
To appear in EPTCS.

Correctness of Concurrent Objects under Weak Memory
Models

Graeme Smith Kirsten Winter
Robert J. Colvin

School of Information Technology and Electrical Engineering,
The University of Queensland, Australia

smith@itee.uq.edu.au kirsten@itee.uq.edu.au r.colvin@uq.edu.au

In this paper we develop a theory for correctness of concurrent objects under weak memory models.
Central to our definitions is the concept of observations which determine when effects of operations
become visible, and hence determine the semantics of objects, under a given memory model. The
resulting notion of correctness, called object refinement, is generic as it is parameterised by the
memory model under consideration. Our theory enforces the minimal constraints on the placing
of observations and on the semantics of objects that underlie object refinement. Object refinement
is suitable as a reference for correctness when proving new proof methods for objects under weak
memory models to be sound and complete.

1 Introduction

Linearizability [15] is widely accepted as the standard correctness criterion for concurrent objects, i.e.,
objects designed to be accessed simultaneously by multiple threads [16]. Recent work [5, 13, 7, 20, 8, 10]
has begun examining the applicability of linearizability in the context of weak memory models of modern
multicore architectures [17, 18, 2, 12, 6]. These memory models improve hardware efficiency by limiting
accesses to global memory. Individual threads operate on local copies of global variables, updates to the
global memory being made by the hardware and largely out of the programmer’s control1. This can cause
threads executing on different cores to get out of sync with respect to the values of global variables.

For example, on the TSO (Total Store Order) architecture [18] a thread updating a global variable x
stores the new value in a per-core FIFO buffer. Threads executing on that core will then read x from the
buffer, rather than the global memory, until the new value is flushed from the buffer to global memory
by the hardware. In the meantime, threads on other cores read the value of x from the global memory or
from their own core’s buffer when it has a value for x. The situation is even more complex for weaker
architectures, like ARM and Power [2]. In these architectures, values of global variables are flushed
independently (and at different times) to different cores (this is referred to as non-multi-copy atomicity).

For example, in Figure 1 three different cores are depicted with one or two threads running on each
(as P is also a thread) and referring to a global variable x. Assume at time t 0 thread T1 performs a write
to x, which then gets flushed to core2 at time t1 and later, at time t2 to core3. The evaluation of x per core
at these time instances is depicted in the table, which shows that for this scenario the value is consistent
only at time t2 (for scenarios other than the depicted one, there might not be a consistent state at all).

To evaluate proposed notions of linearizability for weak memory models we need to argue their
soundness and completeness. That is, we need to prove that an object implementation linearizes to its

1A programmer can add fences (or memory barriers) to code to force any pending updates to be written to memory. However,
if used indiscriminately, fences cause the code to be less efficient.

2 Correctness of concurrent objects under weak memory models

core1 core2

core3

x 20

x 12

x 11
T1

T2

T3

P
flush@t1

flush@t2 core1 core2 core3
x@t0

x@t1

x@t2

20

20 20

20 20 20

11 12
12

Figure 1: Scenario for non-multi-copy atomicity in ARM and Power architectures

specification if and only if it is correct with respect to its specification. However, this requires a notion of
correctness as a reference point. What does it mean for an implementation to be correct when executed
on a weak memory model?

Traditionally, trace refinement provides this notion of correctness for programs: an implementation
is correct with respect to its specification if and only if each observable behaviour of the implementation
can also be observed from the specification [4, 3, 1]. In the context of concurrent objects that are called
by a client program, an object implementation is deemed correct if and only if the client program cannot
differentiate between the object implementation and its abstract specification, as the observable behaviour
is the same.

To capture what is observed by client programs under sequentially consistent (SC) architectures
(i.e., those without a weak memory model), the notions of observational refinement [11] and contextual
refinement [9] have been introduced. However, both of these definitions do not provide a notion of
correctness under weak memory models, as they do not take into account that an event occurring on one
core might be observable later on another. Instead events become observable immediately after their
occurrence. For architectures with non-multi-copy atomicity, in which flushes occur out of write order,
the definitions do not provide us with the right semantics of programs.

