
Submitted to:
REFINE 2018

c© Mathieu Montin et al.
This work is licensed under the
Creative Commons Attribution License.

Ordering strict partial orders to model
behavioral refinement

Mathieu Montin
Université de Toulouse ; Toulouse INP, IRIT

2 rue Camichel, BP 7122, 31071 Toulouse Cedex 7, France
CNRS ; Institut de Recherche en Informatique de Toulouse (IRIT)

mathieu.montin@enseeiht.fr

Marc Pantel
Université de Toulouse ; Toulouse INP, IRIT

2 rue Camichel, BP 7122, 31071 Toulouse Cedex 7, France
CNRS ; Institut de Recherche en Informatique de Toulouse (IRIT)

marc.pantel@enseeiht.fr

Software is now ubiquitous and involved in complex interactions with the human users and the phys-
ical world in so-called cyber-physical systems (CPS) where the management of time is a major issue.
Separation of concerns is a key asset in the development of these ever more complex systems. Two
different kinds of separation exist: a first one corresponds to the different steps in a development
leading from the abstract requirements to the system implementation and is qualified as vertical. It
matches the commonly used notion of refinement. A second one corresponds to the various compo-
nents in the system architecture at a given level of refinement and is called horizontal. Refinement
has been studied thoroughly for the data, functional and concurrency concerns while our work fo-
cuses on the time modeling concern. This contribution aims at providing a formal construct for the
verification of refinement in time models, through the definition of an order between strict partial
orders used to relate the different instants in asynchronous systems. This relation allows the designer
at the concrete level to distinguish events that are coincident at the abstract level while preserving
the properties assessed at the abstract level. This work has been conducted using the proof assistant
Agda and is connected to a previous work on the asynchronous language CCSL, which has also been
modelled using the same tool.

1 Introduction

1.1 Separation of concerns

Nowadays, many devices require to handle complex interactions with both the human users and the
physical world. These devices, like cars, aircrafts, trains, rockets, satellites, pacemakers, robots, etc are
called Cyber-Physical systems (CPS). While these ones offer more and more advanced and complex
services, they become increasingly dense and complex, which leads their developers to use separation
of concerns throughout the different phases of their development. There exists two kinds of separations
of concerns : the first one is qualified as horizontal and aims at describing complex systems through the
different physical – or logical – parts they contain. The second one is qualified as vertical and corresponds
to the commonly used notion of refinement, where the different levels of abstraction of a given systems
are described separately while the properties they exhibit are preserved throughout these steps.

Horizontal separation is usually handled at design time through the expression of the various system
parts in different Domain Specific Modelling Languages (DSML). Their execution, for validation and

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Ordering Strict partial orders to model refinement

verification purposes, may rely on different Models of Computation (MOC). A sophisticated coordina-
tion of the various events occurring in the different parts is thus needed to observe the global behavior
of the system. For CPS, the modeling of time in the various DSML and the coordination between the
different time models is a major issue. This heterogenous modelling approach has been integrated in the
Ptolemy toolset proposed by Lee et al. [11], the ModHel’X toolset proposed by Boulanger et al. [20] and
the GEMOC studio proposed by Combemale et al. [12]. Our work targets a proof based formal modeling
and verification framework to prove properties of languages and models in such toolsets.

Vertical separation usually enforces a refinement relation between the different models of the same
part of the system in order to ensure the consistency of the various global executions. This approach
is for example advocated by the B and Event-B methods [2, 3, 4] in order to prove the preservation
of the properties from the specification to the implementation. In the case of asynchronous systems,
refinement is usually related to simulation and corresponds to replacing τ transition by effective actions.
In the case of synchronous systems, refinement corresponds to decomposing an instant at a given level
into several instants at the refined level. Synchronous refinement has been widely studied in the case of
synchronous MOC first as oversampling for data-flow languages [32] and then as time refinement for
reactive languages [18, 29]. Polychronous time models have been used to assess the vertical refinement
during system design [39]. Their relational nature is more appropriate at design time as it introduces less
constraints than the common functional computation of clocks in synchronous programming languages
derived from LUSTRE. Thus, the refinement has to be made explicit in our formal framework.

