
Evaluation of Equational Constraints for CAD in
SMT Solving

Rebecca Haehn, Gereon Kremer, and Erika Ábrahám

RWTH Aachen University, Germany

Abstract. The cylindrical algebraic decomposition algorithm is a quan-
tifier elimination method for real-algebraic formulae. We use it as a the-
ory solver in the context of satisfiability-modulo-theories (SMT) solving
to solve sequences of related real-algebraic satisfiability questions.
In this paper, we consider some optimizations for handling equational
constraints. We review some previously published ideas, in particular
Brown’s projection operator and some improvements suggested by Mc-
Callum. Then we discuss different variants of the restricted projection
operator to implement them in our SMT solver SMT-RAT and provide
experimental results on the SMT-LIB benchmark set QF NRA. We show
that the performance improves especially for unsatisfiable inputs.

1 Introduction

Solving the satisfiability (SAT) problem is an important sub-problem in many
applications, ranging from program analysis [GAB+17] to industrial configura-
tion management [Vol15] or the dependency management in Linux package man-
agers [ADCTZ11]. An extension to the regular SAT problem is the satisfiability-
modulo-theories (SMT) problem that allows for richer logics. While SAT only
allows for propositional formulae, SMT deals with quantifier-free first-order logic
formulae over one or more theories. One popular theory is the theory of (non-
linear) real arithmetic.

An SMT solver [BHvMW09,KS08] is traditionally separated into a SAT solv-
ing part – which makes use of a regular SAT solving engine – and a theory solving
part. The SAT solving part deals with the logical structure of the formula and is-
sues theory queries to the theory solving part. The theory solving module checks
sets of theory constraints for consistency.

A number of theory solving modules for non-linear real arithmetic have
been proposed, including incomplete algorithms like interval constraint prop-
agation [GGI+10,HR97] or virtual substitution [Wei97]. In this paper, we deal
with the cylindrical algebraic decomposition (CAD) method [Col75] which is, to
the best of our knowledge, the only complete decision procedure for non-linear
real arithmetic implemented in any SMT solver.

Given a set (conjunction) of real-algebraic input constraints and an ordering
of the variables, the CAD method proceeds in two phases. It first uses a projection
operator to produce a sequence of sets of polynomials of decreasing dimension.

The sets of real roots of these polynomials can be used to construct the borders
of finitely many semi-algebraic sets that we call cells. The points in each of the
cells are equivalent regarding the satisfaction of the input formula. In the second
phase, samples are constructed dimensionwise for each of the cells. Thus to
decide satisfiability it is sufficient to check whether any of the generated samples
satisfies the formula.

A number of different projection operators exist, most notably the ones due
to Collins [Col75], Hong [Hon90], Lazard [Laz94,MPP17], McCallum [McC85],
and Brown [Bro01]. They use the same ingredients and mainly differ in the size
of the sets of polynomials, essentially representing the continuing research in
this area. It should be noted that the projection operators due to McCallum and
Brown are incomplete in the sense that they may not generate some polynomials
that are needed to find satisfying solutions. Past studies [VKÁ17] have shown,
however, that this incompleteness does not surface on the SMT-LIB [BFT16]
benchmarks.

In addition to the different projection operators, several modifications have
been proposed to reduce the number of polynomials in certain cases. One par-
ticular modification that we analyse in this paper makes use of equational con-
straints. If equations are present in the input, they can be used to reduce the
work for the projection.

In this paper, we present several possibilities to exploit the fundamental idea,
in particular different variants of the restricted projection operator suggested by
McCallum [McC01] in combination with Brown’s projection operator [Bro01].
Then we discuss their impact on a CAD implementation used in the context of
SMT solving in the SMT solver SMT-RAT and review some experimental results
on the benchmark set QF NRA provided by SMT-LIB. Some of the presented
optimizations are proven to be sound while others might lead to incompleteness.
However, similar to the projection operators that are incomplete in general, none
of our optimizations yielded incorrect satisfiability results in our experiments.

After presenting some preliminaries in Section 2 we discuss the optimizations
that we have implemented for the CAD projection phase in Section 3. In Section
4 we present and discuss our experimental results and conclude the paper in
Section 5.

