integer called its cost. The
former are used to define the parity condition: the highest priority
that occurs infinitely many times is odd; and the latter are used to
define the (zero-threshold) mean-payoff condition: the (lim-sup)
long-run average of the costs is negative. If both the parity and the
mean-payoff conditions hold then Con is declared the winner, and
otherwise Dis is. In the following picture, if Dis owns the vertex
in the middle then she wins the game (with a positional strategy):
she can for example always go to the left whenever she is in the
middle vertex and this way achieve the positive mean payoff 1/2.
Conversely, if Con owns the middle vertex then he wins the game.
He can choose to go infinitely often to the left and see priority 1—in
order to fulfill the parity condition—and immediately after each
visit to the left, to go to the right a sufficient number of times—so
as to make the mean-payoff negative. Note that a winning strategy
for Con is not positional.

0 0

Throughout the paper, we write V and E for the sets of vertices
and directed edges in a mean-payoff parity game graph, 7 (v) for
the priority of a vertex v € V, and c(v, u) for the cost of an edge
(v, u) € E. Vertex priorities are positive integers no larger than d,
which we assume throughout the paper to be a positive even integer,
edge costs are integers whose absolute value does not exceed the
positive integer C, and we write n and m for the numbers of vertices
and edges in the graph, respectively.

Several variants of the algorithmic problem of solving mean-
payoff parity games have been considered in the literature. The

https://doi.org/10.1145/3209108.3209162
https://doi.org/10.1145/3209108.3209162

LICS ’18, July 9-12, 2018, Oxford, United Kingdom

input always includes a game graph as described above. The value
of (a vertex in) a mean-payoff parity game is defined as oo if Con
does not have a winning strategy for the parity condition, and
otherwise the smallest mean payoff that Con can secure while
playing so as to satisfy the parity condition. (Note that the paper
that introduced mean-payoff parity games [7] defined Con to be
the maximizer and not, as we do, the minimizer of the mean pay-
off. The two definitions are straightforwardly inter-reducible; the
choice we made allows for a better alignment of our key notion
of a mean-payoff parity progress measure with the literature on
energy progress measures [2].) The value problem is to compute the
value of every vertex. The threshold problem is, given an additional
(rational) number 6 as a part of the input, to compute the set of
vertices with finite value (strictly) less than 8. (Note that a value of
a vertex is not finite, i.e., it is oo, if and only if Con does not have
a winning strategy for his parity condition, which can be checked
in quasi-polynomial time [3, 19].) In the zero-threshold problem the
threshold number 0 is assumed to be 0.

As Chatterjee et al. [6, Theorem 10] have shown, the thresh-
old problem can be used to solve the value problem at the cost
of increasing the running time by the modest O(n - log(nC)) mul-
tiplicative term. Their result, together with a routine linear-time
reduction from the threshold problem to the zero-threshold prob-
lem (subtract 6 from costs of all edges), motivate us to focus on
solving the zero-threshold problem in this paper. For brevity, we
will henceforth write “mean-payoff condition” instead of “zero-
threshold mean-payoff condition”.

The roles of the two players in a mean-payoff parity game are
not symmetric for several reasons. One is that Con aims to satisfy
a conjunction of the parity condition and of the mean-payoff condi-
tion, while the goal of Dis is to satisfy a disjunction of the negated
conditions. The other one is that negations of the parity condition
and of the mean-payoff condition are not literally the parity and
the mean-payoff conditions, respectively: the negation of the parity
condition swaps the roles of even and odd, and the negation of the
strict (“less than”) mean-payoff condition is non-strict (“at least”).
The former asymmetry (conjunction vs disjunction) is material and
our treatments of strategy construction for players Con and Dis
differ substantially, but the latter are technically benign. The dis-
cussion above implies that the goal of player Dis is to either satisfy
the parity condition in which the highest priority that occurs infin-
itely many times is even, or to satisfy the “at least” zero-threshold
mean-payoff condition.

1.2 Related work

Mean-payoff games have been studied since 1960’s and there is
a rich body of work on them in the stochastic games literature.
We selectively mention the positional determinacy result of Ehren-
feucht and Myecielski [11] (i.e., that positional optimal strategies
exist for both players), and the work of Zwick and Paterson [25],
who pointed out that positional determinacy implies that decid-
ing the winner in mean-payoff games is both in NP and in co-NP,
and gave a pseudo-polynomial algorithm for computing values in
mean-payoff games that runs in time O(mn3C). Brim et al. [2] intro-
duced energy progress measures as natural witnesses for winning
strategies in closely related energy games, they developed a lift-
ing algorithm to compute the least energy progress measures, and
they observed that this leads to an algorithm for computing values
in mean-payoff games whose running time is O(mn?C - log(nC)),

L.Daviaud, M.Jurdzinski, and R.Lazi¢

which is better than the algorithm of Zwick and Paterson [25] if
C = 2°"), Comin and Rizzi [8] have further refined the usage
of the lifting algorithm for energy games achieving running time
O(mn?Q).

Parity games have been studied in the theory of automata on
infinite trees, fixpoint logics, and in verification and synthesis since
early 1990’s [12, 13]. Very selectively, we mention early and influen-
tial recursive algorithms by McNaughton [21] and by Zielonka [24],
the running times of which are O(n4*©®). The breakthrough result
of Calude et al. [3] gave the first algorithm that achieved an no(d)
running time. Its running time is polynomial O(n®) if d < log n and
quasipolynomial O(n'84+6) in general. (Throughout the paper, we
write 1g x to denote log, x, and we write log x when the base of
the logarithm is moot.) Note that Calude et al.s polynomial bound
for d < logn implies that parity games are FPT (fixed parameter
tractable) when the number d of distinct vertex priorities is the
parameter. Further analysis by Jurdzinski and Lazi¢ [19] established
that running times O(mn?-3%) ford < lgn, and O(dmnle(d/lgn)+1 45y
for d = w(lg n), can be achieved using their succinct progress mea-
sures, and Fearnley et al. [14] obtained similar results by refin-
ing the technique and the analysis of Calude et al. [3]. Existence
of polynomial-time algorithms for solving parity games and for
solving mean-payoff games are fundamental long-standing open
problems [13, 17, 25].

Mean-payoff parity games have been introduced by Chatterjee et
al. [7] as a proof of concept in developing algorithmic techniques for
solving games (and hence for controller synthesis) which combine
qualitative (functional) and quantitative (performance) objectives.
Their algorithm for the value problem is inspired by the recur-
sive algorithms of McNaughton [21] and Zielonka [24] for parity
games, from which its running time acquires the exponential depen-
dence mn4*O)C on the number of vertex priorities. Chatterjee
and Doyen [4] have simplified the approach by considering en-
ergy parity games first, achieving running time O(dmn?*4C) for
the threshold problem, which was further improved by Bouyer
etal. [1] to O(mnd+2C) for the value problem. Finally, Chatterjee
et al. [6] have achieved the running time O(mndClog(nC)) for the
value problem, but their key original technical results are for the two
special cases of mean-payoff parity games that allow only two dis-
tinct vertex priorities, for which they achieve running time O(mnC)
for the threshold problem, by using amortized analysis techniques
from dynamic algorithms. Note that none of those algorithms es-
capes the exponential dependence on the number of distinct vertex
priorities, simply because they all follow the recursive structure of
the algorithms by McNaughton [21] and by Zielonka [24].