1.2 Context

Our work focuses on the modeling of time in GEMOC that mixes both horizontal and vertical separation
of concerns. Indeed, GEMOC allows to define the DSML used to model the various parts in a CPS in
each phase of their development. Thus, DSML are combined both in an horizontal and vertical manners.
GEMOC relies on the UML MARTE CCSL (Clock Constraint Specific Language) to model both the
MOC for the various DSML [13, 15, 25] and the coordination between DSML using the Behavioral
Coordination Language (BECOOL) [24]. Our work in GEMOC targeted an example of horizontal sepa-
ration. This contribution targets the vertical separation. More precisely, we want to assess the relations
between the various time concerns in the various models of the same system part in a vertical separation
of concerns. In that purpose, we provide a mechanized definition for the vertical relation and eventually
apply it to CCSL.

This issue is handled by introducing an instant refinement relation inspired from time refinement in
order to ultimately combine both horizontal and vertical separation of concern in the design of hetero-
geneous systems. In time models that depict the temporal execution of heterogeneous systems, partial
orders are usually used to bind the instants together. This contribution provides a formal construct for
the time refinement in these models, as an order relation between these partial orders. This relation al-
lows the designer at the concrete level to distinguish events that are coincident at the abstract level while
preserving the properties assessed at the abstract level.

This relation is generic and can be applied to any system, the semantics of which relies on a set of
traces. It has been mechanized with the Agda proof assistant, in order to be linked with a denotational
semantics of CCSL, that has already been mechanized using Agda. This allows assessing properties of
this new relation and prove that it preserves the different CCSL operators semantics. This contribution
relies on a simple example of oversampling in a synchronous system.

Mathieu Montin et al. 3

1.3 State of the art

Refinement has been thoroughly studied [36, 37] and implemented for many different modeling and
programming concerns like data [38] and algorithms (sequential [7], concurrent [6], distributed, etc).
Time can be represented with a single global reference clock that binds all clocks in the system to-
gether [27, 10]. However, since building these global clocks is usually tricky, time is more often ab-
stracted as a partial order relation [35, 26]. Refinement [1] then relies on simulation [21, 22] or bisimu-
lation relations between the semantics of the more abstract and concrete system models.

Our proposal provides a mechanized refinement relation formalized in the Agda proof assistant. We
target its coupling with a previous mechanization of the semantics of CCSL in the same proof assistant.
This relation can be integrated with any other concurrent languages. Formal mechanization of time
models has already been done using other formal methods, for example [19] uses Higher Order Logic in
Isabelle/HOL; [17] and [34] use the Calculus of Inductive Constructions in Coq, see [8]. The use of Agda
in this development is motivated by the expressiveness of the language and its underlying unification
mechanism, which provides an efficient interactive proof experience that other tools might lack. More
on Agda can be found in [33], [28] and [9]. Although Agda differs from Coq by several aspects, both
of these tools rely on the same underlying intuitionist type theory, first described in [30] and clarified in
[31]. The paper version of CCSL denotational semantics, which is connected to this work, can be found
in [14]. TimeSquare, the tool developed to describe CCSL systems as well as solve constraint sets has
been presented in [16]. As for CCSL itself, it was first presented in [5].

1.4 Two different ways of considering refinement

Refinement is a relation between the trace semantics of two systems, a more abstract and a more concrete
one that can be assessed in two different ways. While these possibilities rely on different approaches,
they are ultimately equivalent. Either the concrete system is derived from the first system in a correct
by construction manner, and refinement is ensured by the a correct by construction derivation method,
or both systems are provided independently and refinement is assessed relying on mapping information
between both systems.

The first approach can be considered as an accretion of events. It is advocated for example by the
Event-B method. It consists in building step by step correct by construction trace generators (through an
operational semantics). Each step consisting in a layer of concretization, hence a layer of refinement. At
a given time in this process, only the events used in the levels already described are existing. This means
that the set of events evolves throughout the development of the system. This operational view is akin,
as explained, to correct-by-construction development of systems from the abstract specification to the
concrete executable program. Sets of traces can then possibly be created through the different possible
executions of the more concrete version of the system. The relations binding the different events in these
traces are deduced from properties written on the specification and preserved through the refinement
process.