2 Preliminaries

2.1 SMT Solving

SMT solvers [BHvMW09,KS08] are used to decide the satisfiability of first-order
logic formulae over one or more underlying theories. Traditionally, an SMT solver
consists of a SAT solver and one or more theory solving modules. The SAT solver
deals with the logical structure of the input formula by iteratively searching for
solutions for its Boolean skeleton, which is the propositional logic formula ob-
tained by replacing the theory constraints in the formula with fresh Boolean
propositions. During this search, the theory solving modules are used to check

Boolean abstraction

SAT solver

Theory

solver(s)

constraints

(SAT+model) or

(UNSAT+explanation) or

(UNKNOWN)

input

CNF formula

SAT/UNSAT

Fig. 1: The SMT solving framework [VKÁ17]

whether the current Boolean assignment is consistent with the theories. There-
fore they check the consistency of a set of theory constraints, which contains
all theory constraints whose corresponding proposition in the Boolean skeleton
is assigned true and that appear non-negated in the formula, as well as those
whose proposition is assigned false and that appear negated.

The above described so-called lazy SMT solving approach is illustrated in
Figure 1. The frequency of theory checks varies in different approaches, in the
full lazy approach they are only executed for full Boolean solutions, while in
the less lazy approach they are already executed for partial solutions. If the
theory constraints are conflicting then the theory solving module returns an
explanation for the conflict and the SAT solver searches for a different Boolean
solution informed by the explanation. In case the constraints are consistent in the
theory, the Boolean assignment is either not yet complete, then the SAT solver
continues its search; or it is complete, which means that a satisfying solution is
found.

2.2 The CAD Method

The CAD method [Col75] can be used as a theory solving module for the theory
of (non-linear) real arithmetic. It works with respect to a fixed, static variable
ordering that we assume to be given.

Polynomials p ∈ Z[x1, ..., xn] with integer coefficients over variables x1, . . . , xn

are expressions of the form p =
∑m

i=1 ai
∏n

j=1 x
eij
j with coefficients ai ∈ Z and

exponents ei,j ∈ N0 for all i = 1, . . . ,m and j = 1, . . . , n. The products
∏n

j=1 x
eij
j

are called monomials. If n = 1 then p is called univariate, otherwise multivari-
ate. Multivariate polynomials in Z[x1, ..., xn] are usually interpreted as univari-
ate polynomials in xn with polynomial coefficients from Z[x1, ..., xn−1], i.e., as
polynomials from Z[x1, ..., xn−1][xn].

Polynomial constraints have the form p � 0, where p is a polynomial in
Z[x1, . . . , xn] and where � is one of the comparison predicates <, ≤, =, 6=, ≥, >.
The sign of a polynomial p ∈ Z[x1, ..., xn] in a point r ∈ Rn is defined as −1 if
p evaluates in r to a strictly negative value, 1 for a strictly positive value, and 0
otherwise. To decide whether p � 0 evaluates to true for a point r, it is sufficient
to determine the sign of p under r, since p is compared to zero. If the sign of p is

the same under all points from a set C ⊆ Rn then C is called p-sign-invariant ;
in this case it suffices to determine the sign of p for a single point in the set to
evaluate the constraint for all points in the set. Thus the satisfiability of p can
be determined if we can construct a finite partition C = {C1, . . . , Cm} of Rn into
finitely many p-sign-invariant cells Ci, which we call a decomposition.

A decomposition C = {C1, . . . , Cm} is called Pn-sign-invariant for a set Pn

of polynomials if it is p-sign-invariant for each polynomial from Pn. It is fur-
thermore called algebraic if each Ci ∈ C is a connected semi-algebraic1 set. Such
a decomposition can be determined by the roots of the polynomials in Pn. It
is additionally cylindrical when the cells are cylindrically ordered, which means
that for each Ci, Cj ∈ C and each 1 ≤ k < n the projections of Ci and Cj to
Rn−k (by removing the last k coordinates) are either disjoint or identical.

