
Submitted to:
TLLA 2018

c© L. Pellissier & T. Seiller
This work is licensed under the
Creative Commons Attribution License.

Entropy and Complexity Lower Bounds

Luc Pellissier
IMERL, Universidad de la República
Julio Herrera y Reissig 565 CP11300.

Montevideo, Uruguay
pellissier@fing.edu.uy

Thomas Seiller
CNRS

LIPN – UMR 7030, Université Paris 13
Sorbonne Paris Cité, France

seiller@lipn.fr

1 Introduction

Lower bounds. The task of classifying the complexity classes remains one of the essential open problems
in Complexity Theory. As part of the classification problem, researchers have traditionally been concerned
with proving separation results. Proving that two classes B⊂ A are not equal can be reduced to finding
lower bounds for problems in A: by proving that certain problems cannot be solved with less than certain
resources on a specific model of computation, one can show that two classes are not equal. Conversely,
proving a separation result B (A provides a lower bound for the problems that are A-complete [6] – i.e.
problems that are in some way universal for the class A.

Alas, the proven lower bound results are very few, and most separation problems remain as generally
accepted conjectures. The failure of most techniques of proof has been studied in itself, which lead to
the proof of the existence of negative results that are commonly called barriers. Altogether, these results
show that all proof methods we know are ineffective with respect to proving interesting lower bounds.

Implicit Computational Complexity. An approach to complexity theory that emerged in the recent years
is Implicit Computational Complexity (ICC). Related to logical approaches of computational complexity
such as Descriptive Complexity, the aim of ICC is to study algorithmic complexity only in terms of
restrictions of languages and computational principles. It has been established since Bellantoni and Cook’
landmark paper [3], and following work by Leivant and Marion [12, 13].

As part of ICC techniques, some approaches derive from the proofs-as-programs (or Curry–Howard)
correspondence. At its core, this correspondence allows one to view the execution of a program as the
cut-elimination procedure of a corresponding proof in a formal deductive system (e.g. sequent calculus).
Initially stated for intuitionnistic logic [10], the correspondence extends to resource-aware logics such
as linear logic (LL), which is well-suited to study computation. This approach to ICC therefore relies on
restrictions on the deductive system considered to characterise complexity classes.

Dynamic Semantics. The geometry of interaction program was proposed by Girard [8] shortly after the
inception of linear logic. In opposition to traditional denotational semantics – e.g. domains –, the GOI

program aims at giving an account of the proofs and programs which also interprets their dynamical
features, i.e. cut-elimination/execution. This program is well-suited for tackling problems involving
computational complexity, and indeed, geometry of interaction’s first model was used to prove the
optimality of Lamping’s reduction in λ -calculus [9]. More recently, a series of characterisations of
complexity classes were obtained using GOI techniques [2, 1].

Among the most recent and full-fledged embodiement of this program lie the second author’s Inter-
action Graphs models [17, 19]. These models, in which proofs/programs are interpreted as graphings –
generalisations of dynamical systems –, encompass all previous GOI models introduced by Girard [19]. In
particular, Interaction Graphs allow for modelling quantitative features of programs/proofs [17].

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Entropy and Complexity Lower Bounds

Semantic Approach to Complexity. Based on a study of several Interaction Graphs models characteris-
ing complexity classes [18, 21], the second author has proposed to use graphings to develop a semantic
approach to complexity theory [16]. The basic idea behind this program is to model and study programs
as dynamical systems that acts on a space – thought of as the space of configurations. As dynamical
systems are inherently deterministic, the use of graphings is needed to extend the approach to probabilistic
and/or non-deterministic programs. One can then study a program through the geometry of the associated
graphing (e.g. a configuration caught in a loop is represented as a point of the space of finite orbit).

The second author conjectures that advanced methods developed within the theory of dynamical
systems, in particular methods specific to the study of ergodic theory using techniques from operator
algebras, could enable new proof techniques for separation, arguably bypassing barriers [20].

Complexity lower bounds and algebraic geometry. To this day, only one research program is commonly
believed to have the ability to bypass all known barriers: Mulmuley’s Geometric Complexity Theory
(GCT) program [15]. The GCT program aims to prove the PTIME 6= NPTIME lower bound by showing
that certain algebraic surfaces1 cannot be embedded one into the other. Recently, some negative results
[11] have closed the easiest path towards proving the conjecture promised by GCT.

