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Università di Torino
Italy

luca.paolini@unito.it

Luca Roversi
Dipartimento di Informatica

Università di Torino
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We introduce the functional language IQu which, under the paradigm “quantum data & classical
control” and in accordance with the model QRAM, allows to define and manipulate quantum circuits
and quantum states on which we can execute partial measurement. IQu tailors a lot of ideas from the
design of Idealized Algol (roughly, PCF extended with local stores and assignment) and its side-effect
management. These ideas play a crucial role in the language design: each quantum co-processor
is formalized by means of a quantum register (storing a quantum state) that can be modified by
quantum directives (lists of unitary gates). The linearity of quantum states is assured by a one-to-
one correspondence between quantum states and quantum registers. We adapt the type system of
Idealized Algol for typing both quantum-registers and quantum-directives. The types for quantum-
registers are parametric on the number of qubits and their linearity is granted for free. IQu operates
on quantum circuits as they were classical data so no restriction exists on their duplication.

1 Introduction

Linearity is an essential ingredient for quantum computing, since quantum data have to undergo re-
strictions such as non-cloning and non-erasing properties. This is evident from the care that quantum
programming languages design puts on the management of quantum bits, especially in presence of
higher-order features. Selinger’s QPL [18] is a milestone in the development of programming quan-
tum languages. It is the first accrued investigation about the design of quantum programming language
in the mainstream “quantum data & classical control ”. A programmer instructs a classical machine to
generate “directives” for a hypothetical quantum device. This latter is thought of to apply the directives
to quantum data and to work like a Quantum Random Access Machine (QRAM) [5] which is the low
level computational model of reference for quantum data & classical control .

The introduction of QPL suggested the design of several quantum programming languages. Some of
them are in [2, 1, 12, 22, 19, 20, ?]. Pagani [12] and Zorzi [22] are more focused on the computational
models behind the language, while other papers as [19] are more focused on pioneering prototypes of
effective quantum programming languages. A very pragmatic proposal is Quipper [21]. Its mixed
procedural and declarative approach allows to design, manipulate and evaluate circuits. Quipper has
ProtoQuipper as its a core whose proof-theoretical properties and relationship with the λ -calculus are
dealt with in [17, 9]. The languages in [19, 9, 12, 22] follow the direction suggested by Selinger in [18] for
dealing with higher-order functions: exponential modalities are used to devise a suitable typing system
for quantum data accommodating quantum state in classic programming languages.

Linear Logic-based type systems are indubitably useful and suitable to manage duplication and,
consequently, quantum data. Notwithstanding, other solutions are possible, as shown in recent investi-
gations [15, 14]. These solutions come up when one moves the focus from the data-perspective to the
control perspective, i.e. from quantum data to classical control.
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QWire [15] is proposed as a sort of extension of a classical language (Haskell or Coq have been
considered as hosts) that provides an elegant and manageable language for the definition of quantum
circuits. Roughly, QWire is a ”quantum plugin” for a host classical language. It provides a suitable
meta-programming support to the management of quantum directives through a suitable boxing interface.
This interface delimits the quantum typing and decouples it from the typing system of the host language.
Further, QWire promotes the use of dependent types to improve its approach to quantum programming.

Dependent types are concretely used by qPCF [14, 16] which is an extension of PCF. qPCF is
conceived to interact with a restricted QRAM model with relaxed hardware requirements. In particular,
qPCF simplifies the interaction between PCF and the quantum co-processor by forbidding both any
permanent storing of quantum states and any partial intermediate measure on quantum states.

In this paper, we introduce IQu (read “Haiku” as the japanese poetic form). It is higher-order func-
tional programming language that strongly relies on Idealized Algol, which, roughly, is PCF extended
with local stores and assignments. The philosophy for defining IQu is to keep programming simple. We
show how a minimal enrichment of Idealized ALGOL provides all features needed to address higher-
order quantum programming with a style that keeps programmers in a classical programming environ-
ment. This simplifies the programming of known quantum algorithms. The main differences of IQu as
compared to the existing quantum programming languages follow.

• IQu avoids the need for explicit linear types. Linear Logic exponential modalities do not occur in
the types of IQu. It turns out that IQu manages linear resources in a way which drastically differs
from the Linear Logic-oriented approaches of [19, 6, 7, 22, 9].