In this paper, we propose a general definition of correctness for concurrent objects running on any
existing memory model. The aim is to provide a reference point for proving new notions of object
correctness for weak memory models sound and complete. The result is a notion of object refinement
which is parameterised by the memory model it refers to, and is therefore generic and can be instantiated
for any weak memory model behaviour. Key to this result is a definition of the semantics of an object
operating in the context of a calling client program under a weak memory model. In particular the
semantics of an object’s specification in the context of a client program under a weak memory model
needs be defined in such a way that its behaviour maintains the intention of the specification, namely that
operations are atomic.

The paper is structured as follows. In Section 2 we introduce the basic concepts of our theory includ-
ing that of observations which is key to our definitions. Based on these concepts, Section 3 formalises the
semantics of programs under a given memory model. The semantics of a concurrent object in the context
of a client, under a memory model, is elaborated in Section 4, distinguishing cases for the specifica-
tion, which is atomic, and the implementation which includes non-atomic, and possibly non-terminating,
operations. Section 5 ties these basics into the notion of weak-memory trace refinement which defines re-
finement under memory model M for a client program using an object and its specification, respectively.
The definition is parameterised with a given memory model for which we assume a semantics is given.

G. Smith, K. Winter & R. J. Colvin 3

Using weak-memory trace refinement we can then define our notion of object refinement under memory
model M which delivers the notion of correctness for objects. Section 6, illustrates how our definition
can be used to prove correctness of a case study. The paper concludes with a discussion of related work
in Section 7.

2 Client programs and observation events

To investigate the behaviour of concurrent objects under weak memory models, and relate their imple-
mentation to their specification using refinement, we need to consider the calling context. Programs
calling the operations of a concurrent object are referred to as client programs, or clients for short. A
client program P is concurrent, spawning multiple threads Ti on multiple cores, and is affected by the
memory model of the architecture it is running on. For some finite n, we have2

P =̂ T1 ‖ T2 ‖ . . . ‖ Tn

where P is a thread itself and might share a core with other threads.
Following other work on concurrent objects [15, 11, 9], the behaviour of a program is described in

terms of events that occur. We allow events to be program steps, operation events or, as introduced in
Section 2.1, observation events.

Program steps are steps, other than calling an object operation, performed by the client. These
are assignments, conditional branch instructions (e.g., of if or while statements), other control instruc-
tions like various forms of fences, atomic read-write-modify instructions which atomically perform these
three steps (e.g., the compare-and-swap construct CAS), and higher-level instructions which can, in
many cases, be defined in terms of assignments and/or conditional branches. For example, a statement
await(z=1) could be defined as while(z 6= 1) {}.

Operation events abstract the effects of an operation call by a program. They include the invocation
of the operation (i.e., when it is called) and the operation’s response (i.e., when it returns). The operation
events carry the operation’s input and output values as parameters and thus reflect on the operation’s
externally visible behaviour. The internal behaviour of an object is elided.

All program steps and operations are deterministic; non-determinism in a program results from the
interleaving of events on different threads varying between executions.

2.1 Observation events

Central to our definitions is the notion of an additional type of event called an observation event. Such
an event denotes the point in an execution where a program step or the response of an operation can be
deemed to have been observed by all threads Ti of client P. Such observed events are either

• program steps that write to global program variables, or

• responses of operations that write to object variables that are shared by threads accessing the
object.

Note that generally operation responses as such are not observable, as the returned value (if any) is
written to a thread-local variable only. A subsequent program step is required to write it to a global
program variable [11, 19].

2For simplicity, we do not consider dynamically spawned threads.

4 Correctness of concurrent objects under weak memory models

Introducing observation events allows us to decouple the occurrence of an event and its observation
which might not fall together under weak memory models. The semantics specific to the memory model
under consideration determines the possible placings of observation events. For example, the operational
semantics for TSO given in [17], or for ARM and Power (e.g., [6]), can produce all possible executions
from which we can deduce the points of observations according to the following rules: Generally, an
observation will occur when all threads can either

(a) access a new value of a global program variable written by a program step,

(b) access the values of all shared object variables written by an operation, after the response of the
operation has occurred, or

(c) when the response of a covert operation, whose steps or outcomes are not directly visible, becomes
apparent to the client P because an observable step later in the program order became visible (or
the client terminates if there is no later step).

Covert operations (as referred to in case (c)) are those which do not write to any shared object variables
and either have no return value or have a return value which is not written to a global program variable
([11] does not consider these operations). The observation of the response of a covert operation will
occur at the same time as the next observation that, due to the order enforced by the program, must have
occurred later. Examples of cases (a) and (b) are simply the flushes of global program and shared object
variables. If an operation writes to multiple shared object variables, the observation of the last write is
considered. Note that observations of writes in an operation (as in case (b)) or covert operation responses
(as in case (c)) can only occur after the response of the operation.

The effects of concurrency (interleaving the behaviour of threads) as well as the effects of weak
memory models leads to a partial ordering of these events to which all possible executions must adhere.

2.2 Examples

Consider the example of a client program given in Figure 2 with two global program variables x and z,
running on two threads T1 and T2. The threads call three operations of the same object: Operation A
writes to a shared object variable and operations B and C read this object variable.

On an SC architecture (i.e., one without a weak memory model), writes to global variables occur
instantaneously. Hence, the observation event for a program step occurs immediately after the program
step, and that of an operation which writes to shared object variables immediately after its response. Note
that we assume that the result of any operation call is implicitly stored in a local register (e.g., rA for the
operation call object.A).

The partial order of the events of the program of Figure 2 on SC is shown below, where invA denotes
the invocation of object.A, etc.

T1

x := object.A();
z := 1;
object.B();

‖

T2

await(z=1);
object.C();

Figure 2: Client program

G. Smith, K. Winter & R. J. Colvin 5

invA	 resA	 obsz=1	z=1	obsx=rA	
await(z=1)	 invC	 resC	

invB	 resB	 obsB	

obsC	
x=rA	obsA	

On TSO, writes to global variables and shared object variables become available to threads on other
cores when they are flushed. Furthermore, flushes occur in the same order as the writes occurred. Hence,
the observation event of a program step occurs at the point when the global variable is flushed, and the
observation of an operation that writes to shared object variables occurs at the final flush associated with
the writes, or immediately after the response when the final flush occurs before the response. The partial
order on events of the program of Figure 2 on TSO is

invA	 resA	 obsz=1	

obsA	

x=rA	
await(z=1)	 invC	 resC	

invB	 resB	

obsC	

obsB	z=1	

obsx=rA	

Note that obsA occurs before obsx=rA which occurs before obsz=1 which occurs before obsB due to the
FIFO order of the per-core buffers on TSO.

3 Semantics of programs relative to the memory model

The semantics of a program P under memory model M is defined in terms of the set of events that can
occur, and the partial order on the occurrence of those events. Note that the partial order, and in particular
the placement of observation events, is determined by the memory model as outlined in Section 2.

The partial order of events is partly enforced by P through the program text; this is referred to as the
program order. Additionally, it reflects the semantics of the memory model. For example, under TSO
the order of writes to variables is determined by the program order, and the order of observations of such
writes is the same as the order of the writes (due to the FIFO nature of the store buffer).

We formalise the semantics of programs as follows. Let T be the set of all thread ids, and Call the
set of all operation calls. An operation is then defined as a call by a particular thread.

Op =̂ T×Call

Let PS denote the set of all program step events, and Val the set of all values (of input and output
parameters) including a special element⊥meaning ‘no value’. The set of all events is defined as follows
where each invocation is associated with an input, and each response and observation with an output.