For a set Pn of polynomials, a Pn-sign-invariant cylindrical algebraic de-
composition (CAD) of Rn as described above can be computed using the CAD
method. Though in general CAD works on real arithmetic formulae, in this pa-
per we consider only sets of polynomial constraints as input, as we use the CAD
method as an SMT theory solving module. The considered set Pn contains all
polynomials of the input constraints.

The CAD method computes the CAD in two phases: the projection phase
and the lifting phase. In the projection phase the polynomials that describe the
boundaries of the CAD cells are computed using a projection operator. The pro-
jection operator is applied to the polynomials in Pn ⊆ Z[x1, . . . , xn] to compute
a set Pn−1 ⊆ Z[x1, . . . , xn−1] of polynomials, for which a CAD is computed re-
cursively. The projection operator has the important property that each CAD
Cn−1 for Pn−1 can be extended to a CAD Cn for Pn in an easy way by defining
the cells of Cn to be the Pn-sign-invariant regions in the cylinders C ′i × R for
each cell C ′i ∈ Cn−1.

There are several possible projection operators, in this paper, Brown’s pro-
jection operator [Bro01] is used since compared to other operators it is faster
and fewer polynomials have to be computed [VKÁ17]. In the following the prop-
erties degree deg(p), and leading coefficient lcf(p) of a polynomial p are used
with the usual meaning. To define Brown’s projection operator in addition the
Sylvester matrix of univariate polynomials p =

∑k
i=0 aix

i
n and q =

∑l
i=0 bix

i
n

in xn with polynomial coefficients ai, bi ∈ Z[x1, . . . , xn−1], deg(p) = k ≥ 1, and

1 A set C ⊆ Rn that can be described by a conjunction of polynomial constraints is
called semi-algebraic.

deg(q) = l ≥ 1, which is the following (k+l)×(k+l)-matrix, needs to be defined.

Sylxn
(p, q) :=

ak · · · a0 · · · 0

ak · · · a0
...

...
. . .

. . .

0 · · · ak · · · a0
bl · · · b0 · · · 0

bl · · · b0
...

...
. . .

. . .

0 · · · bl . . . b0

 l

 k

Furthermore is the resultant of p and q defined as res(p, q) = det(Sylxn
(p, q)), the

discriminant of p as disc(p) = det(Sylxn
(p, p′)), and the content of p as cont(p) =

gcd(a0, ..., ak), where gcd is the greatest common divisor. Finally Brown’s pro-
jection operator Proj itself is defined as follows: Let P ′n = {p′1, . . . , p′m} be the
finest square-free basis of Pn.

Proj(Pn) = Pn−1 = {lcf(pi), disc(pi), res(pi, pj) | pi, pj ∈ P ′n, i 6= j}
∪ {cont(pi)|pi ∈ Pn and cont(pi) is non-zero, non-unit}
⊂ Z[x1, ..., xn−1]

Instead of polynomial sets, individual polynomials can be projected incre-
mentally [CKJ+15]. The CAD itself is then modified accordingly in an also
incremental lifting phase. This way the polynomials can be added and removed
individually one after another. That enables to reuse large parts of previously
computed CADs instead of recomputing them, which is useful since many similar
CAD computations are needed when using the CAD method as a theory solving
module in a less lazy SMT solver. This is due to the SAT solver that adds and
removes only a few constraints while usually most constraints remain the same.

Given a Pn-sign-invariant CAD it suffices to consider one sample point from
each cell to check whether any point in the cell satisfies the input constraints.
These sample points are computed in the lifting phase. Since the CAD method
is used to check whether a set of polynomial constraints is consistent, which is
the case if we can assign a real value to each of the variables occurring in the set
such that each constraint evaluates to true, it is also sufficient to compute only
a partial CAD and stop the computation if a satisfying point is found [CH91].

3 Modification of the CAD Projection

When we construct a CAD for the purpose of theory solving in an SMT solver,
we do not need the CAD to be sign-invariant on the input polynomials, instead
we are content if every cell is invariant with respect to the evaluations of the
constraints. We call a CAD truth-invariant if the truth value of every input
constraint is constant on each cell.