The second approach relies on building both sets of possible traces itself. Refinement can be assessed
on these sets (usually described through a partial order over the instants on which events occur) regardless
of the generators of these traces. This vision require to express refinement on the traces themselves,
through relations instead of functions. This approach can be applied later in the development process as
it does not require the system to be built throughout a correct-by-construction methodology. The traces
contain all the events of the system, regardless of the level of refinement on which they appear. This
paper present a relation that has to be satisfied in order to verify refinement in such cases. This relation,

4 Ordering Strict partial orders to model refinement

rather than constraining the generator of the traces or the events themselves, constrain the partial order
that bind them in each layer of refinement.

These two visions are somewhat conceptually opposed and the tools used to model and describe
them differ as well. We chose to use Agda in this work. Set theory is akin to describe the second
approach as it naturally embeds the operation of accretion through its axioms. In type theories, as the
one on which Agda is based, subsets and union are not natural, while these tools provide the right level
of expressiveness to mechanize relations between quantities. This motivates the use of Agda for this
work where we remain descriptive and never actually compute the traces of events on which our relation
is defined.

2 Time and refinement

This section briefly introduces notions inherent to time handling in asynchronous systems, from the
instants to the strict partial orders binding them in time models, then proceeds to the core of our contri-
bution: our relation of refinement between these orders.

2.1 Instants

Instants are the main concept on which concurrent languages are defined. Informally, an instant is a
point in time where events can occur. It matches, to a certain extend, the common vision one has about
time. However, time in asynchronous systems cannot be easily depicted as a single time-line consisting
of well ordered instants. This is due to the lack of knowledge one can have regarding the execution of
such systems, when it is usually impossible to know, for all events and their respective instants, whether
one has happened before another.

Another difference with our common perception of time is that several instants can be coincident,
which means they ”happen” simultaneously. This is the case for instance when two successive events
happen so close to each other that they cannot be distinguished by a given observer. In some concurrent
languages, such as CCSL, this vision is completely embraced, since no instant can ”host” more than one
event. This means that two events that seem to occur simultaneously will still be carried by different
instants, but these instants will be coincident. This vision is closely linked to the notion of refinement,
because it assumes that there exists no ultimate level of refinement on which an observer can know
everything about the behavior of a system, since two coincident instants can always be distinguished
when looking close enough to the execution of the system. Our relation of refinement heavily relies on
this observation. Let us name this set of instants I.

2.2 Strict partial orders

As explained in the previous subsection, time cannot be seen as a single line that hosts any event occur-
rence. Instead, it contains a possibly infinite set of timelines that link instants that are observationally
related. This means that the set of instants is not coupled with a total order but rather with a partial order
that represents the knowledge the observer has of the behavior of the system. This means that each pair
of instant is either:

• strictly comparable, through a precedence relation ≺
• equivalent, through a coincidence relation ≈
• independent, which means neither equivalent nor precedent

Mathieu Montin et al. 5

This is important to note that a partial order is not a single relation. It consists in two relations (the one
defined above) that must fulfil certain properties, which are, as a reminder:

• ≈ is an equivalence relation

– ≈ is reflexive: ∀i ∈ I : i≈ i
– ≈ is transitive: ∀(i, j,k) ∈ I3 : i≈ j∧ j ≈ k⇒ j ≈ k
– ≈ is symmetrical: ∀(i, j) ∈ I2 : i≈ j⇒ j ≈ i

• ≺ is irreflexive towards ≈: ∀(i, j) ∈ I2 : i≺ j⇒¬(i≈ j)

• ≺ is transitive: ∀(i, j,k) ∈ I3 : i≺ j∧ j ≺ k⇒ j ≺ k

• ≺ respects ≈: (∀(i, j,k) ∈ I3 : i≈ j∧ i≺ k⇒ j ≺ k)∧ (∀(i, j,k) ∈ I3 : i≈ j∧ k ≺ i⇒ k ≺ j)

An example of strict partial order Let us consider the usual morning routine of Alice. She gets up
then either takes her shower first then eats or the other way around. She always sings when she showers.
After that, she takes off for work. The two possible traces depicting her behavior over a single day are
depicted in Figure 1a and 1b. They consider the following set of possible events: getting up, showering,
singing, eating and taking off, with their respecting aliases ”up”, ”sho”, ”sin”, ”eat” and ”off”.