• IQu relies on quantum registers. Classical control is decoupled from quantum computation by
means of the type of quantum registers. We think that it will be interesting to explore variants of
these types via linear-logic modalities or dependent types to improve their static analysis potential.

• IQu provides a classical representation of quantum states in a classic programming setting. Reg-
isters model quantum co-processors which store permanently quantum states, letting partial or
general measurements available in the course of a computation. This improves [14] and makes
IQu fully expressive w.r.t. all known quantum programming languages. Having based IQu on
Idealized ALGOL, its operational semantics internalizes the manipulation of quantum states by
generalizing the traditional approach of [19, 6, 22].

2 IQu: Idealized QUantum language

IQu encompasses the essence of Idealized Algol [11], namely an imperative extension of PCF that in-
cludes assignments and side-effects. IQu is a prototypical and minimal typed language that combines
quantum states and commands with higher-order functional features by using registers.

The ground types are β ::= Nat | cırc | qCom | qR
E

eg such that:

• Nat is the type of numerical expressions which evaluate to natural numbers.

• cırc is the type of quantum-circuit expressions, i.e. expressions evaluating to strings that describe
quantum gates whose arguments are quantum states.

• qCom is the type of commands. The typical use of commands is to apply operations to quantum
states being stored in quantum registers. So, commands can produce state modifications, i.e. side-
effects.
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• qR
E

eg is the type of a quantum-register that stores a quantum state and the evaluation of the ex-
pression E provides the number of qubits available in the register. We can look at registers as
co-processors that permanently store a quantum state, i.e. states are not subject to any decoher-
ence between register commands.

The expression E labeling qR
E

eg ranges over numeric expressions and it can includes specific kind
of variables κ,κi,κi, . . . take values in N. We do not assume E to can involve all expressions of
IQu, we limit ourselves to consider total expressions (that can be evaluated in finite time). The
expression E endows IQu with a type polymorphism that, let the quantum algorithms be paramet-
ric in the number of qbits they use as input and output. This approach is essentially inspired by
elementary form of depend types (e.g. see [14]).

The general types are in the language of the grammar σ ,τ,θ ::= β | θ → θ . If qR
E

eg occurs as a sub-
type of θ and κ occurs in E then θ is open, by definition. Otherwise θ is closed. The terms of IQu are
in the language of the grammar:

M,N,P,Q ....= x | n | pred | succ | if | µx.M | λx.M | MN
| skip | M;N | whileP do Q | qN

E
ew x in N | MC N |_/NM

| Uk | :: | ‖ | get | rsize

• The first line let the boolean-free (call-by-name) version of PCF [3] be part of IQu.

• In analogy with Idealized Algol [11], the second line adds imperative aspects to PCF, adapting
them to our quantum setting. They are:

– The “do-nothing” instruction is skip, the sequential composition of instructions is M;N, the
iteration is whileP do Q which is syntactic sugar for the µ-recursion. If x is a variable of

type qR
E

eg, then qN
E

ew x in N is the binder of x in N, which restricts the use of x to N.
– If N is a circuit expression and the circuit C is its evaluation, then MC N applies C to the state

in the register M.

– If N is a number expression with value k and M is typed qR
n

eg, i.e. it denotes a n-qubits
register, then _/NM denotes the measurement of the first n%k-qubits in M (where % denote the
modulo operation).

• The third line adds gate-names (ranged over U and labeled by their arity), the sequential and parallel
composition of circuits, the (syntactic-sugar) operator that extracts a bit from a number and the
operator which returns the size of a register. These operations are typical of languages focusing on
quantum directives as [14].

2.1 Typing system

A base is a finite list x1 : σ1, . . . ,xn : σn that we manage as a set such that xi 6= x j for every i 6= j. If
B = x1 : σ1, . . . ,xn : σn, then dom(B) = {x1, . . . ,xn} and ran(B) = {σ1, . . . ,σn}. The extension of B with
x : σ is B∪{x : σ} where without loss of generality we can assume x 6∈ dom(B).

Definition 1. A term of IQu is well-typed if and only if it is the conclusion of a finite derivation built with
the rules in Table 1. A well-typed term is open if either it contains a free variable or if its type depends

on qR
E

eg where E is open. Otherwise, the term is closed. Table 1 presents only the rules concerning the
quantum fragment of IQu. See [13] for the complete set of rules.
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B ` P : qCom B ` Q : β β ∈ {Nat,cırc,qCom}
B ` P;Q : β

(tc)
B ` M : qR

E
eg B ` N : cırc

B ` MC N : qCom
(tA)

B∪{x : qR
E

eg} ` N : β β ∈ {Nat,cırc,qCom}
B ` qN

E
ew x in N : β

(tnew) B ` P : qR
E

eg B ` Q : Nat

B `_/QP : Nat
(t pM)

Uk ∈U

B ` Uk : cırc
(tc1)

B `::: cırc→ cırc→ cırc
(tc2) B `‖: cırc→ cırc→ cırc

(tc3)

B ` M : qR
E

eg

B ` rsize(M) : Nat
(ts0)

B ` get : Nat→ Nat→ Nat
(tg)

Table 1: Typing Rules.

An open term becomes closed after we instantiate all its variables κ,κ′, . . . and we substitute all its
free term-variables by closed well typed terms. It is worth to remark that an open term with variables in
its type stands for a family of IQu programs. Since renaming of κ and κ′ by, say, κ′′ in a term is possible
the effect is to restrict the family of programs that the term represents. Moreover, the polymorphism
induced by κ,κ′, . . . can be straightforwardly (albeit not trivially) adapted to an extension based on
explicit dependent types, following [14]. Last, we remark that κ is never part of the domain of our bases
B (all such variables are typed implicitly Nat).

Some comments on the rules are worth doing.
The rule (tA) types the application of a circuit, i.e. of a sequence of gates, to a quantum-register.

The rule (tnew) declares a local register, i.e. it hides a register whose type is in the given base, like in
Idealized Algol. The rule (t pM) gives type to a partial measurement executed on the register P. I.e. if
Q evaluates to k and E is n, then n%k qubits are measured and the resulting state is left in the register.
Moreover, the result of the measurement is a number carrying the measure-information in its binary
representation. The operator rsize returns the number of qubits stored in a register by extracting them
from its type.

Basic properties, among which a Generation Lemma, hold on the type system [13].

Example 1. Let N : Nat be a term whose unique free variable is r : qR
3

eg. Also, let Not be the not-gate
(a.k.a. Pauli-X gate) and Id be the identity gate, both with arity 1. Let M to denote (r C (Not ‖ Id ‖
Not));N (anticipating the semantics, it would initialise r with |101〉). The type of M can be Nat by means

of (tA). So, Nat can be the type of qN
3

ew r in M using (tnew).

2.2 Evaluation Semantics

We focus on the evaluation of IQu programs, i.e. closed terms typed with a ground type. Notice that IQu

is endowed with an infinite set of ground types: Nat,cırc,qCom,qR
0

eg, qR
1

eg, . . ..
Following Idealized Algol, the operational semantics of IQu relies on a store. A store s is a finite set

of pairs {(r1, |φ1〉), . . . ,(rn, |φn〉)} where every ri is the name of a register and every |φi〉 is a quantum
state that contains n qbits in accordance with the type qR

n
eg of ri. The finite set of names for registers in
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(if B ` M : qR
n

eg)

s,rsizeM⇓⇓⇓1 s,n
(sz)

s,M⇓⇓⇓α s′,m s′,N⇓⇓⇓α ′ s
′′,n

s,getMN⇓⇓⇓α·α ′ s
′′,dmen (gt)

s,Uk ⇓⇓⇓1 s,Uk
(u)

s,M0 ⇓⇓⇓α s′,C0 s′,M1 ⇓⇓⇓α ′ s
′′,C1

s,M0::M1 ⇓⇓⇓α·α ′ s
′′,C0::C1

(u′)

s,M0 ⇓⇓⇓α s′,C0 s′,M1 ⇓⇓⇓α ′ s
′′,C1

s,M0 ‖ M1 ⇓⇓⇓α·α ′ s
′′,C0 ‖ C1

(u′′)

s∪{r := 0},M⇓⇓⇓α s′,V

s,qN
n

ew r in M⇓⇓⇓α s′�r,V
(qn) s,N⇓⇓⇓α s′,C (if B ` r : qR

n
eg)

s,rC N⇓⇓⇓α s′[r := cEvaln
(
C
)(

s′(r)
)
],skip

(qa)

s,M⇓⇓⇓α s′,k s′,N⇓⇓⇓α ′ s
′′,r (m, |φ〉,α ′′) ∈ pMean(s′′(r),k) (if B ` N : qR

n
eg)

s,_/MN⇓⇓⇓α·α ′·α ′′ s
′′[r := |φ〉],m

(qm)

Table 2: Operational Semantics, quantum fragment

a program of IQu is dom(s). The notation s[x := |φ〉] builds a new store which behaves like s everywhere
except on x; the new store associates the state |φ〉 to the register x. As a notation, C ranges over the
strings that describe circuits, i.e. parallel and series composition of names for gates. Moreover, we can
use V to range over numerals, strings that describe circuits, register names and skip.

Definition 2. The evaluation semantics of IQu is a formal statement of the shape s,M⇓⇓⇓α s′,V obtained as
conclusion of a derivation built with the rules in Table 2, such that: M is a term whose typing judgment is
x1 : qR

n1
eg, . . . ,xk : qR

nk
eg ` M : β ; s is a store such that {x1, . . . ,xk} ⊆ dom(s); 0 < α ≤ 1 is the probability

that, from the store s, the term M yields V and the store s′. As for the type system, in Table 2 we report
only evaluation rules concerning the quantum fragment of the language. We assume the reamining part
of the language evaluated iin accord with the standard call-by-name evaluation of PCF.

All the rules in Table 2, but (qa) and (qm), preserve the store that their judgments take as input.
The rule (sz) returns the number of qbits of a register, reading that value from its type. The rule (gt)
allows to get the n-th bit of m resulting from M. The rules (u),(u′),(u′′) evaluate circuit expressions, i.e.
strings we can build by series and parallel compositions of gate-names. It is worth to notice that term
typed circuits have to be evaluated to become proper circuit that can be supplied on a quantum register.
For instance, (λxNat.ifxM0M1)N has type cırc whenever M0,M1 : cırc and N : Nat, but it cannot used as a
quantum transformation until its evaluation in a proper circuit is completed (note that the evaluation of
M0,M1 can loop forever). Moreover, Mi : cırc can have shape M′i;M

′′
i : cırc (i = 0,1) where M′0,M

′
0 : qCom

(i = 0,1) can apply some quantum transformations to registers producing side-effects. The evaluation of
circuits is done in sequentially, also in presence of side-effect and when the generated circuit produce the
parallel of two sub-circuits (c.f. rule (u′′)).

The rules (qn),(qa),(qm) are specific to IQu. A programmer can ask a new quantum register for
manipulating a quantum by means of (qn) at run-time. We notice that no limit exists on the number
of quantum registers that a program in IQu manipulates. The programmer is in charge to properly fix
that number. In analogy with a standard management of computational resources, the lack of a resource
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needs to throw an exception. The rule (qa) interpretsC as a sort of assignment which modifies a state by
means of a circuit application. Te rule (qm) interprets _/ as a sort of assignment which modifies a state
by means of a measurement. Its result is the outcome of the corresponding (partial) observation. By the
way, C and _/ can occur hidden everywhere, for example also in the expression we need to evaluate for
choosing which branch of a conditional to follow.

The function cEvaln occurs in (qa). It takes a circuit as its input for giving the corresponding unitary
operator as output. Specifically, cEvaln : CIRC→H 2n →H 2n

is:

cEvaln(x) =





Idn x = Uk and n < k
Uk x = Uk and n = k
Uk⊗ Idn−k x = Uk and k ≤ n
cEval(C0)⊗ cEval(C1) x = C0 ‖ C1
cEval(C0)◦ cEval(C1) x = C0::C1

which says that cEvaln relies on a family of functions on a n-dimension Hilbert space.
The relation pMea occurs in (qm). Following [4], pMean : H n×N−→℘

(
N×H n×R

)
formalizes

a quantum measurement. Let us assume that k ∈ N, N = 2n, K = 2k%n and that j ·h denotes the number
we obtain by juxtaposing the binary representations of j and h. Then:

pMean(|φ〉,k) =





(
m, |ψm〉, pm

)
∣∣∣∣∣∣∣∣

∑ j<K ∑h<N−K c j·h| j[〉⊗ |h[〉 and,

m≤ K s.t. |ψm〉= ∑h<N−K
cm·h√

pm
|m[〉⊗ |h[〉

where pm = ∑h<N−K |c j·h|2





where |x[〉 represents the binary encoding of x. The first argument of pMea is a quantum state |φ〉 of
dimension N. The second argument is k ∈ N, the number of qubits to measure, modulo n. The result of
pMean(|φ〉,k) is a set of triples. The first component of the triple is a partial measure executed on |φ〉: its
value m ∈ N is the (deterministic measure) of a sub-state of dimension 2k%n. The second component is
the (sometimes called) collapsing state which has dimension 2n and it is obtained from |φ〉 by collapsing
to m its measured sub-state. The third component is the probability of measuring the value m.

We conclude by observing that (qa) is deterministic while (qm) has both non-deterministic and
probabilistic nature. We mean that (qa) only modifies r in s if N converges to C. Instead, (qm) yields any
of the possible measures on a state.

IQu enjoys standard properties such as Preservation and Progress [13].

Theorem 1 (Preservation). If M is a closed term such that ` M : β and M⇓⇓⇓ N then N is a closed term such
that ` N : β .

Theorem 2 (Progress). If M is a closed term such that ` M : β and M ⇓⇓⇓ N then N is either a numeral, a
string representing a circuit, skip or a register.

2.3 Examples

Let us provide two example of IQu programming.

Example 2 (Bell state circuit). The Bell states (or EPR states or EPR pairs) are the simplest examples
of entanglement of quantum states [10]. The circuit in the left of Table 3 applies a Hadamard gate on
the top wire followed by a controlled-not. It can be used to generate the Bell states by feeding it by |00〉,
|01〉, |10〉, |11〉. For example, the circuit returns the state β00 =

1√
2
(|00〉+ |11〉) on input |00〉.
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As for the previous two algorithms, we assume that access to the function f is restricted to
queries to a device corresponding to the transformation Bf defined similarly to before:

Bf |x⟩ |b⟩ = |x⟩ |b ⊕ f(x)⟩

for all x ∈ {0, 1}n and b ∈ {0, 1}.
It turns out that classically this problem is pretty easy given a small number of queries if we

allow randomness and accept that there may be a small probability of error. Specifically, we can
randomly choose say k inputs x1, . . . , xk ∈ {0, 1}n, evaluate f(xi) for i = 1, . . . , k, and answer
“constant” if f(x1) = · · · = f(xk) and “balanced” otherwise. If the function really was constant
this method will be correct every time, and if the function was balanced, the algorithm will be
wrong (and answer “constant”) with probability 2−(k−1). Taking k = 11, say, we get that the
probability of error is smaller than 1/1000. However, if you demand that the algorithm is correct
every time, then 2n−1 + 1 queries are needed in the worst case.
In the quantum case, 1 query will be sufficient to determine with certainty whether the function

is constant or balanced. Here is the algorithm, which is called the Deutsch-Jozsa Algorithm:

H H

H H

Bf

H

❄

H H

|0⟩

|0⟩

|0⟩

|1⟩

M

M

M

There are n bits resulting from the measurements. If all n measurement results are 0, we
conclude that the function was constant. Otherwise, if at least one of the measurement outcomes
is 1, we conclude that the function was balanced.
Before we analyze the algorithm, it will be helpful to think more about Hadamard transforms.

We have already observed that for a ∈ {0, 1} we have

H |a⟩ =
1√
2

|0⟩ +
1√
2
(−1)a |1⟩ ,

which we can also write as
H |a⟩ =

1√
2

∑

b∈{0,1}
(−1)ab |b⟩ .

4

Table 3: Bell State circuit (left) and Deutsch-Jozsa circuit (right).

Let H : cırc be the Hadamart gate, Id : cırc be identity and CNOT : cırc be the controlled-not. Let Bell
be the closed term (H ‖Id)::CNOT that straigforwardly describes the above circuit. It is easy to see that `
(H ‖ Id)::CNOT : cırc .. We use the closed term qN

2
ew r in (rCBell;_/1) to simulate an EPR experiment:

it requires that a fresh co-processor is made available for the computation of r C Bell;_/1 that applies
the gates in Bell to the state stored in r and then does a measurement. For space reasons, we leave to

the reader to check that ` qN
2

ew r in (r C Bell;_/1) : Nat and {
(
r, |00〉

)
},r C Bell ⇓⇓⇓1 {

(
r, 1√

2
(|00〉+

|11〉)
)
},skip . A possible (probabilistic) conclusion of our EPR experiment is {

(
r, 1√

2
(|00〉+ |11〉)

)
}⇓⇓⇓ 1

2

_/1{
(
r, |00〉

)
},0, because pMea2( 1√

2
(|00〉+ |11〉),1) = {(0, |00〉, 1

2),(1, |11〉, 1
2)}.