Other quantitative extensions of parity games have been consid-
ered; for example, Fijalkow and Zimmermann [15] introduced par-
ity games with costs, and Schewe, Weinert, and Zimmermann [22]
generalized those to parity games with weights. Chatterjee and
Doyen [4] have proved that the problem of deciding the winner in
mean-payoff parity games is log-space equivalent to the problem of
deciding the winner in energy parity games, and Schewe et al. [22]
have proved that the latter is polynomial-time equivalent to the
problem of deciding the winner in parity games with weights. It
follows that the three problems, of deciding the winner in mean-
payoff parity games, in energy parity games, and in parity games
with weights, respectively, are polynomial-time equivalent.

A pseudo-quasi-polynomial algorithm for mean-payoff parity games

1.3 Our contributions

Our main technical result is the first pseudo-quasi-polynomial al-
gorithm for solving mean-payoff parity games. More specifically,
we prove that the threshold problem can be solved in pseudo-
polynomial time mn2t°()C for d = o(log n), in pseudo-polynomial
time mnPWC if d = O(logn) (where the constant in the expo-
nent of n depends logarithmically on the constant hidden in the
big-Oh expression O(log n)), and in pseudo-quasi-polynomial time
O(dmnl8ld/lgm+2.450) jf g = w(logn). By [6, Theorem 10], we ob-
tain running times for solving the value problem that are obtained
from the ones above by multiplying them by the O(nlog(nC)) term.

Our key conceptual contributions are the notions of strategy
decompositions for both players in mean-payoff parity games, and
of mean-payoff parity progress measures. The former explicitly
reveal the underlying strategy structure of winning sets for both
players, and they provide normal forms and succinct representa-
tions for winning strategies. The latter provide an alternative form
of a witness and a normal form of winning strategies for player
Dis, which make explicit the order-theoretic structures that under-
pin the original progress measure lifting algorithms for parity [18]
and energy games [2], respectively, as well as the recent quasi-
polynomial succinct progress measure lifting algorithm for parity
games [19]. The proofs of existence of strategy decompositions
follow the well-beaten track of using McNaughton-Zielonka-like
inductive arguments, and existence of progress measures that wit-
ness winning strategies for Dis is established by extracting them
from strategy decompositions for Dis.

Our notion of mean-payoff parity progress measures combines
features of parity and energy progress measures, respectively. Cru-
cially, our mean-payoff progress measures inherit the ordered tree
structure from parity progress measures, and the additional numer-
ical labels of vertices (that capture the energy progress measure as-
pects) do not interfere substantially with it. This allows us to directly
apply the combinatorial ordered tree coding result by Jurdzinski
and Lazi¢ [19], which limits the search space in which the witnesses
are sought by the lifting procedure to a pseudo-quasi-polynomial
size, yielding our main result. The order-theoretic properties that
the lifting procedure relies on naturally imply the existence of the
least (in an appropriate order-theoretic sense) progress measure,
from which a positional winning strategy for Dis on her winning
set can be easily extracted.

In order to synthesize a strategy decomposition—and hence a
winning strategy—for Con in pseudo-quasi-polynomial time, we
take a different approach. Progress measures for games typically
yield positional winning strategies for the relevant player [2, 18, 20],
but optimal strategies for Con in mean-payoff parity games may re-
quire infinite memory [7]. That motivates us to forgo attempting to
pin a notion of progress measures to witness winning strategies for
Con. We argue, instead, that a McNaughton-Zielonka-style recur-
sive procedure can be modified to run in pseudo-quasi-polynomial
time and produce a strategy decomposition of Con’s winning set.
The key insight is to avoid invoking some of the recursive calls,
and instead to replace them by invocations of the pseudo-quasi-
polynomial lifting procedure for Dis, merely to compute the win-
ning set for Dis—and hence also for Con, because by determinacy
Con has a winning strategy whenever Dis does not. As a result, each
invocation of the recursive procedure only makes recursive calls
on disjoint subgames, which makes it perform only a polynomial

LICS ’18, July 9-12, 2018, Oxford, United Kingdom

number of steps other than invocations of the lifting procedure,
overall yielding a pseudo-quasi-polynomial algorithm.

Note that our pseudo-quasi-polynomial algorithm for mean-
payoff parity games can be used to solve energy parity games
and parity games with weights in pseudo-quasi-polynomial time,
because deciding the winner in the latter two classes of games is
polynomial-time equivalent to deciding the winner in mean-payoff
games by the results of Chatterjee and Doyen [4] and Schewe et
al. [22], respectively.

Organisation of the paper. In Section 2, we define strategy de-
compositions for Dis and Con, and we prove that they exist if and
only if the respective player has a winning strategy. In Section 3,
we define progress measures for Dis, and we prove that such a
progress measure exists if and only if Dis has a strategy decom-
position. In Section 4, we give a pseudo-quasi-polynomial lifting
algorithm for computing the least progress measure, from which a
strategy decomposition for Dis of her winning set, and the winning
set for Con, can be derived. In Section 5, we show how to also
compute a strategy decomposition for Con on his winning set in
pseudo-quasi-polynomial time, using the lifting procedure to speed
up a NcNaughton-Zielonka-style recursive procedure.

2 Strategy decompositions

In this section we introduce our first key concept of strategy de-
compositions for each of the two players. They are hierarchically
defined objects, of size polynomial in the number of vertices in
the game graph, that witness existence of winning strategies for
each of the two players on their winning sets. Such decomposi-
tions are implicit in earlier literature, in particular in algorithms for
mean-payoff parity games [1, 4, 6, 7] that follow the recursive logic
of McNaughton’s [21] and Zielonka’s [24] algorithms for parity
games. We make them explicit because we belive that it provides
conceptual clarity and technical advantages. Strategy decompo-
sitions pinpoint the recursive strategic structure of the winning
sets in mean-payoff parity games (and, by specialization, in parity
games too), which may provide valuable insights for future work on
the subject. What they allow us to do in this work is to streamline
the proof that the other key concept we introduce—mean-payoff
parity progress measures—witness existence of winning strategies
for Dis.

We define the notions of strategy decompositions for Dis and for
Con, then in Lemmas 2.1 and 2.2 we prove that the decompositions
naturally yield winning strategies for the corresponding players,
and finally in Lemma 2.3 we establish that in every mean-payoff
game, both players have strategy decompositions of their winning
sets. The proofs of all three lemmas mostly use well-known induc-
tive McNaughton-Zielonka-type arguments that should be familiar
to anyone who is conversant in the existing literature on mean-
payoff parity games. We wish to think that for a curious non-expert,
this section offers a streamlined and self-contained exposition of
the key algorithmic ideas behind earlier works on mean-payoff
parity games [1, 4, 7].