up eat sho/sin off

(a) A first possible behavior

up sho/sin eat off

(b) A second possible behavior

Figure 1: Both possible behaviors

These possible behaviors are described by a time structure (derived from event structure [23, 40])
with an underlying partial order, that is depicted on Figure 2. The events ”sho” and ”eat” are concurrent
and are not linked by any of the two relations composing the strict partial order. The blue vertical
dashed line represents coincidence (when events occur simultaneously) while the red arrows represent
precedence.

up

sho

off

eat

sin

Figure 2: The underlying partial order

2.3 Our relation over strict partial orders

These reminders about strict partial orders and instants lead to the definition of the proposed refinement
relation. As our approach is part of a denotational context, we need to express a relation between certain

6 Ordering Strict partial orders to model refinement

data that are relevant to express refinement. These data cannot be the mere instants as these are not
specific to a given execution, and these do not carry enough information. However, the strict partial
orders binding them embed the necessary knowledge about the system behavior to be ordered in a way
that respects the proposed time related instant refinement. Thus, we propose to instantiate these so-called
data with the orders binding the instants together at a given level of observation. This binding of orders
between instants and not instants themselves is the core contribution of this paper. The following relation
takes two strict partial orders and states what it means for them to be in a relation of refinement.

Let Ω be the set of all sets : ∀I ∈Ω,∀(<c,<a,≈c,≈a) ∈ (I× I)4 :

(<c,≈c)<r (<a,≈a)
d⇐⇒∀(i1, i2) ∈ I :

i1 <c i2⇒ i1 <a i2∨ i1 ≈a i2 (1)
∧ i1 <a i2⇒ i1 <c i2 (2)
∧ i1 ≈c i2⇒ i1 ≈a i2 (3)
∧ i1 ≈a i2⇒ i1 ≈c i2∨ i1 <c i2∨ i2 <c i1 (4)

In this definition, the level annotated by the index c is the lower (the more concrete) level of observa-
tion and a is the higher (the more abstract). We state what it means for a pair of relations to refine another
pair of relations. We can only compare pairs of relations that are bounded to the same underlying set.
This relation is composed of four predicates, each of which indicates how one of the four relations is
translated into the other level of observation.

• Precedence abstraction: If a strictly precedes b in the lower level, then it can either be equivalent
to it in the higher level or still precede it. This means that a distinction which is visible at a lower
level can either disappear at a higher level or remain visible, depending on the behavior of the
refinement around these instants.

• Precedence embodiment: If a strictly precedes b in the higher level, then it can only still precede it
in the lower level. This means that the distinction between these instants was already existing in the
higher level, and cannot be lost when refining. Looking closer to a system preserves precedence
between instants.

• Coincidence abstraction: If a is equivalent to b in the lower level, it can only stay equivalent in
the higher level. This means that looking at the system from a higher point of view cannot reveal
temporal distinction between events.

• Coincidence embodiment: If a is equivalent to b in the higher level then the only thing we ensure is
that these two instants are still related in the lower level. This means that both instants will still be
related – they cannot become independent – but there is no guarantee on the nature of this relation.

This definition is coherent with CCSL point of view where instants can only hold one event. Two
instants appearing coincident in a given level of refinement can potentially always be refined up to a point
where a distinction appears, which justifies the fact that they should not be attached to the same physical
instant.

3 A refinement example

The mathematical relation defined above aims at providing a formal construct to verify refinement be-
tween traces of execution. To illustrate its relevance, we propose to apply it to a simple example chosen
for its simplicity and accuracy with respect to the idea of refinement. This is a simple system whose

Mathieu Montin et al. 7

Offstart On

Switch on

Switch off

Execute

Figure 3: A simple system

behavior is represented as a transition system depicted on Figure 3. This system can be switched on
and off. While it is on, an action can be executed any number of times. A possible trace – amongst an
infinite number of them – of this system is depicted in Figure 4. ton, toff and tex respectively represent the
occurrence of the ”switch on”, ”switch off” and ”execute” transitions.

