FLOC 2018: FEDERATED LOGIC CONFERENCE 2018
ARQNL FULL PAPERS, DEMO PAPERS AND INVITED CONTRIBUTIONS: PAPERS WITH ABSTRACTS

Editors: Christoph Benzmüller and Jens Otten

Authors, Title and AbstractPaperTalk

ABSTRACT. Propositional logic is the main ingredient used to build up SAT solvers which have gradually become powerful tools to solve a variety of important and complicated problems such as planning, scheduling, and verifications. However further uses of these solvers are subject to the resulting complexity of transforming counting constraints into conjunctive normal form (CNF). This transformation leads, generally, to a substantial increase in the number of variables and clauses, due to the limitation of the expressive power of propositional logic. To overcome this drawback, this work extends the alphabet of propositional logic by including the natural numbers as a means of counting and adjusts the underlying language accordingly. The resulting representational formalism, called pseudo-propositional logic, can be viewed as a generalization of propositional logic where counting constraints are naturally formulated, and the generalized inference rules can be as easily applied and implemented as arithmetic.

Jul 18 15:00

ABSTRACT. Most theorem provers and proof assistants are written in imperative or functional programming languages. Recently, the claim that higher-order logic programming languages might be better suited for this task was revisited and a new interpreter, as well as new proof assistants based on it, were introduced. In this paper we follow these claims and describe a concise implementation of a prototype for a semi-automated proof assistant for first-order modal logic. The aim of this paper is to encourage the development of personal proof assistants and semi-automated provers for a variety of modal calculi.

Jul 18 11:30

ABSTRACT. We propose a connection-based characterization for multiplicative intuitionistic linear logic (MILL) which is based on labels and constraints that capture Urquhart's possible worlds semantics of the logic. We briefly recall the purely syntactic sequent calculus for MILL, which we call LMILL and then propose a sound and complete labelled sequent calculus GMILL for MILL. We then show how to translate every LMILL proof into a GMILL proof. From this translation, refining our results on BI (The logic of Bunched Implications), we show the soundness of the connection-based characterization and its completeness without the need for any notion of multiplicity.

Jul 18 12:00

ABSTRACT. We introduce labelled sequent calculi for quantified modal logics with non-rigid and and non-denoting terms. We prove that these calculi have the good structural properties of G3-style calculi. In particular, all rules are height-preserving invertible, weakening and contraction are height-preserving admissible and cut is admissible. Finally, we show that each calculus gives a proof-theoretic characterization of validity in the corresponding class of models.

Jul 18 11:00

ABSTRACT. The higher-order theorem prover Leo-III will be demonstrated.

Jul 18 16:30

ABSTRACT. Model checking is a technique for automatically assessing the quality of software and hardware systems and designs. Given a formalisation of both the system behaviour and the requirements the system should meet, a model checker returns either a yes or a no. In case the answer is not as expected, it is desirable to provide feedback to the user as to why this is the case. Providing such feedback, however, is not straightforward if the requirement is expressed in a highly expressive logic such as the modal $\mu$-calculus, and when the decision problem is solved using intermediate formalisms. In this paper, we show how to extract witnesses and counterexamples from parameterised Boolean equation systems encoding the model checking problem for the first-order modal $\mu$-calculus. We have implemented our technique in the modelling and analysis toolset mCRL2 and showcase our approach on a few illustrative examples.

Jul 18 10:00