2.1 Preliminaries

Notions of strategies, positional strategies, plays, plays consistent
with a strategy, winning strategies, winning sets, reachability strate-
gies, traps, mean payoff, etc., are defined in the usual way. We
forgo tediously repeating the definitions of those common and

LICS ’18, July 9-12, 2018, Oxford, United Kingdom

routine concepts, referring a non-expert but interested reader to
consult the (typically one-page) Preliminaries or Definitions sec-
tions of any of the previously published papers on mean-payoff
parity games [1, 4, 6, 7]. One notable difference between our set-
up and those found in the above-mentioned papers is that for an
infinite sequence of numbers {(c1, 2, ¢3, . . .), we define its mean
payoff to be limsup,,_,,(1/n) - X1, ¢;, rather than the more com-
mon lim inf, e (1/n) - X7 c;; this is because we chose Con to be
the minimizer of the mean payoff, instead of the typical choice of
making him the maximizer.

2.2 Strategy decompositions for Dis

Let W C V be a subgame (i.e. a non empty induced subgraph of
V with no deadend) in which the biggest vertex priority is b. We
define strategy decompositions for Dis by induction on b and the
size of W. We say that o is a b-decomposition of W for Dis if the
following conditions hold (pictured in Figure 1).

1. If bis even then w = ((R, "), (T, 1), B), such that:
a. sets R, T, and B # 0 are a partition of W;
b. B is the set of vertices of the top priority b in W;
c. 7 is a positional reachability strategy for Dis from T to B
in W;
d. ' is a b’-decomposition of R for Dis, where b’ < b.
2. If bis odd then = (U, w”), (T, 7), (R, w’)), such that:
a. sets U, T, and R # 0 are a partition of W;
b. o’ is either:
i. a b’-decomposition of R for Dis, where b’ < b; or
ii. a positional strategy for Dis that is mean-payoff winning
for her on R;
c. 7 is a positional reachability strategy for Dis from T to R
in W;
d. w” is a b”’-decomposition of U for Dis, where b”" < b;
e. Risa trap for Conin W.

We say that a subgame W has a strategy decomposition for Dis if it
has a b-decomposition for some b. A heuristic, if somewhat non-
standard, way to think about sets T and R in the above definition
is that sets denoted by T are transient and sets denoted by R are
recurrent. The meanings of those words here are different than in,
say, Markov chains, and refer to strategic, rather than probabilistic,
properties.

Given a strategy decomposition w for Dis, we inductively define
a positional strategy o(w) for Dis in the following way:

o(w) = o(@)UTUp if o = (R,), (T, 1), B),
o(@NUrUo(0) ife=(U,o")(T,1),R 0")),

where f is an arbitrary positional strategy for Dis on B, and o (w’) =
@’ in case 2(b)ii.

Lemma 2.1. If w is a strategy decomposition of W for Dis and W
is a trap for Con, then o(w) is a positional winning strategy for Dis
from every vertex in W.

Proof. We proceed by induction on the number of vertices in W.
The reasoning involved in the base cases (when R = 0 or U = 0)
is analogous and simpler than in the inductive cases, hence we
immediately proceed to the latter.

We consider two cases based on the parity of the biggest vertex
priority b in W.

L.Daviaud, M.Jurdzinski, and R.Lazi¢

Priority b
R B#0
wl
Case 1. b even
Priotity b = = = ul
F-~ <% Con
U R+0
Q)// (A)/

Case 2. b odd

Figure 1. Strategy decompositions for Dis.

First, assume that b is even and let w = ((R,), (T, f),B) be a
b-decomposition of W. We argue that every infinite play consistent
with o(w) is winning for Dis. If it visits vertices in B infinitely many
times then the parity condition for Dis is satisfied because b is the
biggest vertex priority and it is even. Otherwise, it must be the
case that the play visits vertices in T U B only finitely many times,
because visiting a vertex in T always leads in finitely many steps
to visiting a vertex in B by following the reachability strategy .
Therefore, eventually the play never leaves R and is consistent
with strategy o(w’), which is winning for Dis by the inductive
hypothesis.

Next, assume that b is odd. Let 0 = (U, »”), (T, 7),(R,w’)) be
a b-decomposition. We argue that every infinite play consistent
with o(w) is winning for Dis. If it visits T U R, then by following
strategy 7, it eventually reaches and never leaves R (because R
is a trap for Con), and hence it is winning for Dis because o(w”)
is a winning strategy for Dis by the inductive hypothesis, or by
condition 2(b)ii. Otherwise, if such a play never visits T U R then it
is winning for Dis because o(w’’) is a winning strategy for Dis by
the inductive hypothesis. O

2.3 Strategy decompositions for Con

Let W C V be a subgame in which the biggest vertex priority is b.
We define strategy decompositions for Con by induction on b and
the size of W. We say that w is a b-decomposition of W for Con if
the following conditions hold (pictured in Figure 2).

1. If b is odd then w = ((R, '), (T,), B, A), such that:
a. sets R, T, and B # 0 are a partition of W;
b. B is the set of vertices of priority b in W;
c. 7 is a positional reachability strategy for Con from T to B
in W;
d. ' is a b’-decomposition of R for Con, where b’ < b;
e. Ais a positional strategy for Con that is mean-payoff win-
ning for him on W.
2. If bis even then w = ((U, 0”), (T, 1), (R, ®")), such that:
a. sets U, T, and R # 0 are a partition of W;
b. w’ is a b’-decomposition of R for Con, where b’ < b;
c. T is a positional reachability strategy for Con from T to R
in W;

A pseudo-quasi-polynomial algorithm for mean-payoff parity games

Priority b
R B+0
w/
Case 1. b odd
Priority b = = = u
- <« Dis
U R#0
w// (/)I

Case 2. b even

Figure 2. Strategy decompositions for Con.

d. " is a b”’-decomposition of U for Con, where b”’ < b;
e. Risa trap for Dis in W.

We say that a subgame has a strategy decomposition for Con if it has
a b-decomposition for some b. Note that the definition is analogous
to that of a strategy decomposition for Dis in most aspects, with
the following differences:

e the roles of Dis and Con, and of even and odd, are swapped;
e the condition 2b is simplified;
e an extra component A, and the condition 1e, are added.

Given a strategy decomposition w for Con, we inductively define
a strategy o(w) for Con in the following way:

e If bis odd and w = ((R, '), (T, 7), B, A), then the strategy
proceeds in (possibly infinitely many) rounds. Round i, for
i=1,2,3,...,involves the following steps:

1. if starting in R, follow o(w”) for as long as staying in R;
2. if starting in T, or having arrived there from R, follow 7
until B is reached;
3. once B is reached, follow A for n + (2n + 3" + 2)nC steps
and proceed to round i + 1.
e Ifbiseven and w = (U, w”), (T, 1), (R, »’)), then let:

o(w) = o(w”’)UTtUdo(w).