ton toff ton tex tex toff ton tex toff

Figure 4: A trace on a single timeline

This trace starts with the birth of the system and possibly goes on indefinitely, which makes this
representation partial. In addition, this design places each event on the same timeline, thus ignoring
horizontal separation. In order to make it visible, we will represent, from now on, every different event
on a specific timeline, such as on Figure 5. This approach is used in CCSL, where each timeline is
represented by a clock which tracks the occurrences of a specific event. The instants on each timeline
are totally ordered and those in the same vertical dashed blue lines are coincident.

ton

toff

tex

Figure 5: One timeline per event

The action executed by the system while running can be specified in various ways. We imagine here
that our system is connected to a light through the use of a memory containing a variable x. This variable
is assigned by our system to the values 1 or 0, and the light is turned on and off accordingly. When the
system is switched on, the light remains down until a button is pressed which turns it on. Pressing the
same button will alternatively turn it off and on. Shutting down the system turns it off. This behavior is
depicted on Figure 6.

By specifying our system behavior, we defined events that can be added to its traces. tx0 and tx1

respectively correspond to the variable x being assigned 0 and 1. These additions belong to horizontal
separation since we added a new part to our system (the module linked to the light). One of these possible
traces is depicted in Figure 7. Some events are occurring simultaneously, for instance ton always occurs
on an instant coincident to an occurrence of tx0 . Such relations between events can be defined in CCSL
(a simple case of sub-clocking).

It is important to notice that when specifying the action executed by this system, we implicitly took
a certain point of view. We deliberately ignored some lower level concerns such as the way a computer
system handles a memory. This is where vertical separation takes place. Seeing closer to the machine
will lead to other events which can refine the access to the variable x. For instance, the ”switch on”

8 Ordering Strict partial orders to model refinement

Offstart On

ton {x← 0}

toff {x← 0}

tex {x← 1− x}

Figure 6: The system pilots a light

ton

toff

tex

tx0

tx1

Figure 7: The trace of the system with the addition of the variable x

event can be viewed as a succession of actions, such as powering up the system, retrieving the address
of x, computing (here there is no actual computation since 1 is an atomic value, but there could be in the
case of a more complicated expression) the value of 1 and storing this value at the right address. These
events, except for the first one, are used to handle the computation and the storing of a value in a memory.
Taking into account these events require to view the system at a lower level than before, in which case
its representation as a transition system is depicted in Figure 8.

1 2 3

Offstart On

ton

toff {x← 0}

tstack tcompute

tstore

tex {x← 1− x}

Figure 8: The refined system

The ”switch on” transition has been refined in several transitions. ton represents the powering of the
system, tstack the stacking of the address of x, tcompute the computing of the value of the expression 1 and
tstore the storing of the computed value at the stacked address. Note that we only refined one transition
here for the sake of clarity and simplicity. Refining the other transitions would rely on exactly the same
reasoning which is of no use for the relevance of this example.

This analyse induces two different points of view on our system. The higher level of observation is
represented on Figure 9a. The events that are not refined are omitted from now on, for the sake of clarity.
They don’t influence the reasoning we are conducting, thus their omission is acceptable.

From the higher point of view, all the instants on which the sub-events occur are equivalent both to
each other and to the containing event. Their underlying order is hidden and has no impact on the trace
of the system at this level. The lower point of view, however, is different, as depicted on Figure 9b.

Mathieu Montin et al. 9

con1

con2

cstack

ccomp

cstore

(a) The higher level of observation

con1

con2

cstack

ccomp

cstore

(b) The lower level of observation

Figure 9: Both levels of observation

For the lower level of observation, the different instants are ordered in a way such that they respect
the specification in Figure 8. The blue dashed lines represents the equivalence classes induced by the
respective partial orders while the red arrows represent the precedent relations of these orders (we did
not represent the links that can be deduced by transitivity or other properties of partial orders).

Until now, the instants on which the events occur formed an unspecified set. Since our goal is to
mechanize this example, we need to instantiate it to an actual set. We chose the natural numbers because
they allow to annotate the traces while expressing quite easily the relations at both levels of refinement.
The annotated higher level of observation is given in Figure 10a.