Additionally, we can exploit the fact that we only use the CAD method as a
theory solving module, which means that it is only used to check the consistency
of sets of constraints instead or arbitrary Boolean combinations of constraints.
This implies that a part of the solution space where a single constraint evaluates
to false can be discarded as a whole, even if other constraints are not sign-
invariant on this area. This part of the solution space may be more than a single
cell of the CAD and we can try to avoid constructing individual cells within this
part of the solution space altogether.

In order to exploit this, we consider modifications of the projection operators
based on equational constraints [McC99]. These are all constraints of the form
p = 0, where p is a polynomial as defined above, which we call an equational
constraint polynomial, since we only consider conjunctions of constraints as in-
put for the CAD method. Technically, McCallum suggested different ways to
construct CADs that are sign-invariant with respect to equational constraints
and sign-invariant with respect to the other constraints only in the cells where
the equational constraints evaluate to true. Of course, this is only possible if
equational constraints are present in the set of input constraints.

The advantage of these modifications is that we can use a coarser CAD using
fewer polynomials in the projection phase that still answers our question. This
CAD may consider fewer polynomials in the projection phase which leads to
a smaller number of sample points in the lifting phase and eventually a fewer
number of cells. Therefore we expect the modified method to scale better on
larger inputs in the presence of equational constraints.

We note that we compute partial CADs, i.e., we let the CAD method termi-
nate if a satisfying sample is found, and thus a full CAD is usually only computed
on unsatisfiable inputs. We also observe that many satisfiable SMT problems do
not produce a lot of unsatisfiable theory calls since most examples in the used
benchmark set have little Boolean structure and large Boolean satisfying regions,
therefore we expect the impact of this modification to be beneficial mainly on
unsatisfiable inputs. Furthermore, the lifting phase may even profit if more poly-
nomials are present that are comparably easy – for example with small degrees
– in the projection as they may lead to a satisfying sample without considering
hard polynomials at all. In such a case these modifications may actually hinder
the lifting phase and slow down our solver.

3.1 Restricted Projection

The first modification suggested by McCallum is to restrict the projection oper-
ator that is applied in the first step of the projection phase [McC99]. Afterwards,
we continue with the original projection operator.

McCallum suggested this approach for his projection operator, however, it
can be applied in combination with projection operators other than his own
as well. We use this restricted projection with the projection operator due to
Brown [Bro01].

For a finite set of constraints with polynomials Pn ⊂ Z[x1, ..., xn] let E ⊆ Pn

a set of one polynomial which appears in an equational constraint and contains

the variable xn that is to be eliminated first. The restricted projection of Pn

relative to E is defined as follows:

ProjE(Pn) = Proj(E′) ∪ {res(e, p) | e ∈ E′, p ∈ P ′n, p /∈ E′}
∪ {cont(pi) | pi ∈ Pn and cont(pi) is non-zero, non-unit}

= {lcf(e), disc(e) | e ∈ E′} ∪ {res(e, p) | e ∈ E′, p ∈ P ′n, p /∈ E′}
∪ {cont(pi) | pi ∈ Pn and cont(pi) is non-zero, non-unit}
⊂ Z[x1, ..., xn−1]

with the primitive part of a set of polynomials P defined as prim(P) = {p/cont(p)
|p ∈ P and p/cont(p) is not constant} and the finest square-free basis P ′n for
prim(Pn) and the finest square-free basis E′ for prim(E). Note that we may
only be able to apply this restricted projection operator under an appropriate
variable ordering as xn must be present in the equational constraint.

When using this restricted projection operator instead of the original pro-
jection operator less leading coefficients, discriminants, and resultants are added
to the projection. This may reduce the size of the projection significantly which
we hope to be beneficial for the overall performance. As mentioned before, the
removal of comparably easy polynomials (in particular leading coefficients) may
also be a disadvantage for satisfiable sets of constraints, though. We neverthe-
less hope a partial CAD using this modified projection operator to be faster on
average.

