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Proof nets provide permutation-independent representations of proofs and are used to in-
vestigate coherence problems for monoidal categories. We investigate a coherence problem
concerning Second Order Multiplicative Linear Logic MLL2, that is, the one of character-
izing the equivalence over proofs generated by the interpretation of quantifiers by means of
ends and coends.

By adapting the “rewiring approach” used in the proof net characterization of the free
∗-autonomous category, we provide a compact representation of proof nets for a fragment
of MLL2 related to the Yoneda isomorphism. We prove that the equivalence generated by
coends over proofs in this fragment is fully characterized by the rewiring equivalence over
proof nets.

1 Introduction

Proof nets are usually investigated as canonical representants of proofs. For the proof-theorist,
the adjective “canonical” indicates a representation of proofs insensitive to admissible permu-
tations of rules; for the category-theorist, it indicates a faithful representation of arrows in free
monoidal categories (typically, ∗-autonomous categories), by which coherence results can be
obtained.

This twofold approach has been developed extensively in the case of Multiplicative Linear
Logic (see for instance [4, 5]). The use of MLL proof nets to investigate coherence problems
relies on the correspondence between proof nets and a particular class of dinatural transforma-
tions1 (see [4]). As dinatural transformations provide a well-known interpretation of parametric
polymorphism (see [1, 14]), it is natural to consider the extension of this correspondence to sec-
ond order Multiplicative Linear Logic MLL2. This means investigating the “coherence problem”
generated by the interpretation of quantifiers as ends/coends, that is, to look for a faithful proof
net representation of coends within a ∗-autonomous category.

The main difficulty of this extension is that, as is well-known, dinaturality does not scale to
second order (e.g. System F , see [24]): the dinatural interpretation of proofs generates an equiv-
alence over proofs which strictly extends the equivalence generated by β and η conversions.
In particular, coends induce “generalized permutations” of rules ([33]) to which neither System
F proofs nor standard proof nets for MLL2 are insensitive. For instance, the interpretation of
quantifiers as ends/coends (whose definition is recalled in appendix A) equates the distinct Sys-
tem F derivations in fig. 1a as well as the distinct proof nets in fig. 1b. From these examples

1Extranatural transformations form a special class of dinatural transformations for which the composition prob-
lem has been investigated in detail ([6]).
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Figure 1

it can be seen that such generalized permutations do not preserve the witnesses of existential
quantification (or, equivalently, of the elimination of universal quantification).

Several well-known failures in the System F representation of categorial structures can be re-
lated to this phenomenon: (1) the failure of the “Yoneda isomorphism” ∀X((A(X)(B[X ]))'
B[A] as an isomorphism of types; (2) the failure of universality for the “Russell-Prawitz” trans-
lation of connectives (e.g. the failure of the isomorphism A⊗B ' ∀X((A( B( X)( X));
(3) the failure of initiality for the System F representation of initial algebras. In all such cases,
the failure is solved by considering proofs modulo the equivalence induced by dinaturality (see
[31, 15]).

Some a priori limitations to the proof net representation of quantifiers as ends and coends can
be deduced from the fact that, by the “Yoneda isomorphism” ∀X(X ( X) ' 1, it must include
a faithful representation of multiplicative units. Now, it is well-known that no canonical repre-
sentation of MLL with multiplicative units can have both a tractable correctness criterion and a
tractable translation from sequent calculus ([16]). However, in usual approaches to multiplica-
tive units proof nets are considered modulo an equivalence relation called rewiring ([34, 5, 20]),
which provides a partial solution to this problem. The “rewiring approach” ([20]) allows to cir-
cumvent the complexity of checking arrows equivalence in the free ∗-autonomous category by
isolating the complex part into a geometrically intuitive equivalence relation.