0 5 10con1

1 6 11con2

2 7 12cstack

3 8 13ccomp

4 9 14cstore

(a) The higher level annotated

con1

con2

cstack

ccomp

cstore

0 5 10

1

2

3

4

6

7

8

9

11

12

13

14

(b) The lower level annotated

Figure 10: Both annotated levels of observation

This representation allows us to define the coincidence and the precedence relations that bind its
different instants, as subsets of N×N. Since both these relations must be transitive, the coincidence
must be symmetrical and they must form a strict partial order. We omit the related elements which can
be deduced from these properties.

Coincidence Relation Precedence Relation
(0 , 1) (0 , 2) (0 , 3)

(0 , 5)
(0 , 4) (5 , 6) (5 , 7)
(5 , 8) (5 , 9) (10 , 11)

(5 , 10)
(10 , 12) (10 , 13) (10 , 14)

Since the traces are infinite, there are an infinite number of couples in each relations. We only
expressed them for the visible subset. We now define these relations for any natural number, by relying
on euclidean decomposition of their operands by 5:

10 Ordering Strict partial orders to model refinement

∀(a,a′) ∈ N2,∃! (q,r,q′,r′) ∈ N4 : a = 5q+ r∧ r < 5∧a′ = 5q′+ r′∧ r′ < 5

These relations, using the same notation, are defined as follow:

∀(a,a′) ∈ N2,a≈2 a′⇔ q = q′

∀(a,a′) ∈ N2,a <2 a′⇔ q < q′

The same work can be achieved for the lower level of observation, which is displayed on Figure 10b.
The relations extracted from Figure 10b are depicted in the table below. As previously explained, only
the relevant couples are mentioned.

Coincidence Relation Precedence Relation
(0 , 1) (1 , 2) (2 , 3) (3 , 4)
(5 , 6) (4 , 5) (6 , 7) (7 , 8)

(10 , 11) (8 , 9) (9 , 10) (11 , 12)
. . . (12 , 13) (13 , 14) . . .

By taking the same decomposition as before, we can mathematically define the relations at the lower
level of observation.

∀(a,a′) ∈ N2,a≈1 a′⇔ (q1 = q2)∧ ((r1,r2) ∈ [0,1]2∨ (r1 = r2∧ r1 /∈ [0,1]))
∀(a,a′) ∈ N2,a <1 a′⇔ (q1 < q2)∨ ((q1 = q2)∧ (r1 < r2)∧ (r2 6= 1))

Since both couples of relations have been defined mathematically, we can prove that they correspond
to a situation of refinement. The proof has been done both on paper and in Agda, and is not presented
here. It is however available on the first author’s web page 1. The steps in this proof are the following:

• Prove that the two couples of relation form strict partial orders (12 predicates).

• Prove that these orders satisfy the refinement relation (4 predicates).

4 Mechanization of the refinement relation

This work is supported by a significant effort of mechanization. We advocate that any proof and formal-
ization should be done through formal methods in order both to ease and verify the mathematical content
of the work. In our case, this effort has been done using a proof assistant called Agda. We briefly present
it in this section before getting to the benefits of this mechanization.

4.1 Agda

Agda is a dependently typed programming language developed by Ulf Norell at Chalmers University. As
any other language, the types of which can depend on values, it is expressive enough to build mathemat-
ical theories, thanks to the Curry-Howard isomorphism, which ensures the correctness of any property
whose equivalent type is inhabited. The core of the language is an intuitionist type theory, on which
the well-known tool Coq is based as well. Although these two languages share the same heart, they are
quite different when it comes to developing and proving properties. Coq uses named tactics, the action
of which is hidden from the reader of the Coq file – as well as the underlying lambda-terms – while

1http://montin.perso.enseeiht.fr

http://montin.perso.enseeiht.fr

Mathieu Montin et al. 11

Agda provides a framework to help the programmer write them by hand, thus making them visible in the
Agda file. This framework is what makes programming in Agda possible since typed lambda terms are
arguably impossible to write without software assistance, assuming their type reaches a certain level of
complexity.