The result when applying this approach is a CAD that is sign-invariant with
respect to the used equational constraint and sign-invariant with respect to the
other constraints in those cells where the equational constraint is satisfied. Mc-
Callum gave a proof that validates the use of ProjE in the first projection step
in [McC99], as well as in both steps for a 3-dimensional CAD.

In our implementation, we apply ProjE on all levels – provided that ap-
propriate equational constraints are part of the input. Though doing so is not
formally proven to be sound, we base our application on the following argument:
the places where the proof fails are statistically rare so in the context of solving
many problems quickly we accept the risk.

3.2 Semi-Restricted Projection

Another modification suggested by McCallum is the semi-restricted projection
operator [McC01], for which the repeated application is formally validated, wher-
ever it is applicable throughout the projection phase. For sets of polynomials
Pn ⊂ Z[x1, ..., xn] and E = {e} ⊂ Pn, where e is an equational constraint poly-
nomial that contains the variable xn, the semi-restricted projection of Pn relative
to E is defined as follows:

Proj∗E(Pn) = ProjE(Pn) ∪ {disc(p)|p ∈ P ′n, p /∈ E′}
⊂ Z[x1, ..., xn−1]

with the finest square-free basis P ′n for prim(Pn) and the finest square-free basis
E′ for prim(E).

McCallum has shown that this operator can be used whenever applicable and
that alternatively the restricted projection operator ProjE can be used for the
first step and the last step in the projection phase, and the semi-restricted pro-
jection operator Proj∗E in every other step [McC01]. For the latter combination
a detailed complexity analysis can be found in [EBD15,ED16]. This allows using
equational constraint polynomials at every projection step where one is present
to reduce the size of the projection. Note that if the underlying projection oper-
ator is incomplete (like McCallum’s or Brown’s) then the restricted projection
operator is also incomplete.

3.3 The Resultant Rule

McCallum proposed a method called the resultant rule [McC01] to exploit the
semi-restricted projection even if no explicit equational constraint is present for
a specific level. If e1 and e2 are both equational constraint polynomials their
resultant res(e1, e2) is a propagated equational constraint polynomial, since e1 =
0 ∧ e2 = 0 ⇒ res(e1, e2) = 0. Due to this rule more polynomials in the
projection are classified as equational constraint polynomials.

This method was only proposed for the semi-restricted projection, as the re-
stricted projection was defined for the top level only. Given that we assume the
restricted projection to be usable on all levels as well, we could also use the resul-
tant rule when we apply the restricted projection multiple times. Currently, we
do not use this rule in our implementation. The reasons are specific requirements
for the underlying data structures, causing challenges for the implementation.
Intuitively, a polynomial can be part of the projection due to several reasons.
In the incremental setting, we would need to keep track of all possible reasons
and apply postponed projection steps if e.g. an equational constraint is removed
from the input set.

3.4 Bounds

A different approach to modify the projection uses bounds. Bounds are polyno-
mial constraints of the form b · x + a � 0, with a, b ∈ Z, � ∈ {<, ≤, ≥, >}
and a variable x. They can be used to neglect some polynomials in the pro-
jection, namely those that are for all permitted values of their variables either
always positive or always negative since these have no roots and are therefore
not needed to determine the CAD. For polynomials that can be neglected due
to bounds no successors (leading coefficient, discriminant, and resultants) need
to be computed. This approach is described in more detail in [LSC+13].

4 Experimental Results

We implemented several of the modifications described in the previous section as
part of the CAD module in our SMT solver SMT-RAT [CKJ+15]. These imple-

mentations are included in the publicly available version. To evaluate them we
examine different combinations of the restricted and semi-restricted projection,
as well as the simplification using bounds. We consider the following strategies:
B uses only bounds to simplify the projection while R uses the restricted pro-
jection operator for as many as possible consecutive steps, starting at the first
step. BR combines these two modifications. BRI extends it by allowing for an
interruption of the restricted projection in the sense that it may be applied even
when it is not applied in the step before. BSI employs the semi-restricted pro-
jection operator instead of the restricted one, otherwise, there is no difference to
BRI.