Example 3 (Deutsch-Jozsa Circuit). In this example we show how a IQu term can represent a whole
(infinite) family of quantum programs. We provide the IQu encoding of the circuit that implements the
Deutsch-Jozsa algorithm [10]. It is a generalization of Deutsch algorithm: given a black-box B f imple-
menting some function f : {0,1} → {0,1}, it determines whether f is constant or balanced (a function
is balanced if exactly half of the inputs go to 0 and, the other half, go to 1). Deutsch showed how to
achieve this result with a single call of B f , in contrast with the classical case that requires to observe
f on two inputs. The Deutsch-Josza algorithm solves the parametric problem that considers functions
f : {0,1}n→{0,1} with n inputs.

The circuit on the right of Table 3 is a quantum solution for the Deutsch-Josza algorithm, where
we neglect the final measurement phase. When fed with a classical input state |0 . . .0︸ ︷︷ ︸

n

1〉 we can do a

measurement of the first n bits to know if the function f is constant or not. If all n qubits of our (unique)
measurement are 0 then we can conclude that f is constant. Otherwise, if at least one of the measurement
outcomes is 1, then f is balanced. See [10] for further details.

We denote H : cırc the Hadamard gate and Id : cırc Identity gates. We program the circuit in the table
by sequentializing the three sub-circuits M1, x and M3, where x : cırc is expected to be substituted by the
black-box circuit that implements the function f .

• Let Mpar be a term that applied to a circuit C : cırc and to a numeral n puts in parallel n+1 copies of
C. It is defined as follows: Mpar = λucırc.λkNat.Y W1uk : cırc→Nat→ cırc, where W1 is the term
λwσ .λucırc.λkNat.if k (u) (u ‖ (wupred(k))) having type σ → σ with σ = cırc→ Nat→ cırc.

• Let M1 be MparH rsize(r) : cırc where r is the co-processor register.

• Let M3 be (MparHpred(rsize(r))) ‖ Id : cırc where r is the co-processor register.
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We use register r : qR
n+1
eg to implement the n-instance of the Deutsch-Jozsa, for an arbitrary n. Since

the expected starting state of our Deutsch-Jozsa algorithm is |
n︷ ︸︸ ︷

0 . . .01〉, while qN
n

ew r creates a quantum
register fully initialized to 0, we use an initializing circuit Minit = (MparId(pred(rsize(r)))) ‖ Not
that complements the last qbit, setting it to 1. Summing up, the parametric solution to the Deutsch-

Jozsa algorithm can be defined in IQu by λxcırc.qN
n+1
ew r in ((rC DJ+);_/ n r) where DJ+ is the circuit

Minit :: M1 :: x :: M3 : cırc. The program can solve any instance of Deutsch-Jozsa we obtain by fixing
the value of its type parameter n. We do not considered binders for variables in types only for sake of
simplicity.

Let MB f be a black-box closed circuit implementing the function f that we want to check and let DJ?

be DJ+[MB f /x] namely the circuit obtained by the substitution of MB f to x in DJ+. The rule (qa) implies
that {(r, |0 . . .0︸ ︷︷ ︸

n

〉)},rCDJ? ⇓⇓⇓1 {(r, |φ〉)},skip where |φ〉 is the computational state after the evaluation

of DJ+. To measure |φ〉 we use {r, |φ〉},_/nr ⇓⇓⇓α {r, |φ ′〉},k, where (k, |φ ′〉,α) ∈ pMean(s′(r),n), i.e.
k is one of the possible output of the measurement and α is the associated probability.

3 Conclusions and future work

The language IQu is a higher-order programming language that manage quantum co-processors. We
formalize co-processors as quantum registers that store quantum states. This approach is radically new.
Its distinctive features are: (i) the linearity of quantum states is granted by the identity of registers (each
register is identified linearly by a unique name), (ii) a natural internal approach to many co-processors;
and, (iii) the classical fragment of the language is unaffected by the peculiarity of quantum data, so that
it can be used in a natural way. Moreover, we carefully isolate the description of directives for quantum
co-processors and the description of quantum states stored in quantum registers, because directives can
be treated as classical data (duplicable/erasable).