Agda also differs from Coq by its native unification mechanism, which is usually summarized by
”Agda allows to pattern-match on equality proofs”. Although unification can hardly be reduced to this
simple sentence, Agda indeed allows to case-split on the equality proofs, thus unifying the operands of
the equality. More generally, Agda is able to infer, by unification, the value of variables present in the
context of a proof. Coq does not provide such a straight-forward mechanism and handles cases usually
solved by unification in Agda with other ways that we find less convenient.

The rest of this paper contains small pieces of Agda code, depicting either data structures, predicates
or proofs established during our development. Although these blocks help assessing the technical aspects
of our work, their understanding is not mandatory to grasp the notions we describe and the reasoning
behind them. Their goal is to briefly picture what Agda proofs look like and to help the reader assess the
underlying effort of this work. Here is our relation written in Agda:

≺≈ : ∀ {`} → Rel (Rel A ` × Rel A `) _

(_≈1_ , _≺1_) ≺≈ (_≈2_ , _≺2_) =

(∀ {a b} → a ≺1 b → a ≺2 b] a ≈2 b) ×
(∀ {a b} → a ≺2 b → a ≺1 b) ×
(∀ {a b} → a ≈2 b → a ≈1 b] a ≺1 b] b ≺1 a) ×
(∀ {a b} → a ≈1 b → a ≈2 b)

4.2 Properties of the refinement relation

It looks reasonable to assume that our refinement relation should be a strict partial order between strict
partial orders. Being able to prove such property would enforce the correctness of our definition towards
the refinement requirement. However, as we mentioned earlier, a strict partial order is based on an
equivalence relation. This relation could be the propositional equality, or another relation that we defined.
We tried both possibilities, and we present the results of these attempts in this section.

4.2.1 It is a pre-order towards propositional equality

As a reminder, a pre-order is an algebraic structure composed of an equivalence relation and a precedence
relation which is transitive and reflexive according to the equivalence relation. We showed that our
refinement relation formed a pre-order towards the propositional equality. The propositional equality, in
dependent types, is a family of types generated by the reflexivity rule. This means that two quantities are
propositionally equal if they were built with the same constructors. We start by proving that our relation
is transitive:
trans≺≈ : ∀ {`} → Transitive (_≺≈_ {`})
trans≺≈ p q {a} {b} with p {a} {b} | q {a} {b} | p {b} {a}

trans≺≈ p q {a} {b} | pr1 , pr2 , pr3 , pr4 | pr5 , pr6 , pr7 , pr8 | _ , pr10 , _ , _

= (λ x → case pr1 x of (λ {(inj1 x1) → pr5 x1 ; (inj2 y) → inj2 (pr7 y)})) ,

(λ x → pr2 (pr6 x)) , (λ x → pr7 (pr3 x)) , (λ x → case pr8 x of (λ {(inj1 x1) → pr4 x1
; (inj2 (inj1 x1)) → inj2 (inj1 (pr2 x1)) ; (inj2(inj2 y)) → inj2 (inj2 (pr10 y))}))

We also prove it is reflexive:

refl≺≈ : ∀ {`} → Reflexive (_≺≈_ {`})
refl≺≈ = (λ x → inj1 x) , (λ x → x) , (λ z → z) , (λ x → inj1 x)

12 Ordering Strict partial orders to model refinement

This allows us to exhibit the pre-order we aimed for.

preorder≺≈≡ : ∀ {`} → IsPreorder _≡_ (_≺≈_ {`})
preorder≺≈≡ = record { isEquivalence = isEquivalence

; reflexive = λ {i} {j} x → case x of (λ {refl → refl≺≈ {x = i}}) ; trans = trans≺≈ }

4.2.2 It is a partial order towards the equivalence between relations

Two relations are equivalent when the subset they form are equal. We implemented this definition for
our couples of relations:

≈≈ : ∀ {`} → Rel (Rel A ` × Rel A `) _

(_≈1_ , _≺1_) ≈≈ (_≈2_ , _≺2_) = ∀ {a b} →
(a ≈1 b → a ≈2 b) ×
(a ≈2 b → a ≈1 b) ×
(a ≺1 b → a ≺2 b) ×
(a ≺2 b → a ≺1 b)