For comparison we use Default that is the standard CAD based strategy in
SMT-RAT. It uses a – supposedly less powerful – variant of the simplification
based on bounds, but no optimizations using equational constraints. The modi-
fications added to the regular CAD computations in the strategies B, BSI, and
Default are provably sound, while for the other strategies no formal soundness
proofs are provided yet. Additionally, all strategies are based on the projection
operator due to Brown [Bro01] which is incomplete on certain inputs.

As benchmark problems we use the QF NRA benchmark set from the SMT-
LIB [BFT16] which consists of 12084 problems from 10 different applications.
We used a time limit of 30 seconds per problem instance and allowed at most 4
GB of memory for every solver strategy and every input problem. The possible
outcomes of a solving run are sat, unsat, timeout or memout. For sat and unsat
the problem was solved correctly and is satisfiable respectively unsatisfiable. For
timeout and memout the solver was unable to find a solution or determine
unsatisfiability within the given time and memory limit.

We did not find incorrect results for any of the solvers on any input problem,
despite the incompleteness of the projection operator used. For the projection
operator due to Brown inputs that actually lead to incorrect results are known,
but past experiments [VKÁ17] already showed that this benchmark set does not
contain such examples.

Strategy sat unsat timeout memout

Default 4743 3939 3259 143

B 4764 3951 3225 144

R 4744 3962 3236 142

BR 4750 3964 3228 142

BRI 4752 4039 3151 142

BSI 4752 4038 3152 142

Table 1: Overall solver performances

The overall performance of each strategy is shown in Table 1. As expected
all modified strategies solve more problems than Default and the improvements
are mostly arising on unsatisfiable inputs. We assume that the reason is that the

solver can only take advantage of the modifications when a full CAD is computed
since in that case fewer polynomials are needed. A full CAD is computed on
an unsatisfiable problem to detect a theory conflict, which should occur more
often for unsatisfiable problems. Satisfiable instances, on the other hand, are
usually solved with only a fraction of the projection computed. We examine the
number of solved problems for which theory conflicts occurred in Table 2. Most
satisfiable problems can be solved without a single theory conflict. Also, most
of the problems that could be solved additionally are problems where a theory
conflict occurs.

Strategy overall thereof sat thereof unsat

Default 3798 396 3402

B 3823 408 3415

R 3828 402 3426

BR 3835 407 3428

BRI 3912 409 3503

BSI 3911 409 3502

Table 2: Numbers of problems where a theory conflict occurred

The strategy B was the best on satisfiable problems, but also the one with
the least improvement on unsatisfiable problems. The pruning of polynomials
due to bounds reduces the size of the projection but essentially does not change
the lifting phase as the removed polynomials provide no new samples anyway.
The restricted projection operator further decreases the size of the projection but
also removes samples from the lifting phase. As the restricted projection tends
to remove polynomials of smaller degrees, this may actually be detrimental for
the lifting phase and thus for satisfiable instances. We note that in practice there
seems to be no significant impact of using the restricted projection on satisfiable
instances.

The strategies BRI and BSI achieve the best results overall. Allow for inter-
ruptions in between the application of the (semi-)restricted projection operator
improves the solver’s performance on unsatisfiable problems significantly com-
pared to the other variants. At least on this set of benchmarks, the differences
between the restricted or semi-restricted projection are negligible.

Next, we take a closer look at the running times of the different strategies,
based on the 8657 input problems that could be solved by all strategies. The
results for the average running times are collected in Table 3. Compared to De-
fault the simplifications by using bounds and the restricted projection operator
do speed up the computations significantly. The best average running time has
the strategy BSI, closely followed by BRI. This directly reflects the superior
overall result of these two strategies.

Last we take a look at the memouts, as we can see that none of the modi-
fications significantly changes the number of memouts. One would expect that

Strategy running time in ms for sat for unsat

Default 705 108 1422

B 675 98 1368

R 683 113 1369

BR 673 101 1361

BRI 649 101 1308

BSI 649 101 1307

Table 3: Average running times

significantly reducing the size of the projections would mitigate memory issues.
However, the modified strategies, in contrast to Default, never actually remove
polynomials but merely deactivate them. This causes the solver to consume more
memory which leads to more memouts. It is possible to delete these polynomials
instead of deactivating them when using the modified strategies as well. How-
ever, we do not expect that to significantly improve the overall performance since
this is only relevant for large problems that are often hard to solve anyway and
are therefore likely to just result in a timeout instead. This gets even more likely
due to the fact that deleted polynomials might have to be recomputed later.

We examined this by means of the BRI strategy and implemented the cor-
responding strategy with the deletion of polynomials, in the following referred
to as BRID. In Table 4 the results for these two strategies are compared and
they are indeed relatively similar. As expected more timeouts occur when using
BRID, while in BRI one more memout occurs. Thus we observe that deleting
polynomials even decreases the overall solver performance though the average
running time on the problems solved by all strategies is nearly the same for both
variants.

Strategy sat unsat timeout memout

BRI 4751 4039 3151 142

BRID 4736 4032 3175 141

Table 4: Comparison of deactivation and deletion

5 Conclusion

We examined the impact of restricted projection operators as proposed by Mc-
Callum in the CAD method on the performance of an SMT solver. After pre-
senting several variants on how to use these in an actual implementation, we
provided some experimental results for the implemented modifications. We can
show that the performance improved especially for unsatisfiable inputs when the
restricted or semi-restricted projection operators are used instead of the original

one. It, however, made no noticeable difference whether the restricted or the
semi-restricted projection operator was used, though the repeated application is
currently only validated for the semi-restricted operator.

We further investigated the difference of either deleting polynomials from
the projection or only disabling them in the incremental setting during SMT
solving. Though one could hope for a decreased memory consumption when
deleting polynomials, this change did not make a significant difference.

Our ideas for future investigation concerning equational constraints mainly
deal with making the best possible use of the restricted projection operator by
applying this idea in as many levels as possible. One direction would be the use
of the resultant rule [McC01] that allows propagating equational constraints.
Another option would be the modification of the variable ordering heuristic
depending on the equations that are present in the input. It would also be in-
teresting to investigate whether a heuristic for the choice of which equational
constraint to use for the restricted projection operator can be found. Currently
we are using the equational constraint that is added first, however, the number
of cells in the resulting CAD depends on the designated equational constraint
as shown in [EBD15]. In that paper is furthermore shown how equational con-
straints can be used to make additional savings in the lifting phase, which could
also be implemented in SMT-RAT.

References

[ADCTZ11] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli,
MPM : A modular package manager, 14th International ACM SIGSOFT
Symposium on Component Based Software Engineering (CBSE-2011)
(Boulder, CO, United States) (Ivica Crnkovic, Judith A. Stafford, An-
tonia Bertolino, and Kendra M. L. Cooper, eds.), Proceedings of the
14th International ACM Sigsoft Symposium on Component Based Soft-
ware Engineering, CBSE 2011, part of Comparch ’11 Federated Events
on Component-Based Software Engineering and Software Architecture,
ACM, ACM, 2011, pp. 179–187.

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli, The satisfiability mod-
ulo theories library (SMT-LIB), www.SMT-LIB.org, 2016.

[BHvMW09] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, Hand-
book of satisfiability, Frontiers in Artificial Intelligence and Applications,
vol. 185, IOS Press, 2009.

[Bro01] Christopher W. Brown, Improved projection for cylindrical algebraic de-
composition, Journal of Symbolic Computation 32 (2001), no. 5, 447–465.

[CH91] George E. Collins and Hoon Hong, Partial cylindrical algebraic decom-
position for quantifier elimination, Journal of Symbolic Computation 12
(1991), no. 30, 299 – 328.

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Ábrahám, SMT-RAT: An open source C++ toolbox for strategic and
parallel SMT solving, Proceedings of SAT’15, LNCS, vol. 9340, Springer,
2015, pp. 360–368.

[Col75] George E. Collins, Quantifier elimination for real closed fields by cylin-
drical algebraic decomposition, Automata Theory and Formal Languages,
LNCS, vol. 33, Springer, 1975, pp. 134–183.