Event =̂ step(T,PS) | obs(T,PS) | inv(Op,Val) | res(Op,Val) | obs(Op,Val)

In the remainder of this paper, we refer to step(T,PS) and obs(T,PS) as program events, and to inv(Op,Val),
res(Op,Val), and obs(Op,Val) as object events.

A program P has a set of events, events(P), such that for each invocation event in the events of P,
events(P) also contains the corresponding response and observation events. That is, each called operation
can respond and be observed.

∀op : Op; in : Val • inv(op, in) ∈ events(P)⇒
∃out : Val • {res(op,out),obs(op,out)} ⊆ events(P) (1)

Since the observation of an operation can occur immediately after its response (or when the operation
does not write to shared object variables, at the same time as the observation of a subsequent event), <PM

6 Correctness of concurrent objects under weak memory models

cannot enforce the observation of a later operation to occur before an earlier one. Of course, a later
operation can be observed before an earlier operation (in particular under ARM and Power), but the
point we are making here is that although the memory model might allow this changed order, it cannot
enforce that the order of observations must be different to the order of corresponding events. Note that
<PM contains only those constraints to the order that every possible behaviour adheres to.

∀c,d : Op×Val • (res(c), inv(d)) ∈ <PM⇒ (obs(d),obs(c)) 6∈ <PM (2)

3.1 Traces

The semantics of a program P is a set of finite sequences of events, referred to as traces.3 For each trace
t, each event is unique (similar events, e.g., calls to the same operation, may be annotated by their relative
position in the trace), and an invocation of an operation always occurs before the associated response,
which in turn occurs before the associated observation. Similarly, a program step always occurs before
its observation, if any. In the following si denotes the ith element of a sequence s, and #s its length.

Trace =̂ {t : seqEvent | (∀ i, j≤ #t • i 6= j⇒ ti 6= tj) ∧
∀c : Op×Val • (∀ j • tj = res(c)⇒∃ i < j • ti = inv(c)) ∧

(∀ j • tj = obs(c)⇒∃ i < j • ti = res(c)) ∧
∀s : T; p : PS • (∀ j • tj = obs(s,p)⇒∃ i < j • ti = step(s,p))}

The events of a trace and the order on these events are defined as follows. Note that the order <t is
a total order over the events in t, as a trace describes exactly one execution.

events(t) =̂ {a : Event | ∃ i • ti = a}
<t =̂ {(a,b) : Event×Event | ∃ i, j • i < j ∧ ti = a ∧ tj = b}

The semantics of program P on memory model M is then defined as the set of traces using only events
from P and whose orders adhere to the constraints prescribed by the partial order <PM. We introduce the
relation b between orders which specifies whether an order is allowed by P on M.

[[P]]M =̂ {t : Trace | events(t)⊆ events(P) ∧ <PM b <t }

where <PM b <t is defined as

<PM b <t =̂ ∀(a,b) : <PM • b ∈ events(t)⇒ (a,b) ∈ <t

That is, for any event b that occurs in trace t, if this event is enforced to come after another event a by
<PM, then event a must have also occurred in t before event b. Note that it is not suitable to use the
simple subset relation here, i.e., <PM⊆ <t , since trace t will not, in general, include all events b that are
restricted by <PM.

4 Semantics of objects under weak memory models

To define trace refinement between client programs using objects, we need to constrain the behaviour of
the program to a particular object or collection of objects. If the program uses a collection of interacting

3Since we are interested in defining a notion of correctness that readily relates to linearizability, and hence only safety
properties [14, 19], we do not consider infinite sequences of events in our semantics.

G. Smith, K. Winter & R. J. Colvin 7

objects, we simply consider the collection of operations (and their events) provided by all objects in the
collection. Below we consider a single object only.

The semantics of an object is given as a set of histories, where each history is a trace with only object
events.

History =̂ {t : Trace | t |o = t}

where t |o denotes the trace t restricted to only object events.

4.1 Object implementation under weak memory models

An object implementation C has a set of object events, events(C), and, on a particular memory model
M, a prefix-closed set of histories made up of those events, [[C]]M. Observation events are not controlled
by the object and hence can occur at any time after the associated response event that the memory model
allows.