Graphings and Lower Bounds. The present work reports on a study of different proofs of lower bounds
through the prism of graphings. The authors are convinced that the techniques involved are somehow of a
semantic nature and that algebraic geometry does not play the essential role.

This work shows how this point of view allows to recast a number of lower bounds results from
the literature. The proofs are understood as a study of the geometry of the graphing interpretation of
machines, compared to the geometry of specific problems. This stresses the fact that the use of methods
from algebraic geometry is an implicit choice guided by the specific models considered. The abstraction
by means of graphings opens the way to applying the techniques to other models of computation, greatly
widening the scope of geometric methods for tackling lower bound results.

2 Abstract Programs and Entropy

Abstract Programs. The first step of our reconstruction of the algebraic lower bound proofs is to express
programs as graphings. This point of view allow to isolate two components:
• an abstract model of computation (AMC) – which we define as a triple (G,R,α), where 〈G,R〉 is

a presentation of a monoid M〈G,R〉 and α is a monoid action M〈G,R〉y X – that represent the
different operations a program in a given model can use;
• an abstract program within an AMC which is a generalized dynamical system (a graphing) that can

use operations of the AMC;
So, for instance, a particular RAM is an abstract program in the AMC of RAMs, while a particular algebraic
circuit is an abstract program in the AMC of algebraic circuits.

This approach has a major interest in that it allows to define a purely algebraic operation, related
to the notion of amalgamated free product of groups, to deal with parallelisation of abstract models of
computation: the CREW of AMCs with the concurrent read, parallel write discipline. This presentation
of parallelism, without reference to the particular model of computation, is, up to our knowledge, a first.
It moreover shows how the interpretation of programs as graphings goes beyond the limitation of the
Curry-Howard correspondence to functional programs.

1One representing the permanent, one the discriminant, functions which have different complexity if PTIME 6= NPTIME [23].

L. Pellissier & T. Seiller 3

Entropy. We then explain how a graphing induces geometric decompositions of the space it acts on,
describing the orbits – the computational traces – of a point through iterations of the graphing. The
geometric decomposition obtained after k iterations is called the k-th cell decomposition CELL(k) of the
space w.r.t. the graphing. It is the coarsest decomposition that has the crucial property that for any two
initial configurations contained in the same cell of CELL(k), the k-th first iterations of the graphing on
these two configurations go through the same sequence of states.

We generalise the notion of topological entropy, which quantifies the exponential growth of the number
of orbits of a dynamical system, to define the entropy of a graphing. We then give bounds on the number
of cells of the decomposition.

Theorem 1. Let G be a deterministic graphing with entropy h(G). The cardinality c(k) of CELL(k) is
asymptotically bounded by g(k) = 2k2h([G]), i.e. c(k) = O(g(k)).

In the specific models considered, the decomposition CELL(k) is naturally induced by regions delimited
by algebraic varieties. We can refine the above theorem to more specific situations in which both the
number and the degrees of the varieties delimiting the regions can be bounded. This is the place where
geometric algebraic methods enter into play.

3 Lower Bounds

After that, all that remains to be done is to find a suitable problem for each model and show that its
geometry is too complicated for the model at hand. Based on these methods, we consider three distinct
models of computation and show how the bounds obtained above generalise three different types of lower
bounds proofs from the literature.
Algebraic Decision/Computation Trees. The model of algebraic decision tree is a very simple computa-
tional model. Basically, one is given a point~x in the space Rk, and at each step in the computation one
asks whether a given polynomial P cancels at~x, allowing the program to branch depending on the answer.
After a finite number of tests, the program outputs either “yes” or “no”. Obviously, such a program can be
represented as a binary tree whose branches are labelled by polynomials and leaves are labelled by “yes”
or “no”. An algebraic decision tree T decides a set W (T), namely the subset of Rk of all points~x such
that the decision tree, given~x as input, produces a “yes”. Steel and Yao [22] showed how the number of
connected components of a subset W ⊂ Rk provides lower bounds on both the depth of, and the degrees
of the polynomials appearing in, any algebraic decision tree T such that W =W (T). This allowed them to
provide lower bounds for a number of problems, such as the knapsack problem.
Later work by Ben-Or [4] extends this result to the model of algebraic computation trees which perform
at each step some algebraic operations on the inputs.
Algebraic NC. The second lower bounds result takes place in algebraic complexity, and relates to the BSS
model of computation [5]. A BSS model is basically a Turing machine acting on first order structures w.r.t.
a given signature (i.e. constants, function symbols and predicates): the tape contains arbitrary elements
from the underlying set, and the machine is allowed to perform operations defined by the interpretation
of function symbols and tests based on the interpretations of predicates. The most studied such model
is the model of computation on the reals, with the sum and product as basic operations, and a single
relation corresponding to the identity. Based on this model, one easily defines the notion of polynomial
time computation on the reals (w.r.t. this model2), and the complexity class PTIMER. In this line of work,
researchers have also considered real analogs of boolean circuits, allowing for the definition of the class