In this paper we adapt the rewiring approach to define a compact representation of proof
nets (called ∃-linkings) for the fragment of MLL2 involved in (1) and (2). More precisely, we
consider the system MLL2Y , in which quantification ∀XA is restricted to “Yoneda formulas”, i.e.
formulas of the form (

⊗n
i Ci( X)(D[X ]. This fragment contains the multiplicative “Russell-

Prawitz” formulas as well as the translation of multiplicative units. The approach presented is
related to the rewiring approach in the sense that, when restricted to the translation of units,
∃-linkings are equivalent to the “lax linkings” in [20].

Our main result is that the equivalence over proofs generated by coends coincides exactly
with the rewiring equivalence over ∃-linkings. More precisely, we define an equivalence'ε over
standard MLL2 proof nets, where two proof nets are equivalent when their dinatural interpreta-
tions coincide, and we show that, within the fragment MLL2Y , π 'ε π ′ holds iff the associated
∃-linkings `π and `π ′ are equivalent up to rewiring. These results imply that ∃-linkings form a
∗-autonomous category in which ∀X(X ( X) is the tensor unit and provide a faithful represen-
tation of coends.
∃-linkings solve failures (1) and (2): the “Yoneda isomorphism” is an isomorphism of ∃-

linkings, up to rewiring, and the “Russell-Prawitz” isomorphisms like A⊗B ' ∀X((A( B(
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X)(X) are consequences of Yoneda. Failure (3) falls outside the scope of the fragment MLLY ,
as the latter does not include the formulas involved in the usual System F representation of initial
algebras. However, following the ideas in [35], a generalization of the approach here presented
might yield similar results for the representation of initial algebras.

Related work Dinaturality is a well-investigated property of System F and is usually related
to parametric polymorphism (see [1, 31]). The connections between dinaturality, coherence and
proof nets are well-investigated in the case of MLL, with or without units ([3, 4, 5, 22, 20, 17,
28, 18]). An extensive literature exists on coends in monoidal categories (see [25] for a survey).
String diagram representations of some coends can be found in the literature on Hopf algebras
and their application to quantum field theory ([21, 10]). Such coends are all of the restricted form
considered in this paper and their representation seems comparable to the one here proposed. A
different approach to quantifiers as ends/coends over a symmetric monoidal closed category
appears in [29], through a bifibrational reformulation of the Lawvere’s presheaf hyperdoctrine
in the 2-category of distributors. It might be interesting to relate this approach with ours.

The universality problem for the “Russell-Prawitz” translation is related to the instantiation
overflow property ([9]), by which one can transform the System F proofs obtained by this trans-
lation into proofs in Fat or atomic System F , which have the desired properties (see [8]). In
[30] is shown that the atomized proofs are equivalent to the original ones modulo dinaturality.
∃-linkings provide a very simple approach to instantiation overflow, as the transformation from
F to Fat consists in a unique rewiring.

The representation of proof nets here adopted is inspired from results on MLL with units
([34, 5, 20]) and on MLL1 ([19]). Proof nets for first-order and second order quantifers were first
conceived by means of boxes ([11]). Later, Girard proposed two distinct boxes-free formalisms
(in [12, 13] for MLL1 but extendable to MLL2, see [7]), the second of which is referred here
as “Girard nets”. Different refinements of proof nets for MLL1 and MLL2 have been proposed
([27, 19] for MLL1 and [32] for MLL2) to investigate variable dependency issues related to
Herbrand theorem and unification, which are not considered here.

2 Preliminaries

We let L 2 be the language generated by a countable set of variables X ,Y,Z, · · · ∈ Var and their
negations X⊥,Y⊥,Z⊥, . . . and the connectives⊗,`,∀,∃. Negation is obviously extended into an
equivalence relation over formulas. By sequents Γ,∆, . . . we indicate finite multisets of formulas.
A sequent Γ is clean when no variable occurs both free and bound in Γ and any variable in Γ is
bound by at most one ∀ or ∃ connective.