Lemma 2.2. Ifw is a strategy decomposition of W for Con and W
is a trap for Dis, then o(w) is a winning strategy for Con from every
vertex in W.

Proof. We proceed by induction on the number of vertices in W,
omitting the base cases (when R = 0, or U = (), respectively), since
they are analogous and simpler than the inductive cases.

We consider two cases based on the parity of b. First, assume
that b is even and let w = (U, 0”),(T,7), (R, ®")). Observe that
a play consistent with o(w) = o(w”) U 7 U o(w’) either never
leaves U, or if it does then after a finite number of steps (following
the reachability strategy 7) it enters R and then never leaves it
because R is a trap for Dis. It follows that the play is winning for
Con by the inductive hypothesis, because it is eventually either
consistent with strategy o(w’’) or with o(w”).

Next, assume that b is odd. Let v = ((R,w’), (T,r),B, A) be
a b-decomposition. We argue that every infinite play consistent

LICS ’18, July 9-12, 2018, Oxford, United Kingdom

with o(w) is winning for Con. If it visits T U R finitely many times
then eventually it is consistent with strategy o(«w”) and hence it is
winning for Con by the inductive hypothesis. Otherwise, it visits
set B infinitely many times and hence it satisfies the parity condi-
tion for Con because b is the highest vertex priority and it is odd.
We now claim that every play consistent with o(w) has a negative
mean payoff, and hence also satisfies the mean-payoff condition for
Con. For lack of space, we do not provide a detailed and rigorous
argument here, but it can be found in the full version of this pa-
per [10]. The main insight, however, is that in every round, either
the strategy o(w’) is played for long enough to—by the inductive
hypothesis—contribute a negative average cost in step 1., or the
combined costs encountered in steps 1. and 2. are bounded, and
hence they are eventually overwhelmed by the negative averages
achieved in arbitrarily long spells of playing a mean-payoft strat-
egy A (which, by positional determinacy of mean-payoff games [11],
secures mean-payoff at most —1/n) in step 3. O

2.4 Existence of strategy decompositions

In the following lemma, we prove that every game can be parti-
tioned into two sets of vertices, so that there is a strategy decom-
position of one for Dis, and a strategy decomposition of the other
one for Con. Those sets correspond to the winning sets for Dis and
Con, respectively.

Lemma 2.3. There is a partition Wpis and Weop of V, such that
there is a strategy decomposition of Wpjs for Dis (provided Wpys # 0)
and a strategy decomposition of Weon for Con (provided Weon # 0).

The proof of Lemma 2.3 can be found in the full version of the
paper [10]. It follows the usual template of using a McNaughton-
Zielonka inductive argument, as adapted to mean-payoff parity
games by Chatterjee et al. [7], and then simplified for threshold
mean-payoff parity games by Chatterjee et al. [6, Appendix C].

Observe that Lemmas 2.1, 2.2, and 2.3 form a self-contained
argument to establish both determinacy of threshold mean-payoff
parity games (from every vertex, one of the players has a winning
strategy), and membership of the problem of deciding the winner
both in NP and in co-NP. For the latter, it suffices to note that
strategy decompositions can be described in a polynomial number
of bits, and it can be routinely checked in small polynomial time
whether a proposed strategy decomposition for either of the players
satisfies all the conditions in the corresponding definition. The NP
and co-NP membership has been first established by Chatterjee and
Doyen [4]; we merely give an alternative proof.

Corollary 2.4 (Chatterjee and Doyen [4]). The problem of deciding
the winner in mean-payoff parity games is both in NP and in co-NP.

3 Mean-payoff parity progress measures

In this section we introduce the other key concept—mean-payoff
parity progress measures—that plays the critical role in achieving
our main technical result—the first pseudo-quasi-polynomial algo-
rithm for solving mean-payoff parity games. In Lemmas 3.1 and 3.2
we establish that mean-payoff parity progress measures witness
existence of winning strategies for Dis, by providing explicit trans-
lations between them and strategy decompositions for Dis.

We stress that the purpose of introducing yet another concept of
witnesses for winning strategies for Dis is to shift technical focus
from highlighting the recursive strategic structure of winning sets

LICS ’18, July 9-12, 2018, Oxford, United Kingdom

in strategy decompositions, to an order theoretic formalization
that makes the recursive structure be reflected in the concept of
ordered trees. The order-theoretic formalization then allows us—in
Section 4—to apply the combinatorial result on succinct coding of
ordered trees by Jurdzinski and Lazi¢ [19], paving the way to the
pseudo-quasi-polynomial algorithm.

3.1 The definition

A progress measure maps every vertex with an element of a linearly
ordered set. Edges along which those elements decrease (for another
specific defined order) are called progressive, and an infinite path
consisting only of progressive edges is winning for Dis. Then, we
can derive a winning strategy for Dis if she can always follow a
progressive edge and if Con has no other choice than following a
progressive edge.

Recall the assumption that d—the upper bound on the vertex
priorities—is even.

A progress measurement is a sequence ({mg_1,mg_3,...,mg),e),
where:

e fisoddand 1 < ¢ < d + 1 (note that if £ = d + 1 then
(mg_1,mg_s3,...,my) is the empty sequence ());

e m; is an element of a linearly ordered set (for simplicity,
we write < for the order relation), for each odd i, such that
t<i<d-1;

e eisan integer such that 0 < e < nC, or e = co.

A progress labelling (u1, ¢) maps vertices to progress measurements

in such a way that if vertex v is mapped to

(/’l(v)a fﬂ(v)) = (<md—1’ mg_3,..., mf>v e)
then
o { > n(v); and
o if e = co then ¢ is the smallest odd integer such that £ > 7(v).

For every priority p, 1 < p < d, we obtain a p-truncation
(mg_1,mg_s,...,me)lp of (my_1,mg_s, ..., me), by removing the
components corresponding to all odd priorities smaller than p. For
example, if we fix d = 8 then we have (a, b, c)|s = (), (a,b,c)|¢ =
(a), and (a,b,c)|3 = (a,b,c)|2 = (a, b, c). We compare sequences
using the lexicographic order; for simplicity, and overloading no-
tation, we write < to denote it. For example, (a) < (a,b), and
(a,b,c) < (a,d)ifb < d.

Let (1, ¢) be a progress labelling. Observe that—by definition—
PO 7o) = p(v), for every vertex v € V. We say that an edge
(v, u) € E is progressive in (y, ¢) if:

L p(v) > p(W)l (o) or
2. p(v) = p(u)|z (o), 7(v) is even, and ¢(v) = oo; or
3. p(w) = p(u), (v) # o0, and @(v) + c(v, u) > @(u).