2Of course, other definitions of polynomial time for real computation exist.

4 Entropy and Complexity Lower Bounds

NCR. One striking aspect of this approach to real computation is the existence of a separation result
between NCR and PTIMER, obtained by Cucker [7].
PRAMs without bit operations. The last result we relate to our method is a lower bound result due to
Mulmuley [14]. This result, though twenty years old, is still considered today as one of the strongest
known separation result. It shows that some algebraic counterpart of NC, defined through an ad-hoc
algebraic model named “PRAMs without bit operations”, is strictly included in PTIME. The strength of
this result lies in the fact that the ad-hoc complexity class defined through the model of PRAM −, though
strong enough to contain usual polynomial-time problems, is shown to be separated from the standard
class of polynomial time functions.

Our graphing-based approach allows us to exhibit that in all the above proofs of lower bounds, the
methodology is the same. First, one realises the above models as abstract models of computation. This
allows one to get upper bounds on the cell decompositions (the number of cells, the number and degrees
of the polynomials delimiting them) induced by a machine in the model (a computation tree, an real
circuit, a PRAM −) by Theorem 1 and its refinement. Then, one exhibits a problem for which it is possible
to compute lower bounds on the cell decomposition needed to compute it (the knapsack problem in Steele
and Yao, some polynomial family in the case of algebraic circuits, the MAXFLOW problem in the case of
PRAM −), yielding lower bounds in the computational model. For Cucker’s and Mulmulmey’s results, the
chosen problem is shown to be uncomputable by the chosen model; as it is known to belong to a larger
class (PTIMER for Cucker’s result, PTIME for Mulmuley’s), this lower bound provides a separation result.

4 The example of PRAM

The AMC of RAMs is defined by generators that modify the state of the memory. We represent memory as
two infinite sequence of integers Zω ×Zω parametrized by the input, that is functions Zd → Zω ×Zω :
the first copy of Zω represents shared registers while the second represents private registers. For instance,
the generator plus(i) corresponding to the instruction Xi := Xi+1; acts on the configuration space as:

f 7→ Pi ◦ f , with Pi : (x1, . . . ,xi, . . .) 7→ (x1, . . . ,xi−1,xi +1,xi+1 . . .)

while the generator copy(i,] j) corresponding to the instruction Xi :=]Xj acts as:

f 7→CRi, j ◦ f , with CRi, j : (x1, . . . ,xi, . . .) 7→ (x1, . . . ,xi−1,xx j ,xi+1 . . .).

In this case one obtains the following refinement of Thm. 1.

Theorem 2. Let G be a deterministic graphing interpreting a PRAM with p processors. Then CELL(k) is
determined by at most 2k pk algebraic varieties whose defining polynomials’ degree are bounded by 2k.

We show how to associate a partition of a space to a decision problem obtained from a parametrization
of an optimization problem, such as the MAXFLOW problem. In a nutshell, given an optimization problem,
and a real parametrization f of it (a function that maps reals into valid instances of the problem), the space
Z3 is divided in two subspaces: the subspace of points (x,y,z) such that x/z is lesser than the optimal
value of the optimisation problem on f (y/z) and the others.

Although the geometry of the problem is fairly simple, we show that a machine deciding it would
need to induce a decomposition in cells of the space whose complexity3 satisfy a certain relation w.r.t.
the complexity of the problem, the number of processors, and the computation time. This is the only

3The complexity of a decomposition is here measured by the variations of the varieties that delimitates it.