By MLL2 we indicate the standard sequent calculus over L 2. [13] describes proof nets
for first-order MLL. Both the description of proof structures and the correctness criterion can
be straightforwardly turned into a definition of proof nets for MLL2 (see for instance [7]). We
indicate the latter as Girard proof structures and Girard nets (shortly, G-proof structures and
G-nets2). We let G indicate the category of G-nets, whose objects are the types of MLL2 and

2In [13] the definition of proof structures is based on two conditions: (1) that any ∀ link has a distinct eigenvariable
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where G(A,B) is the set of cut-free G-nets of conclusions A⊥,B (with composition given by
cut-elimination).

We introduce Yoneda formulas:

Definition 1 (Yoneda formula). Given a variable X ∈ Var and a formula A ∈L 2, A is Yoneda
in X (resp. co-Yoneda in X) if A (resp. A⊥) is of the form (

⊗n
i Ci⊗X⊥)`D[X ]3, where X does

not occur in any of the Ci and D[X ] has a unique, positive, occurrence of X.

We let L 2
Y ⊂L 2 be the language obtained by restricting ∀ quantification (resp. ∃ quantifi-

cation) to Yoneda (resp. co-Yoneda) formulas. In other words ∀XA ∈L 2
Y (resp. ∃XA ∈L 2

Y )
only if A is Yoneda in X (resp. co-Yoneda in X). We indicate by MLL2Y the restriction of G-nets
to L 2

Y .
The Yoneda translation AY of a formula A ∈ L 2

Y is the multiplicative formula obtained
by replacing systematically ∀X((

⊗n
i Ci⊗X⊥)`D[X ]) by D[

⊗n
i Ci⊗1] and ∃X((

˙n
i Ci `X)⊗

D[X⊥]) by D[
˙n

i Ci `⊥].
Remark 1. For any Yoneda formula of the form A = (C⊗X⊥)`D[X ], there exist G-nets YoA

1 ∈
G(D[C],∀XA) and YoA

2 ∈G(∀XA,D[C]), illustrated in figure 2b.

The formulas ∀X(X⊥`X) and ∃X(X⊗X⊥) translate multiplicative units 1,⊥. In particular,
there exists a unique G-net π1 of conclusion ∀X(X⊥`X) and a G-net πA

⊥ ∈ G(A,A`⊥), for
any formula A (see fig. 2a). We let L1,⊥ ⊂L 2

Y be the language obtained by restricting ∀XA to
A = X⊥`X and ∃XA to A = X⊗X⊥. We let MLL21,⊥ be the restriction of G-nets to L1,⊥.

3 Girard nets and ∗-autonomous categories with coends

We show that any G-net can be interpreted as a morphism in any (strict) ∗-autonomous category
C in which coends exist. Any map ϕ : Var→ObC extends into a map ϕ : L 2→ObC by letting

and (2) that the conclusions of a proof structures have no free variable (in particular, new constants x are introduced
to eliminate free variables). Moreover, in the definition of the correctness criterion any ∀-link of eigenvariable X can
jump on any formula in which X occurs free. In [19] conditions (1) and (2) are replaced by the equivalent condition
that the conclusions of the proof structure plus the witnesses of existential links must form a clean sequent and the
correctness criterion is modified by demanding that a ∀-link of eigenvariable X can jump on any ∃-link whose witness
formula contains free occurrences of X . Here we will consider this formulation.

3Given a formula A and a finite (possibly empty) sequence of formulas C1, . . . ,Cn, we indicate by
⊗n

i Ci⊗A (resp.˙n
i Ci `A) the formula C1⊗·· ·⊗Cn⊗A (resp. C1 ` · · ·`Cn `A).
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(A⊗B)ϕ = Aϕ ⊗Bϕ , (∀XA)ϕ =
∫

x Aϕ(x,x) and (A⊥)ϕ = (Aϕ)⊥. We show (Prop. 1) that any
such map ϕ generates a (unique) functor Φ : G→C such that, for all A∈L 2, Φ(A) = Aϕ . Then
we consider the equivalence relation 'ε over G-nets induced by such interpretations and show
that it extends the equivalence relation generated by βη-equivalence.