We can represent tuples as nodes in a tree where the components
of the tuple represent the branching directions in the tree to go
from the root to the node. For example, a tuple {a, b, ¢) corresponds
to the node reached from the root by first reaching the ath child of
the root, then the bth child of this latter and finally the cth child of
this one. This way, the notion of progressive edges can be seen on
a tree as in Figure 3.

A progress labelling (y, ¢) is a progress measure if:

o for every vertex owned by Dis, there is at least one outgoing
edge that is progressive in (g, ¢); and

o for every vertex owned by Con, all outgoing edges are pro-
gressive in (g, ¢).

L.Daviaud, M.Jurdzinski, and R.Lazi¢

The siblings are ordered according to the linear order <. The
smallest child is on the right and the greatest on the left in the
picture. An edge (v, u) is progressive if one of the three following
conditions holds:

- condition 1 -
1(u) is one of the blue node, i.e. above or on the right of y(v).

7(v) is even, @(v) = oo and p(u) is one of the orange node, ie.
belongs to the subtree rooted in u(v).

() = p(v), @(u) € Z and ¢(v) + c(v, u) 2 (u).

Figure 3. Conditions for an edge to be progressive.

In the next two sections, we prove that there is a strategy de-
composition for Dis if and only is there is a progress measure.

3.2 From progress measures to strategy decompositions

Lemma 3.1. Ifthere is a progress measure then there is a strategy
decomposition of V for Dis.

In the proof we will use the following simple fact (see, for exam-
ple, Brim et al. [2]): if all the edges in an infinite path are progressive
and fulfill condition 3. of the definition, then the mean payoff of
this path is non-negative (and thus winning for Dis).

Proof. We proceed by induction on the number of distinct vertex
priorities in the game graph. Let b < d be the highest priority
appearing in the game.

The base case is when b is the only vertex priority. If b is even,
then by setting B =V and T = R = () we obtain a strategy decompo-
sition of V for Dis. If b is odd, then an edge can only be progressive if
it satisfies condition 3. of the definition of a progressive edge; hence
the progress measure yields a positional strategy o’ for Dis that is
mean-payoff winning for her on V. It follows that setting R = V,
T =U = 0, and ' as above, we obtain a strategy decomposition
of V for Dis.

Consider the inductive step now. First, suppose that b is even.
Let B be the set of the vertices of priority b. Let T be the set of
vertices from which Dis has a reachability strategy to B, be this
positional strategy and let R = V'\ (BUT). Because, by construction,

A pseudo-quasi-polynomial algorithm for mean-payoff parity games

there is no edge from a vertex in R owned by Dis to a vertex in
BUT, the progress measure on V gives also a progress measure on
R when restricted to its vertices. Let @ be a b’-decomposition of R
for Dis that exists by the inductive hypothesis. Note that b’ < b
because the biggest priority in R is smaller than b. It follows that
((R,w),(T, 1), B) is a strategy decomposition for Dis in V.

Suppose now that b is odd. Let R be the set of vertices labelled
by the smallest tuple: R = {v € V : p(v) < p(u)forallu € V}.
(If we pictured the tuples on a tree as in Figure 3, those would be
the vertices that are mapped to the rightmost-top node in the tree
among the nodes at least one vertex is mapped to.) Let R’ be the
subset of R of those vertices having a finite ¢: {v € R : ¢(v) # oo}

Suppose first that R’ # 0. An edge going out from a vertex in R’
can only be progressive if it fulfills condition 3. in the definition. It
then has to go to a vertex of R’ too. Thus, R’ is a trap for Con, and
Dis has a winning strategy «’ in R’ for the mean-payoff game.

Let T be the set of vertices from which Dis has a strategy to reach
R’ and let 7 this positional reachability strategy. Let U = V \ (R" U
T). Because, by construction, there is no edge from a vertex in U
owned by Dis to a vertex in R’ UT, then the progress measure on V
gives also a progress measure on U when restricted to its vertices.
We can then apply the inductive hypothesis and get w a strategy
decomposition of U for Dis. Note that (U, w), (T, 7), (R, »")) is a
strategy decomposition of V for Dis.

Suppose now that R” = 0. The non-empty set R contains only
vertices v such that ¢(v) = co. Then, by definition and because all
those vertices are associated with the same tuple, they must all
have priority b” or b’ + 1 for some even number b’.

Any edge going out from a vertex of R is progressive if and only
if it fulfills condition 2. of the definition. Thus, the priority of all
the vertices in R has to be even and is consequently b” with b’ < b.

Let R” = {u € V': pu(v) = p(u)| (o) for v € R}. (If we picture the
tuples on a tree as in Figure 3, those are the vertices that are mapped
to the nodes in the subtree rooted in the node corresponding to R.)
By definition, the priority of all those vertices is also smaller than b.
Moreover, an edge going out from a vertex in R”” can only be pro-
gressive if it goes to a vertex in R’ too. So, R” is a trap for Con and
an edge from a vertex in R”” owned by Dis to a vertex not in R”
cannot be progressive. So the progress measure on V gives also
a progress measure on R’ when restricted to its vertices. By the
inductive hypothesis, there is a strategy decomposition «’’ of R”
for Dis. Let T be the set of vertices from which Dis has a strategy to
reach R”” and let 7 be a corresponding positional reachability strat-
egy. Let U = V\(R” UT). Because, by construction, there is no edge
in U from a vertex owned by Dis to a vertex in R”” U T, the progress
measure on V gives also a progress measure on U when restricted
to its vertices. By the inductive hypothesis, there is a strategy de-
composition w of U for Dis. Note that (U, »), (T,), (R”,»"")) is a
strategy decomposition of V for Dis. O

3.3 From strategy decompositions to progress measures

Lemma 3.2. If there is a strategy decomposition of V for Dis then
there is a progress measure.

Proof. The proof is by induction on the size of the game graph. Let
b be the biggest vertex priority in V. We strengthen the inductive
hypothesis by requiring that the progress measure (y, ¢) whose
existence is claimed in the lemma is such that all sequences in the

LICS ’18, July 9-12, 2018, Oxford, United Kingdom

77777777 Vertices of B of priority b

Progress
measure of R

Figure 4. Construction of a progress measure - b even (the common
prefix is not pictured).

image of p have the same prefix corresponding to indices k, such
that k > b. We need to consider two cases based on the parity of b.

Suppose first that b is even. Let w = ((R,’),(T, 1), B) be a b-
decomposition of V for Dis. Since B # 0, by the inductive hypothesis
there is a progress measure (y’, ¢’) on R. For every vertex v € T,
define its r-distance to B to be the largest number of edges on a
path starting at v, consistent with 7, and whose only vertex in B is
the last one. Let k be the largest such 7-distance, and we define T;,
1 < i <k, to be the set of vertices in T whose 7-distance to B is i.