[EBD15] Matthew England, Russell Bradford, and James H. Davenport, Improving
the use of equational constraints in cylindrical algebraic decomposition,
Proceedings of the 2015 ACM on International Symposium on Symbolic
and Algebraic Computation (New York, NY, USA), ISSAC ’15, ACM,
2015, pp. 165–172.

[ED16] Matthew England and James H. Davenport, The complexity of cylindri-
cal algebraic decomposition with respect to polynomial degree, Computer
Algebra in Scientific Computing (Cham) (Vladimir P. Gerdt, Wolfram
Koepf, Werner M. Seiler, and Evgenii V. Vorozhtsov, eds.), Springer In-
ternational Publishing, 2016, pp. 172–192.

[GAB+17] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes,
Florian Frohn, Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Plücker,
Peter Schneider-Kamp, Thomas Ströder, Stephanie Swiderski, and René
Thiemann, Analyzing program termination and complexity automatically
with AProVE, Journal of Automated Reasoning 58 (2017), no. 1, 3–31.

[GGI+10] Sicun Gao, Malay Ganai, Franjo Ivančić, Aarti Gupta, Sriram Sankara-
narayanan, and Edmund M. Clarke, Integrating ICP and LRA solvers for
deciding nonlinear real arithmetic problems, Proceedings of FMCAD’10,
IEEE, 2010, pp. 81–90.

[Hon90] Hoon Hong, An improvement of the projection operator in cylindrical al-
gebraic decomposition, ISSAC ’90 Proceedings of the International Sym-
posium on Symbolic and Algebraic Computation (1990), 261–264.

[HR97] Stefan Herbort and Dietmar Ratz, Improving the efficiency of a nonlinear-
system-solver using a componentwise Newton method, Tech. Report
2/1997, Inst. für Angewandte Mathematik, University of Karlsruhe, 1997.

[KS08] Daniel Kroening and Ofer Strichman, Decision procedures: An algorithmic
point of view, Springer, 2008.

[Laz94] Daniel Lazard, An improved projection for cylindrical algebraic decom-
position, Algebraic Geometry and its Applications: Collections of Papers
from Shreeram S. Abhyankar’s 60th Birthday Conference (Chandrajit L.
Bajaj, ed.), Springer New York, New York, NY, 1994, pp. 467–476.

[LSC+13] Ulrich Loup, Karsten Scheibler, Florian Corzilius, Erika Ábrahám, and
Bernd Becker, A symbiosis of interval constraint propagation and cylin-
drical algebraic decomposition, Proceedings of CADE-24, LNCS, vol. 7898,
Springer, 2013, pp. 193–207.

[McC85] Scott McCallum, An improved projection operation for cylindrical alge-
braic decomposition, Tech. report, University of Wisconsin Madison, 1985.

[McC99] , On projection in CAD-based quantifier elimination with equa-
tional constraint, Proceedings of the 1999 International Symposium on
Symbolic and Algebraic Computation, ACM, 1999, pp. 145–149.

[McC01] , On propagation of equational constraints in CAD-based quan-
tifier elimination, Proceedings of the 2001 International Symposium on
Symbolic and Algebraic Computation, ACM, 2001, pp. 223–231.

[MPP17] Scott McCallum, Adam Parusiski, and Laurentiu Paunescu, Validity proof
of Lazard’s method for CAD construction, Journal of Symbolic Compu-
tation (2017).

[VKÁ17] Tarik Viehmann, Gereon Kremer, and Erika Ábrahám, Comparing dif-
ferent projection operators in the cylindrical algebraic decomposition for
SMT solving, Proceedings of the 2nd International Workshop on Satisfi-
ability Checking and Symbolic Computation, CEUR Workshop Proceed-
ings, vol. 1974, CEUR-WS.org, 2017.

[Vol15] Matthias Volk, Using SAT solvers for industrial combinatorial problems,
Master’s thesis, RWTH Aachen University, Germany, Aachen, 2015.

[Wei97] Volker Weispfenning, Quantifier elimination for real algebra - the
quadratic case and beyond, Applicable Algebra in Engineering, Commu-
nication, and Computing 8 (1997), no. 2, 85–101.