Some useful definitions and properties of ∗-autonomous categories and coends can be found
in appendix A. It is well-known (see [23]) that, if we let P be the category of MLL proof nets
and C be any (strict) ∗-autonomous category, then any map ϕ : Var→ObC generates a (unique)
functor Φ : P→ C. In order to extend this result to MLL2 we must in addition (1) demand
that coends exist in C, in order to interpret quantifiers, and (2) show that G-nets correspond
to dinatural transformations between multivariant functors over C. In the following we will
suppose C is a (strict) ∗-autonomous category in which ends (hence, by duality, coends) exist.

Any formula A ∈ L 2 whose free variables are within X1, . . . ,Xn can be interpreted as a
multivariant functor AC : (Cop⊗C)n→ C by letting

XC
i (~a,~b) := bi XC

i (~f ,~g) := gi

(A⊗B)C := AC⊗BC (∀YA)C :=
∫

y AC(y,y) (A⊥)C := (AC)⊥

For a clean sequent Γ = A1, . . . ,An, whose free variables are within X1, . . . ,Xn, we let ΓC :=
AC

1 ` · · ·`AC
n if n≥ 1 and ΓC = 1C if n = 0.

Lemma 1 (substitution lemma). (A[B/X ])C(x,x) = AC(BC(x,x),BC(x,x)).
Let π be a cut-free G-net of conclusions Γ,∆, and let all formulas occurring in π be within

X1, . . . ,Xn. Then π can be interpreted as a dinatural transformation πC : (ΓC)⊥→ ∆C4. Similarly
to [23], we can argue by induction on a sequentialization of π . We limit ourselves to the case of
quantifiers:
• if ∆ = Σ,∀YA and π is obtained from π ′ of conclusions Σ,A, then πC is obtained from

(π ′)Cx
5 (which can be seen as a dinatural transformation from ΓC⊗ (ΣC)⊥ to AC) by the

universality of ends, as shown by the diagram below:
ΓC⊗ (ΣC)⊥

∫
y AC(y,y) AC(a,a)

AC(b,b) AC(a,b)

(π ′)Ca

(π ′)Cb

πC

δ AC
a

δ AC
b

AC(a, f )

AC( f ,b)

• if ∆ = Σ,∃YA and π is obtained from π ′ of conclusions Σ,A[B/X ], then πC is obtained
from (π ′)C by the chain of arrows below (by exploiting lemma 1):

ΓC ΣC`AC(BC,BC)
∫ x(ΣC`AC(x,x)) ΣC` ∫ x AC(x,x)

(π ′)C ωΣC`AC
BC ν

where ν is given by proposition 5.
The definition above can be extended to the case of a G-net with cuts: if π has conclusions

Γ and cut-formulas B1, . . . ,Bn, then we can transform π into a G-net πcut of conclusions Γ, [B1⊗
B⊥1 , . . . ,Bn⊗ B⊥n ]. Then we can define πC as (idΓ ` ⊥̂BC

1
` · · ·` ⊥̂BC

n
) ◦ πC

cut . The following
proposition shows that πC is dinatural (this is not trivial, since the composition of dinaturals
need not be dinatural) and invariant with respect to reduction.

4As explained in appendix A, we omit for readability reference to variables x1, . . . ,xn.
5More precisely, πC

x1,...,xn
is obtained from (π ′)Cx1,...,xn,y, where ΓC,(ΣC)⊥ do not depend on y.
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Proposition 1. Let π be a G-net with cuts of conclusions Γ and π0 be the G-net obtained from
π by eliminating all cuts. Then πC = (π0)

C.

Theorem 1 (functor Φ : G→ C). Let ϕ : Var→ ObC be any map from variables to objects of
C. Then there exists a (unique) functor Φ : G→ C such that, for all A ∈ L2, Φ(A) = Aϕ .

We now consider the equivalence relation generated by the dinatural interpretation of G-nets:

Definition 2 (equivalence 'ε ). We let 'ε be the equivalence relation over G-nets given by
π 'ε π ′ iff πC = (π ′)C, for any ∗-autonomous category with coends C.

From proposition 1 it follows that 'ε includes βη-equivalence. The following examples
show that 'ε strictly extends βη-equivalence.

Example 1. The category G is not ∗-autonomous. In particular, ∀X(X⊥`X) is not a tensor
unit: by composing the G-net πA

⊥ ∈ G(A⊗∀X(X⊥`X),A) with the unique G-net in G(A,A⊗
∀X(X⊥`X)) one does not get idA⊗∀X(X⊥`X).

Example 2. ∃ is not a coend: this can be seen from the two distinct G-nets in figure 1b, corre-
sponding to the two sides of the diagram describing a coend.

Example 3. The “Yoneda isomorphism” is false in G. For it suffices to remark that YoA
1 ◦YoA

2 6=
id∀XA.

4 Linkings for MLL2Y

In this section we introduce a compact representation of proof nets for MLL2Y . We adopt a
notion of linking inspired from [20, 19] and a notion of rewiring inspired from [5, 16, 20] (in
which the role of thinning edges is given by witness edges). In particular, the restriction to L 2

1,⊥
yields a formalism which is equivalent to the one in [20].

Linkings Given a formula A (resp. a sequent Γ) we let tA = (nA,eA) (resp. tΓ = (nΓ,eΓ))
be its parse tree (resp. parse forest). We will often confuse the nodes of Γ with the associated
formulas. Let Γ be a clean sequent. An edge e is a pair of leaves of tΓ consisting in two
occurrences of opposite polarity of the same variables. Any ∃-link in tΓ has a distinguished
eigenvariable. A variable is an existential variable if it occurs quantified existentially. Since in
all formulas of the form ∃XA, A is co-Yoneda in X , existential variables come in pairs, called
co-edges. We let Γ∃ be the set of co-edges of Γ. Any co-edge c is uniquely associated with
an existential formula Ac. For any formula B and co-edge c, we say that B depends on c when
c = (X ,X⊥) and X occurs either free or bound in B.

A linking of Γ is a set of disjoint edges whose union contains all but the existential variables
of Γ. A witnessing function over Γ is an injective function W : Γ∃→ nΓ, associating any co-edge
with a node of Γ. We will represent witnessing functions by using colored and dotted arrows,
called witness edges, going from the two nodes of a co-edge c to the formula W (c). An ∃-linking
over Γ is a pair `= (E,W ), where E is a linking over Γ and W is a witnessing function over Γ.
Examples of ∃-linkings are shown in fig. 3a.

Given a witnessing function W , we let the dependency graph of W be the directed graph
DW with nodes the co-edges and arrows c→ c′ when W (c) depends on c′. We call a witnessing
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∃X((Y⊥`X)⊗X⊥) ∀X((Y ⊗X⊥)`X)

∃X((Y⊥`X)⊗X⊥) ∀X((Y ⊗X⊥)`X)

(a) ∼-equivalent ∃-linkings

Y⊥ X

X⊥`
⊗

∃
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`
∀
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⊗

∃
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`
∀
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˙
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⊥
i

`
⊗

∃

A

 

A D[A]⊥
˙

iC
⊥
i

`
⊗

∃

A

(c) Expansion of a maximal co-edge

A
B

 
A

B

(1)

 (2)

(d) Rewiring moves

Figure 3

function W acyclic when the graph DW is directed acyclic. We call `= (E,W ) acyclic when W
is acyclic.

Acyclic ∃-linkings provide a compact representation of G-proof structures, since to an ∃-
linking `=(E,W ) can be associated a unique G-proof structure π(`). In particular, the acyclicity
of W allows to associate any ∃-link with a unique witness. π(`) is constructed by repeatedly
applying, to the graph E ∪ tΓ, the co-edge expansion operation shown in fig. 3c, starting from
co-edges which are maximal in DW . An ∃-linking ` is correct when it is acyclic and π(`) is a
G-net.

Rewiring We introduce an equivalence relation over correct ∃-linkings, called rewiring (as in
[5, 16, 20]). Given a witnessing function W , a simple rewiring of W is a witnessing function
W ′ obtained by either moving exactly one witness edge from one formula to another “free” one
(i.e. to some formula A such that W−1(A) = /0), or by switching two consecutive witness edges,
i.e. two edges c1,c2 such that W (c1) ∈ c2, as shown in fig. 3d. We let ` ∼1 `′ if ` = (E,W ),
`′ = (E,W ′) and W ′ is a simple rewiring of W . We let ∼ be the reflexive and transitive closure
of ∼1.

In fig. 3a are shown all ∼-equivalent ∃-linkings over ∃X((Y⊥`X)⊗X⊥),∀X((Y ⊗X⊥)`
X), corresponding to the two 'ε -equivalent G-nets in fig. 3b. When A is Yoneda in X , we let
ID∀XA denote the ∃-linking in figure 4a, Indeed, π(ID∀XA) is the G-net corresponding to the
identity in G.

We let L∃ be the category of ∃-linkings, whose objects are the formulas of MLL2Y and
where L∃(A,B) is the set of ∼-equivalence classes of correct ∃-linkings of conclusions A⊥,B,
with composition given by cut-elimination (see appendix B). We let L1,⊥ be the restriction of
L∃ to MLL21,⊥ formulas.

From ∃-linkings to MLL linkings We extend the Yoneda translation of formulas into a trans-
lation ` 7→ `Y from acyclic ∃-linkings over Γ into “lax linkings” (in the sense of [20], p.22) over
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∃X((
˙n

i C⊥i `X)⊗D[X ]⊥) ∀X((
⊗n

i Ci⊗X⊥)`D[X ]

(a) Identity ∃-linking

∃X((
˙n

i C⊥i `X)⊗D[X ]⊥) (
⊗n

i Ci⊗B⊥)`D[B]

(b) ∃-linking ΩB
A

∃X((
˙n

i C⊥i `X)⊗D[X ]⊥) (
⊗n

i Ci⊗E⊥)`D[F ]

f
∼

∃X((
˙n

i C⊥i `X)⊗D[X ]⊥) (
⊗n

i Ci⊗E⊥)`D[F ]

f

(c) ∃ is a coend in L∃

Figure 4

ΓY . The linking `Y is obtained in two steps: first, starting from co-edges which are minimal
in DW , replace Ac = ∃X((

˙
iCi `X)⊗D[X⊥]) by (Ac)Y = D[

˙
iCi `⊥], add a lax thinning

edge (in the sense of [20]) from the new occurrence of ⊥ added to W (c), and move all lax thin-
ning edges pointing to X ,X⊥ onto W (c); once all co-edges have been eliminated, replace any
universal formula ∀XA by (∀XA)Y and eliminate the unique edge (X⊥,X).

Observe that witness edges are replaced by lax thinning edges. In particular, the witness

edges of the form ∃X(X⊗X⊥) A are replaced by thinning edges of the form ⊥ A
By letting ∼Y denote the rewiring equivalence over lax linkings, we have:

Lemma 2. i. If ` is correct, then `Y is correct.
ii. If `∼ `′ ⇒ `Y ∼Y `′Y .
iii. If `,` are in MLL21,⊥, then, `Y ∼Y `′Y ⇒ `∼ `′.

By exploting lemma 2, proposition 6 and the results in [20] we get:

Theorem 2. L∃ is ∗-autonomous. L1,⊥ is the free ∗-autonomous category.

5 Characterization of ε-equivalence

To any G-net π we can associate an ∃-linking `π as follows: starting from the topmost ∃-links in
π , if Ac = ∃XA′ with witness B, introduce a cut over B,B⊥ and a witness edge W (c) = B. Now
let `π be the normal form (see appendix B) of the resulting ∃-linking6.