L. Pellissier & T. Seiller 5

place in all the demonstration where algebraic geometry enter the picture: indeed, on the one hand the
geometry of a machine has been encoded as a set of algebraic surfaces, and an algebraic-geometric
notion of complexity of the surfaces is expressed in function of the computation times and the number of
proccesors; on the other hand, the geometry of the problem is also coded as a set of surfaces (albeit very
simple). The comparison between the two involves the Milnor-Thom theorem.

After having defined a variation on the PRAM model allowing to have finer complexity bounds, we
finally show Mulmuley’s result, i.e. a lower bound for the MAXFLOW problem.
Theorem 3. Let G be a graphing interpreting a PRAM without bit operations with 2O(Nc) processors, with
N the length of the inputs and c any positive integer. Then G does not decide MAXFLOW in O(Nc) steps.

References
[1] C. Aubert, M. Bagnol & T. Seiller (2016): Unary Resolution: Characterizing Ptime. In: FOSSACS.
[2] C. Aubert & T. Seiller (2016): Logarithmic Space and Permutations. Inf. Comp. 248.
[3] S. Bellantoni & S. Cook (1992): A new recursion-theoretic characterization of the polytime functions.

Computational Complexity 2.
[4] M. Ben-Or (1983): Lower Bounds for Algebraic Computation Trees. In: STOC.
[5] Lenore Blum, Mike Shub & Steve Smale (1989): On a theory of computation and complexity over the real

numbers: NP-completeness, recursive functions and universal machines. American Mathematical Society.
Bulletin. New Series 21(1), pp. 1–46, doi:10.1090/S0273-0979-1989-15750-9.

[6] S. Cook (1971): The complexity of theorem-proving procedures. In: STOC.
[7] Felipe Cucker (1992): PTIMER 6= NCR. Journal of Complexity 8(3), pp. 230–238, doi:10.1016/0885-

064X(92)90024-6.
[8] J.-Y. Girard (1989): Towards a Geometry of Interaction. Contemporary Mathematics 92.
[9] G. Gonthier, M. Abadi & J.-J. Lévy (1992): The Geometry of Optimal Lambda Reduction. In: Proc. 19th

ACM Symposium on Principles of Programming Languages.
[10] W. A. Howard (1980): The formulas-as-types notion of construction. In: To H. B. Curry: Essays on

Combinatory Logic, Lambda Calculus, and Formalism.
[11] C. Ikenmeyer & G. Panova (2017): Rectangular Kronecker coefficients and plethysms in geometric complexity

theory. Advances in Mathematics 319.
[12] D. Leivant & J.-Y. Marion (1993): Lambda calculus characterizations of poly-time. Fundam. Inform. 19.
[13] S. Leivant & J.-Y. Marion (1994): Ramified recurrence and computational complexity II: Substitution and

poly-space. Lecture Notes in Computer Science 933.
[14] K. Mulmuley (1999): Lower Bounds in a Parallel Model without Bit Operations. SIAM J. Comp. 28.
[15] K. D. Mulmuley (2012): The GCT Program Toward the P vs. NP Problem. Commun. ACM 55.
[16] T. Seiller (2015): Towards a Complexity-through-Realizability Theory. Arxiv:1502.01257.
[17] T. Seiller (2016): Interaction Graphs: Full Linear Logic. In: IEEE/ACM LICS.
[18] T. Seiller (2016): Interaction Graphs: Nondeterministic Automata. Under revision.
[19] T. Seiller (2017): Interaction Graphs: Graphings. Ann. of Pure and Applied Logic 168.
[20] T. Seiller (2017): Why Complexity Theorists Should Care About Philosophy. In J. Fichot & T. Piecha, editors:

Beyond Logic. Proc. of the Conference held in Cerisy-la-Salle.
[21] T. Seiller (2018): Interaction Graphs: Probabilistic Automata. In preparation.
[22] J. M. Steele & A. Yao (1982): Lower bounds for algebraic decision trees. J. Algorithms 3.
[23] L. G. Valiant (1979): The complexity of computing the permanent. Th. Comp. Sci. 8.

http://dx.doi.org/10.1090/S0273-0979-1989-15750-9
http://dx.doi.org/10.1016/0885-064X(92)90024-6
http://dx.doi.org/10.1016/0885-064X(92)90024-6
http://arxiv.org/pdf/1502.01257

	Introduction
	Abstract Programs and Entropy
	Lower Bounds
	The example of pram