For any object implementation C, P[C] denotes the object C operating in program P. It is only defined
when all object events of P are events of C. The semantics of C operating in P on memory model M,
[[P[C]]]M, is given as those traces of P on M whose object events correspond to a history of C on M.

[[P[C]]]M =̂ {t : [[P]]M | ∃h : [[C]]M • t |o = h}

4.2 Object specification under weak memory models

An object specification A similarly has a set of object events, events(A), and a prefix-closed set of his-
tories, [[A]]. Since A represents a typical specification found in a software library, its set of histories is
independent of the memory model (hence there is no subscript). Any weak memory model behaviour
is absent from its histories due to its operations being atomic, i.e., they occur without interference from
other operations.

To capture this in our semantics, the histories of A are restricted to those where only operations on one
core are active at a time. For example, suppose the specification of a lock object, lock, has an operation
acquire which waits until the value of a variable of the object, x, is 1 and sets it to 0, i.e., acquire is
specified as await(x=1); x=0. Assuming x is initially 1, in the program of Figure 3 the intention would
be that only one of y or z would be set to 1.

On SC, this intention is achieved when the invocation of acquire which occurs second does not
happen until after the response of the acquire which occurs first. On TSO and assuming T1 and T2 are
running on different cores, the intention is only achieved when the invocation of acquire which occurs
second does not happen until after the flush of x from the acquire which occurs first. In both cases, the
intention is met when the second occurrence of acquire is not invoked before the observation event of the
first occurrence. In general, for any object specification to behave as intended, an operation invocation

T1

lock.acquire;
y=1

‖
T2

lock.acquire;
z=1

Figure 3: Client program using lock

8 Correctness of concurrent objects under weak memory models

on one core does not occur before the observation event of a previously invoked operation on any other
core. (The same does not need to hold for operations on the same core, as values are read locally.)

Let core(a) denote the core on which an event a occurs. We assume the core can be determined from
the thread of the event.

∀h : [[A]] • ∀c : Op×Val; i • hi = inv(c)⇒
∀op : Op; in : Val; j < i • hj = inv(op, in) ∧ core(inv(op, in)) 6= core(inv(c))⇒

∃out : Val; k < i • hk = obs(op,out) (3)

Additionally, since operations in a specification are intended to always respond, for each history h of
A with pending invocations, i.e., invocations for which there is no response, the history which extends h
with the missing events is also in [[A]].

∀h : [[A]]; c : Op×Val • ∃ i • hi = inv(c) ∧ (@j • hj = res(c))⇒
∃hahr : [[A]]; j • (hahr)j = res(c) (4)

This is not the case for object implementations which may have operations which never return (e.g., due
to an infinite loop).

Provided all object events of a program P are events of a specification A, P[A] denotes the program P
operating with an object whose behaviour satisfies A. The semantics of P imposes restrictions from the
memory model M on to the traces and restricts the placement of observation events. The semantics of
P[A] is given as follows.

[[P[A]]]M =̂ {t : [[P]]M | ∃h : [[A]] • t |o = h}

5 Object refinement

Correctness of an object is defined from the client program’s point of view. Such a program can only
observe changes to program variables, i.e., variables that are not defined locally on a thread or as part
on an object. Let t |global denote the observable behaviour of a trace t, i.e., the sequence of observation
events of program steps which write to global program variables.

A program P using C on memory model M refines P using A on M when any observable behaviour
of the former is a possible observable behaviour of the latter. We refer to this property as weak-memory
trace refinement.

Definition 1 Weak-memory trace refinement

P[A]vM P[C] =̂ ∀ t : [[P[C]]]M • ∃ t′ : [[P[A]]]M • t′ |global = t |global

An object implementation C refines an object specification A under weak memory model M if for all
possible client programs P, P using C weak-memory trace refines P using A under memory model M.
We refer to this property as object refinement.

Definition 2 Object Refinement under memory model M

AvM C =̂ ∀P • P[A]vM P[C]

If AvM C we say that C is correct with respect to A under memory model M.

G. Smith, K. Winter & R. J. Colvin 9

6 Example application

6.1 Correctness on TSO

Consider a spinlock object with operations acquire, release and tryAcquire specified as follows.

acquire
await(x=1);
x=0

release
x=1;

tryAcquire
if (x=1) x=0; return 1
else return 0

A typical concurrent implementation which is correct on SC is

acquire
while (true) {

if (TAS(x, 1, 0)=1) return
while (x=0) {}

}

release
x=1;

tryAcquire
returnTAS(x, 1, 0)

where TAS(x,a,b) is the atomic hardware primitive test-and-set which, when x is a, sets x to b and returns
1, and otherwise returns 0. The TAS instruction has a built in fence to ensure any change it makes to x is
immediately visible to all threads.

An early version of linearizability on TSO [7] proved that this implementation is also correct on
TSO. However, using our definition of object refinement we can show that, in fact, it is not correct, and
hence that the definition of linearizability in [7] is unsound.

Consider the client program in Figure 4, which uses a spinlock object sl, in which we assume that
initially x = 1 and z = 0. One possible trace of this program is

〈inv(T2,sl.acquire),⊥),res((T2,sl.acquire,⊥),obs((T2,sl.acquire),⊥), inv((T2,sl.release),⊥),
res(T2,sl.release,⊥),step(T2,y = 0),step(T1,z= 1),obs(T1,z= 1),step(T3,await(z= 1)),
inv((T3,sl.tryAcquire),⊥),res((T3,sl.tryAcquire),0),obs((T3,sl.tryAcquire),0),step(T3,w = 0),
obs(T3,w = 0),obs((T2,obs.release),⊥),obs(T2,y = 0)〉

This trace corresponds to thread T2 acquiring and releasing the lock and reading the initial value of z,
but not flushing the value written to x by the release operation until after the other two threads have run
to completion. The observable behaviour of the trace is

〈obs(T1,z= 1),obs(T3,w = 0),obs(T2,y = 0)〉

This is not an observable trace of the program running with an object satisfying the specification: if

T1

z = 1; ‖
T2

sl.acquire();
sl.release();
y=z;

‖
T3

await(z=1);
w = sl.tryAcquire();

Figure 4: Program using spinlock

10 Correctness of concurrent objects under weak memory models

T1

sl.acquire();
y= y + 1;
sl.release()

‖

T2

sl.acquire();
y=y + 1;
sl.release()

Figure 5: Another program using spinlock

y=0 then this step and hence sl.release on T2 must have occurred before z=1 on T1, and hence before
sl.tryAcquire on T3. Hence, we do not have object refinement.

The spinlock implementation without the tryAcquire operation is, however, known to be correct on
TSO [18]. Again we can show this using our definition.

The traces of the implementation can be derived from the operational semantics of TSO in [17].
These show that if an acquire has responded (and hence has been observed due to the fence in the TAS)
then another acquire cannot respond until after a release on the same core has responded or a release on
another core has been observed. This coincides with what can be observed from the abstract specification.
Hence, object refinement holds.

6.2 Correctness on Power and ARM

On the Power and ARM architectures [2, 12, 6], writes to variables are, like on TSO, local to the core on
which they occur and are made available to other cores by the hardware or the use of fence instructions
in the program. However, they are not necessarily made available in FIFO order. A write to variable x
may be made available globally after a write to variable y when the write to x occurs before the write to
y in program order.

It is easy to show that the spinlock implementation of Section 6.1, even without the tryAcquire
operation, is not correct on such an architecture using our definition of object refinement. For example,
consider the client program in Figure 5 for which we assume that initially x = 1 and y = 0.

Following the operational semantics of ARM and Power given in [6], one possible trace of this pro-
gram is4

〈inv((T1,acquire),⊥),res((T1,acquire),⊥),obs((T1,acquire),⊥),step(T1,y = 1),
inv((T1, release),⊥),res((T1, release),⊥),obs((T1, release),⊥), inv((T2,acquire),⊥),
res((T2,acquire),⊥),obs((T2,acquire),⊥),step(T2,y = 1), inv((T2, release),⊥),res((T2, release),⊥),
obs((T2, release),⊥),obs(T1,y = 1),obs(T2,y = 1)〉

This trace corresponds to the response of T1’s release operation being observed before its update to
y. This allows T2’s acquire to occur followed by its update of y before T1’s new value of y is observable
by T2. Hence, both threads update y to 1.

Since the observable behaviour 〈obs(T1,y = 1),obs(T2,y = 1)〉 of the above trace is not possible
using the specification, the implementation is not correct on Power or ARM: object refinement does not
hold.

4In the operational semantics of [6] the placement of observations can be derived from the model of the “storage subsystem”
which keeps track of which updates to global variables have been seen by which threads.

G. Smith, K. Winter & R. J. Colvin 11

7 Conclusion

In this paper, we have defined object refinement which provides a reference point for correctness of
concurrent objects on any weak memory model. This allows notions of linearizability on weak memory
models to be proved sound and complete.

Observational refinement [11] and contextual refinement [9] are existing notions of correctness for
client/object systems on SC architectures which coincide with our notion. At the fundamental level the
meaning of a program is found in how it modifies the observable state. Where we differ with those
frameworks is in how interactions between the client and object are treated. In particular, to handle oper-
ations taking effect outside of their invocation/response behaviour, we introduce the notion of observation
events to abstract when a change to a global variable is visible.

Doherty and Derrick [8] and Dongol et al. [10] address linearizability for weak memory models. Both
papers provide arguments that their definitions of linearizability are sound. At the level of client/object
systems their notions of correctness are similarly based on changes to observable variables.

In Doherty and Derrick’s framework the client’s perspective using an object is not constrained to the
atomic behaviour of an object’s specification. This does not affect their results since the client programs
are restricted. In particular, programs like in Figure 4 which have a race between the release and tryAc-
quire operations are not allowed. However, our goal is to provide a general notion of correctness for any
client program.

Dongol et al. [10] integrate the semantics of allowed reorderings of invocation and response events
with the reordering semantics framework of Alglave et al. [2]. The latter is a well accepted semantics
which can be specialised to TSO as well as ARM and Power memory models. In their framework, traces
of clients using specifications do not include constraints that the specifications place on the order of
operations, e.g., that successive acquire operations are separated by a release operation. These constraints
(captured by the specification order so) are added separately. A consequence of this construction is that
correctness requires linearizability on their notion of traces and an extra condition (referred to as HB-
SATISFACTION) to account for the specification order. In contrast to other work in this area, the definition
of linearizability is standard linearizability as originally defined by Herlihy and Wing [15].

Our framework is closer to that original work on linearizability. Specifically, the allowable order
of operations is included in the traces of the client program calling the specification. Therefore, unlike
Dongol et al., we do not require an extra condition to handle specification order. Using our results from
this paper, we would like to investigate whether we can define a notion of linearizability that can be
proven sound and complete for weak memory models.

Acknowledgement This work was supported by Australian Research Council Discovery Grant
DP160102457.

References

[1] M. Abadi & L. Lamport (1991): The existence of refinement mappings. Theoretical Computer Science 82(2),
pp. 253–284.

[2] J. Alglave, L. Maranget & M. Tautschnig (2014): Herding Cats: Modelling, Simulation, Testing, and Data
Mining for Weak Memory. ACM Trans. Program. Lang. Syst. 36(2), pp. 7:1–7:74.

[3] R.-J.R. Back (1990): Refinement calculus, part II: Parallel and reactive programs. In: Stepwise Refinement
of Distributed Systems Models, Formalisms, Correctness, Springer, pp. 67–93.