We let '` be the equivalence relation over G-nets given by π '` π ′ if `π ∼ `π ′ .

Theorem 3. π 'ε π ′ iff π '` π ′.

Proof sketch: ('ε⊆'`) As L∃ is ∗-autonomous, it suffices to show that ∃ is a coend in L∃.
For any A = (

˙
iCi `X)⊗D[X⊥] Yoneda in X and any B ∈L 2

Y , let ΩB
A be the correct ∃-linking

in fig. 4b. Given A = (
⊗n

i Ci⊗X⊥)`D[X ], for any E,F ∈L 2
Y and f ∈ L∃(E,F), ΩE

A ◦A( f ,E)
and ΩF

A ◦A(F, f ) differ by a unique rewiring, as shown in fig. 4c. We can then conclude:

Proposition 2. For all A Yoneda in X, the pair (∃XA⊥,(ΩB
A)B∈L 2

Y
) is a coend in L∃.

6Since some rewirings might be needed to eliminate cuts, π = π(`π ) does not hold general, but only π 'ε π(`π )
(as a consequence of prop. 3).
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Example 4. The “Yoneda isomorphism” of example 3 holds in L∃, as the composition `YoA
1
◦`YoA

2
reduces to ID∀XA (up to rewiring).

('`⊆'ε ) Let C be ∗-autonomous with coends. For each ϕ : Var→ C, Aϕ is isomorphic to
Aϕ

Y (by Yoneda). By lemma 2 and the bijection C(Aϕ ,Bϕ)' C(Aϕ

Y ,Bϕ

Y ) we get:

Proposition 3. If `π ∼ `π ′ , then πC = (π ′)C.
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A ∗-autonomous categories and coends

We recall that a ∗-autonomous category is a category C endowed with functors _⊗_ : C2→ C
and _⊥ : Cop→ C, an object 1C, the following natural isomorphisms:

αa,b,c : a⊗ (b⊗ c)→ (a⊗b)⊗ c
λa : a⊗1C→ a
ρa : 1C⊗a→ a

σa,b : a⊗b→ b⊗a

and a natural bijection between C(a⊗b,c) and C(a,c`b⊥), where a`b = (b⊥⊗a⊥)⊥, satis-
fying certain coherence conditions (that we omit here, see [2]). In any ∗-autonomous category C
there is a natural isomorphism A⊥⊥ ' A. C is said strict when this isomorphism is an identity.

For the definition of multivariant functors and dinatural transformations the reader can look
at [26]. When F : (Cop⊗C)n+1→D and the values a1, . . . ,an ∈ObC are clear from the context,
we will will often abbreviate F((a1, . . . ,an,a),(a1, . . . ,an,b)) as F(a,b).

Given C ∗-autonomous, for all a ∈ ObC, there exist dinatural transformations 1̂x : 1C →
x⊥` x and ⊥̂x = 1̂⊥x : x⊗ x⊥→⊥C, where ⊥C := 1⊥C .

Given categories C,D and a multivariant functor F : (Cop ⊗C)n+1 → D, an end7 (du-
ally, a coend, see [26]) is a pair (

∫
x F,δx1,...,xn,a) (resp.

∫ x F,ωx1,...,xn,a)8 made of a functor∫
x F : (Cop⊗C)n → D and a universal dinatural transformation δa :

∫
x F(x,x)→ F(a,a) (resp.