Let (mg_1,mg_3,...,mpyq) be the common prefix of all se-
quences in the image of u’. Let t1,f3,. .., f be elements of the
linearly ordered set used in progress measurements, such that for
every r that is the component of a sequence in the image of yu’
corresponding to priority b — 1, we have r > t. > -+ > ty > t,
and let ¢ be a chosen element of the linearly ordered set (it does
not matter which one). Define the progress labelling (4, ¢) for all
vertices v € V as follows:

(K (), ¢"(v)) ifv R,

_J(mays . omp g tiymy s, .. mg), 00)
(H®).p(w)) = ifoeT,1<i<k,
((mg_1,mg_s, ..., Mmpy1),) ifv € B;

where ¢ is the smallest odd number no smaller than z(v) and
mp_3=...=mg=1.

The progress labelling (1, ¢) as defined above is a desired progress
measure. It is illustrated as a tree in Figure 4.

Suppose now that b is odd. Let = (U, "), (T, 7), (R, w’)) be
a b-decomposition of V for Dis. Define r-distances, sets T;, and
elements t; and f for 1 < i < k, in the analogous way to the “even b”
case, replacing set B by set R. By the inductive hypothesis, there is
a progress measure (1", ¢’’) on U, and let (my_1, mg_3,...,Mp4o)
be the common prefix of all sequences in the image of yi”’. We define
a progress labelling (u, ¢) for all vertices in U U T as follows:

(1" (), 9" (v)) ifveU,
(@), 0(v)) = { ({mg_1s - - Mpia tisMp_3, ..., M),)
ifoeT;,1<i<k;

where ¢ is the smallest odd number no smaller than z(v) and
mp_3=...=mg=1.

If ®’ is a b’-decomposition of R for b’ < b (case 2(b)i), then by
the inductive hypothesis, there is a progress measure (u’, ¢’) on R.
Without loss of generality, assume that all sequences in the images
of i/ and of u’" have the common prefix (mg_1,mg_3,...,Mpi9),
and that for all u and r that are the components of a sequence in the
images of ”” and p’, respectively, corresponding to priority b, we

LICS ’18, July 9-12, 2018, Oxford, United Kingdom

Progress
measure of U

Progress
measure of R

Figure 5. Construction of a progress measure - b odd - case 2(b)i.

- - - - - Vertices of R

Figure 6. Construction of a progress measure - case 2(b)ii.

have u > t} > tp_; > --- > t; > r. Define the progress labelling
(i, @) for all vertices v € R in the following way:

(1(v), 9(v)) = (' (v), ¢" (V).

This is illustrated in Figure 5.

If, instead, ' is a positional strategy for Dis that is mean-payoff
winning for him on R (case 2(b)ii), then by the result of Brim et
al. [2], there is an energy progress measure ¢ for Dis on R. Let r’
be such that r’ < t1, and define the progress labelling (y, ¢) for all
vertices v € R in the following way:

([1(’0), ‘P(U)) = ((md—l’ mg_3,....,Mpy2, r/>’ IF(U))

This is illustrated in Figure 6.
The progress labelling (1, @) as defined above is a desired progress
measure.]

4 Computing progress measures by lifting

In this section, we give a so-called lifting algorithm which identifies
the winning sets for Dis and for Con by computing a progress
measure on the winning set for Dis.

By the tree of a progress labelling (p, ¢), we mean the ordered tree
whose nodes are all prefixes of all sequences p(v) as v ranges over
the vertices of the game graph, and such that every vertex v labels
the node p(v) of the tree. Let us say that progress labellings (y, ¢)
and (p’, ¢’) are isomorphic if and only if their (partially labelled
ordered) trees are isomorphic and ¢ = ¢’.

We shall work with the following ordering on finite binary
strings:

O0s<e e<1s, bs<bs ifandonlyifs <s’,

where ¢ denotes the empty string, b ranges over binary digits, and
s, s’ range over binary strings.

Recall that n is the number of vertices, and d (assumed even) is
the number of priorities.

Let S, 4 be all sequences (mg_q,mg_s,. ..
such that:

,mg) of binary strings

L.Daviaud, M.Jurdzinski, and R.Lazi¢

e fisoddand1 < ¢ <d+1;

o 241 mi| < Mgn;
and let us call a progress measurement, labelling or measure succinct
if and only if all the sequences (mgy_1,m4_3, ..., my) involved are
members of S, 4.

Lemma 4.1. For every progress labelling, there exists a succinct
isomorphic one.

Proof. This is an immediate consequence of [19, Lemma 1], since
for every progress labelling, its tree is of height at most d/2 and
has at most n leaves. O

Corollary 4.2. Lemmas 3.1 and 3.2 hold when restricted to succinct
progress measures.

We now order progress measurements lexicographically:

((mg_1,mg_3,...,mg),€) < ((m:i_l, m:i_3, e mz,,), e’)
if and only if
either (my_1,mg_3,...,mg) < <m:1,1’ m:l73, o, mé,),
or (mg_1,mg_s,....,mg) = (m,_,,m)y_,,...,mp)ande <e

and we extend them by a new greatest progress measurement
(T, c0). We then revise the set of progress labellings to allow the
extended progress measurements, and we (partially) order it point-
wise:

(1, 0) < (1, ¢") if and only if,
forallv € V,(u(v), ¢(v)) < (1’ (v), p(v")).

We also revise the definition of a progress measure by stipulating
that an edge (v, u) which involves the progress measurement (T, c0)
is progressive if and only if the progress measurement of v is (T,).

For any succinct progress labelling (i, ¢) and edge (v, u), we set
lift(y, ¢, v, u) to be the minimum succinct progress measurement
((md,l, My_3,...,Mg), e) which is at least (/1(’0), (p(v)) and such
that (v, u) is progressive in the updated succinct progress labelling

(1o > macimas, ... med] olo el

For any vertex v, we define an operator Lift;, on succinct progress
labellings as follows:

(1(w). p(w))
Lifty (p, p)(w) = §ming,) lift(y, ¢, v, u) if Dis owns w = v,

if w# o,

max(y, ek lift(y, o, v,u) if Con owns w = v.

Theorem 4.3 (Correctness of lifting algorithm).

1. The set of all succinct progress labellings ordered pointwise is
a complete lattice.

2. Each operator Lift,, is inflationary and monotone.

3. From every succinct progress labelling (i, ¢), every sequence
of applications of operators Lift,, eventually reaches the least
simultaneous fixed point of all Lift,, that is greater than or
equal to (i1,).

4. A succinct progress labelling (i,) is a simultaneous fixed
point of all operators Lift,, if and only ifiit is a succinct progress
measure.

5. If (u*, ™) is the least succinct progress measure, then {v :
(1*(V), 9*(v)) # (T,0)} is the set of winning positions for
Dis.

A pseudo-quasi-polynomial algorithm for mean-payoff parity games

1. Initialise (g, @) to the least succinct progress labelling
(v (), v 0)

2. While Lift,, (i,) # (i, ¢) for some v, update (g, ¢) to
become Lift,, (i1, ¢).

3. Return the set Wpis = {v :
winning positions for Dis.

(1), 9(v)) # (T, 00)} of

Table 1. The lifting algorithm.