Current ongoing work focuses on its semantics and its typing systems. First, we are adding dependent
types for circuits and registers management (in analogy with [15, 14]). Second, we are studying a
mature approach to circuits by providing an explicit status and a linear typing to circuit-wires (in analogy
with [15]). Third, we are interested in the formalization of a call-by-value version of IQu in order to
further ease the embedding of quantum programming in common programming frameworks. Fourth,
we are interested in the development of denotational semantics for IQu, maybe a not complete one,
but a semantic suitable to tackle the equivalence between programs involving (meaningful) quantum,
non-determinism and probabilistic aspects.
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cal Report, Universitá di Torino e Verona. Available at http://lists.seas.upenn.edu/pipermail/
types-announce/2016/006371.html. Https://arxiv.org/abs/1711.00774.

[13] Luca Paolini & Margherita Zorzi (2017): qPCF: a language for quantum circuit computations. In: TAMC’17,
LNCS 10185, Springer, Germany, pp. 455–469, doi:10.1007/978-3-319-55911-7 33. Available at http:
//dx.doi.org/10.1007/978-3-319-55911-7_33.

[14] Jennifer Paykin, Robert Rand & Steve Zdancewic (2017): QWIRE: a core language for quantum circuits.
In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pp. 846–858.

[15] R Rand, J. Paykin & S. Zdancewic (2017): QWIRE Practice: Formal Verification of Quantum Circuits in
Coq. In: Quantum Physic and Logic 2017, Lecture Notes in Computer Science 10185.

[16] Neil Ross (2015): Algebraic and Logical Methods in Quantum Computation. Ph.D. thesis, Dalhousie Uni-
versity Halifax, Nova Scotia.

[17] Peter Selinger (2004): Towards a Quantum Programming Language. Mathematical Structures in Com-
puter Science 14(4), pp. 527–586, doi:10.1017/S0960129504004256. Available at http://dx.doi.org/
10.1017/S0960129504004256.

[18] Peter Selinger & Benoit Valiron (2006): A lambda calculus for quantum computation with classical control.
Mathematical Structures in Computer Science 16, pp. 527–552, doi:10.1017/S0960129506005238. Available
at http://journals.cambridge.org/article_S0960129506005238.

[19] Peter Selinger & Benoı̂t Valiron (2009): Semantic Techniques in Quantum Computation, chapter Quantum
lambda calculus, pp. pp. 135–172. Cambridge University Press.

[20] Benoı̂t Valiron, Neil J. Ross, Peter Selinger, D. Scott Alexander & Jonathan M. Smith (2015): Programming
the Quantum Future. Commun. ACM 58(8), pp. 52–61, doi:10.1145/2699415.

[21] Margherita Zorzi (2016): On quantum lambda calculi: a foundational perspective. Mathematical Structures
in Computer Science 26(7), pp. 1107–1195, doi:10.1017/S0960129514000425. Available at http://dx.
doi.org/10.1017/S0960129514000425.

http://dx.doi.org/10.1017/S096012950800741X
http://dx.doi.org/10.1017/S096012950800741X
http://dx.doi.org/10.1016/j.tcs.2009.07.045
http://dx.doi.org/10.1016/j.tcs.2009.07.045
http://dx.doi.org/10.1016/j.tcs.2009.07.045
http://lists.seas.upenn.edu/pipermail/types-announce/2016/006371.html
http://lists.seas.upenn.edu/pipermail/types-announce/2016/006371.html
http://dx.doi.org/10.1007/978-3-319-55911-7_33
http://dx.doi.org/10.1007/978-3-319-55911-7_33
http://dx.doi.org/10.1007/978-3-319-55911-7_33
http://dx.doi.org/10.1017/S0960129504004256
http://dx.doi.org/10.1017/S0960129504004256
http://dx.doi.org/10.1017/S0960129504004256
http://dx.doi.org/10.1017/S0960129506005238
http://journals.cambridge.org/article_S0960129506005238
http://dx.doi.org/10.1145/2699415
http://dx.doi.org/10.1017/S0960129514000425
http://dx.doi.org/10.1017/S0960129514000425
http://dx.doi.org/10.1017/S0960129514000425

	Introduction
	IQu: Idealized QUantum language
	Typing system
	Evaluation Semantics 
	Examples

	Conclusions and future work