12 Correctness of concurrent objects under weak memory models

[4] R.-J.R. Back & J. von Wright (1994): Trace refinement of action systems. In: CONCUR ’94, LNCS 836,
Springer, pp. 367–384.

[5] S. Burckhardt, A. Gotsman, M. Musuvathi & H. Yang (2012): Concurrent Library Correctness on the TSO
Memory Model. In H. Seidl, editor: ESOP 2012, LNCS 7211, Springer, pp. 87–107.

[6] R.J. Colvin & G. Smith (2018): A wide-spectrum language for verification of programs on weak memory
models. In: FM 2018. To appear.

[7] J. Derrick, G. Smith & B. Dongol (2014): Verifying linearizability on TSO architectures. In E. Albert &
E. Sekerinski, editors: iFM 2014, LNCS 8739, Springer, pp. 341–356.

[8] S. Doherty & J. Derrick (2016): Linearizability and Causality. In: SEFM 2016, LNCS 9763, Springer, pp.
45–60.

[9] B. Dongol & L. Groves (2016): Contextual Trace Refinement for Concurrent Objects: Safety and Progress.
In K. Ogata, M. Lawford & S. Liu, editors: ICFEM 2016, Springer, pp. 261–278.

[10] B. Dongol, R. Jagadeesan, J. Riely & A. Armstrong (2018): On abstraction and compositionality for weak-
memory linearisability. In I. Dillig & J. Palsberg, editors: VMCAI’18, LNCS 10747, Springer, pp. 183–204.

[11] I. Filipović, P. W. O’Hearn, N. Rinetzky & H. Yang (2010): Abstraction for concurrent objects. Theoretical
Computer Science 411(51-52), pp. 4379 – 4398.

[12] S. Flur, K.E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon & P. Sewell (2016): Modelling
the ARMv8 Architecture, Operationally: Concurrency and ISA. In R. Bodik & R. Majumdar, editors: POPL
2016, ACM, pp. 608–621.

[13] A. Gotsman, M. Musuvathi & H. Yang (2012): Show No Weakness: Sequentially Consistent Specifications
of TSO Libraries. In M. Aguilera, editor: DISC 2012, LNCS 7611, Springer, pp. 31–45.

[14] A. Gotsman & H. Yang (2011): Liveness-preserving atomicity abstraction. In: ICALP 2011, LNCS 6756,
Springer, pp. 453–465.

[15] M. Herlihy & J. M. Wing (1990): Linearizability: A Correctness Condition for Concurrent Objects. ACM
Trans. Program. Lang. Syst. 12(3), pp. 463–492.

[16] M. Moir & N. Shavit (2007): Concurrent data structures. Handbook of Data Structures and Applications,
pp. 47:1–47:30.

[17] S. Owens, S. Sarkar & P. Sewell (2009): A Better x86 Memory Model: x86-TSO. In S. Berghofer, T. Nipkow,
C. Urban & M. Wenzel, editors: TPHOLs 2009, LNCS 5674, Springer, pp. 391–407.

[18] P. Sewell, S. Sarkar, S. Owens, F.Z. Nardelli & M.O. Myreen (2010): x86-TSO: a rigorous and usable
programmer’s model for x86 multiprocessors. Commun. ACM 53(7), pp. 89–97.

[19] G. Smith & K. Winter (2017): Relating trace refinement and linearizability. Formal Aspects of Computing
29(6), pp. 935–950.

[20] O. Travkin, A. Mütze & H. Wehrheim (2013): SPIN as a Linearizability Checker under Weak Memory
Models. In V. Bertacco & A. Legay, editors: HVC2013, LNCS 8244, Springer, pp. 311–326.

	Introduction
	Client programs and observation events
	Observation events
	Examples

	Semantics of programs relative to the memory model
	Traces

	Semantics of objects under weak memory models
	Object implementation under weak memory models
	Object specification under weak memory models

	Object refinement
	Example application
	Correctness on TSO
	Correctness on Power and ARM

	Conclusion