Proof. 1. The partial order of all succinct progress labellings is
the pointwise product of n copies of the finite linear order
of all succinct progress measurements.

2. We have inflation, i.e. Lift, (i1, @)(w) > (u(w), @(w)), by the

definitions of Lift,, (i, ¢)(w) and lift(y, ¢, v, u).
For monotonicity, supposing (i, ¢) < (i’, ¢’), it suffices to
show that, for every edge (v, u), we have lift(y, ¢, v,u) <
lift(u’, ¢’, v, u), which is in turn implied by the straightfor-
ward observation that, whenever an edge is progressive with
respect to a progress labelling, it remains progressive af-
ter any lessening of the progress measurement of its target
vertex.

3. This holds for any family of inflationary monotone opera-
tors on a finite complete lattice. Consider any such maxi-
mal sequence from (g, ¢). It is an upward chain from (g, ¢)
to some (u*, ¢*) which is a simultaneous fixed point of all
the operators. For any (¢, ¢") > (p, ¢) which is also a si-
multaneous fixed point, a simple induction confirms that
W 0") < (W' 9").

4. Here we have a rewording of the definition of a succinct
progress measure.

5. Let W = {v : (4*(v),¢*(v)) # (T,c0)}. The set of win-
ning positions for Dis is contained in W by Lemma 2.3,
Lemma 3.2 and Corollary 4.2, because (u*, ¢*) is the least
succinct progress measure.

Since (u*, ¢*) is a progress measure, we have that, for ev-
ery progressive edge (v, u), if (4*(0v), 9*(v)) # (T,) then
(1*(u), 9*(w)) # (T, o0). In order to show that Dis has a win-
ning strategy from every vertex in W, it remains to apply
Lemmas 3.1 and 2.1 to the subgame consisting of the vertices
in W.

]

Lemma 4.4 (Jurdzinski and Lazi¢ [19]). Depending on the asymp-
totic growth of d as a function of n, the size of the set S, g is as
follows:

L0 (n1+0<1>) ifd = o(log n);
2.0 (nlg(5+1)+lg(35)+l /\llog n) ifd/2 = [§1gn], for some pos-
itive constant 8, and where es = (1 + 1/6)9;

30 (dn1g<d/1g ">+1ge+°<1>) ifd = w(log n).

Theorem 4.5 (Complexity of lifting algorithm). Depending on the
asymptotic growth of d as a function of n, the running time of the
algorithm is as follows:

1. 0 (ng“’(l)C) ifd = o(log n);

LICS ’18, July 9-12, 2018, Oxford, United Kingdom

2.0 (mnlg(5+1)+lg(e5)+zc -logd - y/log n) ifd < 2[81gn], for
some positive constant d;

30 (dmnlg(d/lg ">+2~45c) ifd = w(log n).
The algorithm works in space O(n - log n - log d).

Proof. The work space requirement is dominated by the number of
bits needed to store a single succinct progress labelling, which is at
most n([lgn][lgd] + [lg(nC)7).

Since bounded-depth successors of elements of S, ; are com-
putable in time O(logn - logd) (cf. the proof of [19, Theorem 7],
the Lift,, operators can be implemented to work in time O(deg(v) -
(logn -logd +1log C)). It then follows, observing that the algorithm
lifts each vertex at most |S,, 4|(nC + 1) times, that its running time
is bounded by

o Z deg(v) - (logn -logd +1og O)[S,, 4|(nC+1)| =

veV

O (mnC(logn -logd + log C)|5n,d|) .

From there, the various stated bounds are obtained by applying
Lemma 4.4, and by suppressing some of the multiplicative factors
that are logarithmic in the bit-size of the input. Suppressing the
log C factor is justified by using the unit-cost RAM model, which
is the industry standard in algorithm analysis. The reasons for
suppressing the log n and log d factors are more varied: in case 1,
they are absorbed by the o(1) term in the exponent of n, and in
case 3, they are absorbed in the 2.45 term in the exponent of n,
because lge < 1.4427. O

5 From winning sets to strategy
decompositions for Con

The pseudo-quasi-polynomial lifting algorithm computes the least
progress measure and hence, by Lemmas 3.1 and 2.1, it can be
easily adapted to synthesize a winning strategy for Dis from all
vertices in her winning set. In this section we tackle the problem of
strategy synthesis for Con. By (the proof of) Lemma 2.2, in order
to synthesize a winning strategy for Con, it suffices to compute
a strategy decomposition for him. We argue that this can also be
achieved in pseudo-quasi-polynomial time.

Theorem 5.1 (Complexity of computing strategy decompositions).
There is a pseudo-quasi-polynomial algorithm that computes strategy
decompositions for both players on their winning sets.

In order to establish that strategy decompositions for Con can be
computed in pseudo-quasi-polynomial time, it suffices to prove the
following lemma, because the polynomial-time oracle algorithm
becomes a pseudo-quasi-polynomial algorithm, once the oracle for
computing winning strategies in mean-payoff games is replaced
by a pseudo-polynomial algorithm [2, 8, 25], and the oracle for
computing the winning sets in mean-payoff parity games is replaced
by the pseudo-quasi-polynomial procedure from Section 4.

Lemma 5.2. There is a polynomial-time algorithm, with oracles for
computing winning strategies in mean-payoff games and for com-
puting winning sets in mean-payoff parity games, that computes a
strategy decomposition for Con of his winning set.

Proof. Without loss of generality, we may assume that Con has a
winning strategy from every vertex in V, since a single call to the

LICS ’18, July 9-12, 2018, Oxford, United Kingdom

oracle allows us to reduce V to the subgame corresponding to the
winning set for Con.

Below, we describe a recursive procedure for computing a strat-
egy decomposition for Con of the set of all vertices, that has a
similar structure to the inductive proof of Lemma 2.3. In parallel
with the description of the recursive procedure, we elaborate an in-
ductive proof that it does indeed compute a strategy decomposition
for Conon V.

Note that our procedure avoids incurring the penalty of adding to
its running time a factor that is exponential in the number of distinct
vertex priorities, by repeatedly using the oracle for computing the
winning sets in appropriately chosen subgames. We give a detailed
analysis of the worst-case running time at the end of this proof.

Let B be the set of vertices of the highest priority b; let T be the
set of vertices (not including vertices in B) from which Dis has a
strategy to reach a vertex in B; let 7 be a corresponding positional
rechability strategy; and let R = V' \ (BUT). We consider two cases,
depending on the parity of b.

Even b. Call the oracle to obtain the partition Rcon and Rpjs of R,
the winning sets for Con and for Dis, respectively, in the subgame R.
We argue that Rcon # 0. Otherwise, by Lemma 2.3, there is a
strategy decomposition w of R for Dis, and hence ((R, »), (T, t), B)
is a strategy decomposition of V for Dis, which, by Lemma 2.1,
contradicts the assumption that Con has a winning strategy from
every vertex.

Let T’ be the set of vertices (not including vertices in Rcop)
from which Con has a strategy to reach a vertex in Rcop, and
let 7’ be a corresponding positional reachability strategy, and let
U =V \ (Rcon UT’). By the inductive hypothesis, a recursive call of
our procedure on Rcop, will produce a strategy decomposition o’
of Rcop for Con, and another recursive call of the procedure on U
will produce a strategy decomposition w’’ of U for Con. We claim
that (U, ®”),(T’, "), (Rcon, @”)) is a strategy decomposition of V
for Con.

Odd b. Call the oracle for computing positional winning strategies
in mean-payoff games to obtain a positional strategy A for Con
that is mean-payoff winning for him on V; such a strategy exists
because Con has a mean-payoff parity winning strategy from every
vertex. Since R is a trap for Con, it must be the case that Con has
a winning strategy from every vertex in the subgame R. By the
inductive hypothesis, a recursive call of our procedure on R will
produce a strategy decomposition w’ of R for Con. We claim that
((R,@"),(T, 1), B, A) is a strategy decomposition of V for Con.

It remains to argue that the recursive procedure described above
works in polynomial time in the worst case. Observe that in both
cases considered above, a call of the procedure on a game results
in two or one recursive calls, respectively. In both cases, the re-
cursive calls are applied to subgames with strictly fewer vertices,
and—crucially for the complexity analysis—in the former case, the
two recursive calls are applied to subgames on disjoint sets of ver-
tices. Additional work (other than recursive calls and oracle calls)
in both cases can be bounded by O(m), since the time needed is
dominated by the worst case bound on the computation of reach-
ability strategies. Overall, the running time function T(n) of the
recursive procedure, where n is the number of vertices in the input
game graph, satisfies the following recurrence:

T(n) < T(n') + T(n") + O(m), where n’ + n” < n,

L.Daviaud, M.Jurdzinski, and R.Lazi¢

and hence T(n) = O(nm). O

6 Conclusion

Our main result is the first pseudo-quasi-polynomial algorithm for
computing the values of mean-payoff parity games, and hence also
for deciding the winner in energy parity games and in parity games
with weights. The main technical tools that we introduce to achieve
the main result are strategy decompositions and progress measures
for the threshold version of mean-payoff games. We believe that our
techniques can be adapted to also produce optimal strategies for
both players (i.e., the strategies that secure the value that we show
how to compute). Another direction for future work is improving
the complexity of solving stochastic mean-payoff parity games [5].

Acknowledgements

This research has been supported by the EPSRC grant EP/P020992/1
(Solving Parity Games in Theory and Practice).

References

[1] P.Bouyer, N. Markey, J. Olschewski, and M. Ummels. 2011. Measuring permis-
siveness in parity games: Mean-payoff parity games revisited. In ATVA. 135-149.

[2] L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin. 2011. Faster
algorithms for mean-payoff games. Form. Methods Syst. Des. 38, 2 (2011), 97-118.

[3] C.S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. 2017. Deciding parity
games in quasipolynomial time. In STOC. 252-263.

[4] K. Chatterjee and L. Doyen. 2012. Energy parity games. Theoretical Computer
Science 458 (2012), 49-60.

[5] K. Chatterjee, L. Doyen, H. Gimbert, and Y. Oualhadj. 2014. Perfect-information
stochastic mean-payoff parity games. In FOSSACS. 210-225.

[6] K. Chatterjee, M. Henzinger, and A. Svozil. 2017. Faster algorithms for mean-
payoff parity games. In MFCS. 39:1-39:17.

[7] K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. 2005. Mean-payoff parity
games. In LICS. 178-187.

[8] C.Comin and R. Rizzi. 2017. Improved pseudo-polynomial bound for the value
problem and optimal strategy synthesis in mean payoff games. Algorithmica 77,
4(2017), 995-1021.

[9] A.Condon. 1992. The complexity of stochastic games. Information and Compu-
tation 96, 2 (1992), 203-224.

[10] L.Daviaud, M. Jurdzinski, and M. Lazi¢. 2018. A pseudo-quasi-polynomial algo-
rithm for solving mean-payoff parity games. arXiv:1803.04756. (2018).

[11] A. Ehrenfeucht and J. Mycielski. 1979. Positional strategies for mean payoff
games. Journal of Game Theory 8, 2 (1979), 109-113.

[12] E. A.Emerson and C. Jutla. 1991. Tree automata, mu-calculus and determinacy.
In FOCS. 368-377.

[13] E. A. Emerson, C. Jutla, and A. P. Sistla. 2001. On model-checking for fragments
of p-calculus. Theoretical Computer Science 258, 1-2 (2001), 491-522.

[14] J. Fearnley, S. Jain, S. Schewe, F. Stephan, and D. Wojtczak. 2017. An ordered
approach to solving parity games in quasi polynomial time and quasi linear space.
In SPIN. 112-121.

[15] N. Fijalkow and M. Zimmermann. 2014. Parity and Streett games with costs.
Logical Methods in Computer Science 10, 1:14 (2014), 1-29.

[16] Y. Gurevich and L. Harrington. 1982. Trees, automata, and games. In STOC.
60-65.

[17] D.S. Johnson. 2007. The NP-completeness column: Finding needles in haystacks.
ACM Transactions on Algorithms 3, 2 (2007).

[18] M. Jurdziniski. 2000. Small progress measures for solving parity games. In STACS.
290-301.

[19] M. Jurdziniski and R. Lazi¢. 2017. Succinct progress measures for solving parity
games. In LICS. 1-9.

[20] N.Klarlund and D. Kozen. 1995. Rabin measures. Chicago Journal of Theoretical

Computer Science (1995). Article 3.

R. McNaughton. 1993. Infinite games played on finite graphs. Annals of Pure and

Applied Logic 65, 2 (1993), 149-184.

S. Schewe, A. Weinert, and M. Ziemmermann. 2018. Parity games with weights.

arXiv:1804.06168. (2018).

[23] W. Thomas. 1995. On the synthesis of strategies in infinite games. In STACS.
1-13.

[24] W. Zielonka. 1998. Infinite games on finitely coloured graphs with applications
to automata on infinite trees. Theoretical Computer Science 200 (1998), 135-183.

[25] U.Zwick and M. Paterson. 1996. The complexity of mean-payoff games on graphs.
Theoretical Computer Science 158 (1996), 343-359.

[21

[22

	Abstract
	1 Introduction
	1.1 Mean-payoff parity games
	1.2 Related work
	1.3 Our contributions

	2 Strategy decompositions
	2.1 Preliminaries
	2.2 Strategy decompositions for Dis
	2.3 Strategy decompositions for Con
	2.4 Existence of strategy decompositions

	3 Mean-payoff parity progress measures
	3.1 The definition
	3.2 From progress measures to strategy decompositions
	3.3 From strategy decompositions to progress measures

	4 Computing progress measures by lifting
	5 From winning sets to strategy decompositions for Con
	6 Conclusion
	References