A partial order is a pre-order with an anti-symmetrical property between its two underlying rela-
tions. We already proved that our refinement relation was transitive, but we still need to prove that our
equivalence relation is indeed an equivalence and that the properties of reflexivity and antisymmetry hold
between them. The equivalence is obvious and is not presented here. The reflexivity is proved as follow:

refl≺≈≈ : ∀ {`} → (_≈≈_ {`}) ⇒ (_≺≈_ {`})
refl≺≈≈ x {a} {b} with x {a} {b}

refl≺≈≈ x {a} {b} | proj3 , proj4 , proj5 , proj6 =

(λ x1 → inj1 (proj5 x1)) , (λ x1 → proj6 x1) , (λ x1 → proj3 x1) , (λ x1 → inj1 (proj4 x1))

As for the antisymmetry:

antisym≺≈ : ∀ {`} → Antisymmetric _≈≈_ (_≺≈_ {`})
antisym≺≈ x x1 {a} {b} with x {a} {b} | x1 {a} {b}

antisym≺≈ x1 x2 {a} {b} | proj3 , proj4 , proj5 , proj6 | proj7 , proj8 , proj9 , proj10
= (λ x → proj5 x) , (λ x → proj9 x) , (λ x → proj8 x) , (λ x → proj4 x)

This allows us to exhibit the partial order we aimed for:

partialOrder≺≈≈ : ∀ {`} → IsPartialOrder _≈≈_ (_≺≈_ {`})
partialOrder≺≈≈ = record

{ isPreorder = record { isEquivalence = equiv≈≈ ; reflexive = refl≺≈≈ ; trans = trans≺≈ }

; antisym = antisym≺≈ }

4.3 It preserves CCSL operators

CCSL denotational semantics: In a previous work, we mechanized the denotational semantics of
CCSL in Agda. This section gives the required notions about this mechanization in order to connect it
to our refinement relation.

CCSL is based on clocks, which represents the different occurrences of a specific event. Typically,
a clock represents one of the different timelines we depicted in the different figures in this paper. In our
work, we represent clocks by a record containing a predicate to emulate the subset of instants on which
this clock ticks, and a predicate which makes sure the ticks of the clocks are totally ordered regarding
the given strict partial order:

Mathieu Montin et al. 13

record Clock : Set1 where

constructor

clock

field

Ticks : Pred Support lzero

TicTot : _≺_ isTotalFor Ticks

CCSL provides several constructs to constrain the different clocks of a system amongst each other.
They are grouped into two different categories: the relations and the expression. A relation is a direct
constraint between two clocks, while an expression, in our denotational semantics, is a predicate over
three clocks:

Relation : Set1
Relation = Clock → Clock → Set

Expression : Set1
Expression = Clock → Clock → Clock → Set

The goal of this paper is not to detail the whole semantics, hence we only give one example of each
of these categories. The relation we present is the sub-clocking. A clock c1 is a sub-clock of a clock c2
when T (c1)⊂ T (c2):

v : Relation

(clock Tc1 _) v (clock Tc2 _) = ∀ {x1} → x1 ∈ Tc1 → ∃ \x2 → x1 ≈ x2 × x2 ∈ Tc2

The expression we will present is the union. A clock c is considered the union of a clock c1 and a
clock c2 when T (c) = T (c1)∪T (c2):

≡∪_ : Expression

clock Tc _ ≡ clock Tc1 _ ∪ clock Tc2 _ =

(∀ {i} → (Tc1 i] Tc2 i) → ∃ \j → i ≈ j × Tc j)

× (∀ {i} → Tc i → ∃ \j → i ≈ j × (Tc1 j] Tc2 j))

A relation between clocks: This clock definition allows extending our refinement relation to clocks.
Informally, a clock refines another one when it represents a thinner event which was hidden by the first
clock. For instance, if we get back to our example, the ”switch on” clock is refined by several clocks,
including the ”compute” one. Let us consider the following definition:

refc : REL (Clock _) (Clock _) _

(clock Ticks1 _) refc (clock Ticks2 _) =

× (∀ {x} → Ticks2 x → ∃ λ y → Ticks1 y × (y ≈2 x))

× (∀ {x} → Ticks1 x → ