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We propose to return to the construction carried in [5], where we claimed that

Simply-typed approximations = intersection types derivations

in the precise sense that we built a categorical equivalence between specific type systems (that encompass
all well-known intersection type systems used to characterize normalization such as those presented in
[1]) and simply-typed approximations, that we realize as approximation functors, that arise from the
translation of the language into linear logic. By studying these specific functors, we claim that their main
feature is that they map the exponential of linear logic into what can reasonably be called a resource
modality1, corresponding either to linear, affine or cartesian intersection types. So, we present the story
under the slightly different, and less syntactic, slogan:

Intersection type system = multiplicative linear logic + resource modality

These resource modalities are linked with well-know systems. In particular, generalized species of struc-
ture [3] can be seen as a strictification of the Kleisli category of the linear resource modality. The study
of the link between these different resource modality can shed a new light on the extensional collapse
[2], and paving the way for a study of this collapse for dynamic semantics (such as the Geometry of
Interaction and ordered combinatory algebras, used to account for forcing and realizability).

Calculi as operads Calculi, whether representing programming languages or proof languages, can
be presented as Cat-operads, structures with three levels, reminiscent of Girard’s sous-sols [4, Section
7.1]: they are characterised by their sets of objects (formulæ), of multi-arrows (1-dimensional arrows,
or arrows between objects, proofs or programs) and 2-arrows (2-dimensional arrows, or arrows between
arrows, of reductions). Such a formalism is rich enough to represent usual variants of the λ -calculus and
also classical systems, such as the λ µ-calculus and linear logic’s proof-nets.

This language offers moreover a unifying point of view on the ways different calculi are connected
together. Indeed, a morphism C → D may be interpreted as either a translation of a calculus C into a
calculus D ; a type system for the calculus D , refining the types of D as types of C , and typing the terms
in D with derivations in C , following [7]; and a semantics (which can be static, or dynamic: interpreting
the process of normalization and not just the equality of results) for the calculus C , with D as an algebra
for it.

The program proposed here will necessitate the creation of a categorical toolbox: indeed, the coun-
terparts of classical notions in category theory (such as closedness, comonads,. . . ) do not yet have a
counterpart in the more involved setting we propose. We will use these notions liberally in this text.

1The name is borrowed from [6]. The relationship between the notions would be worthy of investigation.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Generalized generalized species of structure and resource modalities

Type systems and the Grothendieck construction In order for the interpretation of morphisms of
Cat-operads as type-systems to be sound, we have to require them to have a fibration-like property2.
In [5], we showed that the equivalence derived from the Grothendieck construction can be caried in
the Cat-operadic setting and yield a correspondence between type systems C → D and morphisms of
Cat-operads D →Dist3 [9, 5.1].

Such morphisms D → Dist encompass approximation functors that map (if we ignore the details
due to the fact that every level is parametrized by the levels below) every term in D to the set of its
approximations and every reduction to the relation that replay the same reduction at the level of approx-
imations. These approximation functors can be obtained by translating D into linear logic and choosing
an approximation policy for the exponential of linear logic.

Resource modalities A striking feature of approximation functors, is that they all have a trivial image
on the multiplicative fragment of linear logic, and only differ in their interpretation of the exponential
! (indeed, a multiplicative term is its only approximation). The examples constructed in [5] interpret
the exponential by one special “comonad” on Dist: in the case of linear (non-idempotent) intersection
types, by the comonad Bop of free monoidal symmetric category; in the case of cartesian (idempotent)
intersection types, by the comonad Fop of free cartesian category, and so on.

It is tempting to consider these comonads as resource modalities on Dist. Axiomatizing such re-
source modalities – which imply to understand which of their properties are useful for them to interpret
the exponential ! – and finding in which way approximation functors are generated by their choice of a
resource modality is thus, after having devised sound categorical definition, the first step of the program.

Generalized species of structure In [3], the authors define the cartesian closed bicategory of gen-
eralized species of structure (which are distributors from a category of the form BopA) and show that
it is a model of the λ -calculus. In a sense, Dist equiped with Bop is the linear logic counterpart of
this bicategory, but operadic, and more importantly, reduction-aware. This motivates to see a morphism
MA1, . . . ,MAn → B, where M is a resource modality on Dist as a generalized generalized species of
structure. For some modalities, the space of such species might be a model of linear logic, and for some
not, reflecting already well-known results.

Studying the resource modalities from this semantic point of view (as opposed to the type-system
point of view we stressed earlier) might shed a light on the relationship between typing and interpreting.

The relational collapse It is well-known that the Scott semantics of linear logic is an idempotent
intersection type system. It is also the extensional collapse of the relational model [2], which can be seen
as a strict version of the species of structure model. This relational collapse might be lifted to the level
of generalized generalized species of structure, and thus studied as a morphism of resource modalities.

This would be a first step towards being able to understand the connection between different dynam-
ical semantics of λ -calculus. Indeed, by adapting the relational collapse to a reduction-aware setting, we
might be able to capture semantics such as those arising from the geometry of interaction (that are well-
known to be connected to the relational model) and implicative structures [8] (whose connections with
filter models – and thus idempotent intersection types – we are currently investigating). This would draw
a picture where the semantics of linear logic are organized around the two oppositions static/dynamic
and extensional/non-extensional.

2Christened Niefield fibrations.
3Dist is thus a specific Cat-operad classifying type systems.
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