ωa : F(a,a)→
∫ x F(x,x)) natural in x1, . . . ,xn. This means that for any functor G : (Cop⊗C)n→

D and dinatural transformation θa : G→ F(a,a) (resp. θa : F(a,a)→ G) there exists a unique
natural transformation h : G→

∫
x F(x,x) (resp. k :

∫ x F(x,x)→ G) such that the following dia-
grams commute for all f ∈ C(a,b):

G

∫
x F(a,a) F(a,a)

F(b,b) F(a,b)

θa

θb

h

δa

δb F(a, f )

F( f ,b)

F(b,a) F(a,a)

F(b,b)
∫ x F(x,x)

G

F( f ,a)

F(b, f )
θa

ωa

ωb

θb

k

We let C be a ∗-autonomous category in which ends (hence, by duality, coends) exist. We
recall some basic facts about coends (see [26, 25]):

Proposition 4 (Yoneda Lemma for coends). Given n ≥ 0, functors F1, . . . ,Fn and a covariant
functor G(x),

∫
x((

⊗n
i Fi⊗ x⊥)`G(x)) (resp.

∫ x((
˙n

i Fi ` x)⊗G⊥(x))) is isomorphic to G ◦
(
⊗n

i F⊗1C) (resp. G⊥ ◦ (
˙n

i Fi `⊥C)). In particular,
∫

x x⊥` x' 1C and
∫ x x⊗ x⊥ '⊥C.

Proposition 5 (commutation of
∫

x /
∫ x and `). Given a functor F and a multivariant functor

G(x,y), there exist natural transformations µ :
∫

x(F `G(x,x))→ F ` ∫
x G(x,x) and ν :

∫ x(F `
G(x,x))→ F ` ∫ x G(x,x).

7We give here a functorial definition of ends and coends which can be easily deduced from the usual definition
(see [26]).

8We will abbreviate δx1,...,xn,a and ωx1,...,xn,a simply as δa and ωa, respectively.
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X X⊥ X
 X

(a)

A⊗B A⊥`B⊥
 

A B A⊥ B⊥

(b)

∀X((
⊗n

i Ci⊗X⊥)`D[X ]) ∃X((
˙n

i C⊥i `X)⊗D⊥[X⊥])
B

 
D[

⊗n
i Ci⊗∀X(X⊥`X)] D⊥[

˙n
i C⊥i `∃X(X⊗X⊥)]

B

(c)

∀X(X⊥`X) ∃X(X⊗X⊥)
B

 B

(d)

Figure 5: Cut elimination

B Cut-elimination

We let a cut sequent be a sequent of the form Γ, [∆], where Γ,∆ is a clean sequent and ∆ is a mul-

tiset of formulas of the form A⊗A⊥ (corresponding to a configuration of the form A A⊥

in the parse forest).
By an ∃-linking (resp. a correct ∃-linking) over Γ, [∆] we indicate an ∃-linking (resp., a

correct ∃-linking) over Γ,∆. We call an ∃-linking `= (E,W ) ready when W−1(A) = /0 for all A
occurring in a cut-formula.

Lemma 3. For any correct ∃-linking ` there exists a ready `′ such that `′ ∼ `.

By lemma 3 it suffices to apply cut-elimination to ready ∃-linking. Cut reduction is the
relation over ready ∃-linkings defined by the rewrite rules in figure 5, where in case 5c either
n≥ 1 or D[X ] 6= X , and, in case 5c and 5d the existence of the lefthand edge is forced by the fact
that Γ,∆ is clean.

The Yoneda translation is extended straightforwardly to ∃-linkings with cuts. The following
can be verified by inspecting the reduction steps.

Proposition 6. Given acyclic ∃-linkings `,`′, if ` reduces to `′, then `Y reduces to `′Y .

We now verify usual properties of cut-elimination.

Lemma 4 (confluence). Cut reduction is confluent.

Proposition 7 (stability). Let ` = (E,T ) be a correct and ready ∃-linking over a sequent with
cuts Γ, [∆,A⊗A⊥]. If ` `′, then `′ is correct.

Strong normalization can be proved in a direct way, without reducibility candidates tech-
niques.

Proposition 8 (strong normalization). Let ` be a correct and ready ∃-linking over Γ, [∆]. Then
all cut-reductions of ` terminate over a unique correct ∃-linking n f (`) over Γ, called the normal
form of `.

By proposition 8 any correct ∃-linking has a unique normal form, up to rewiring.
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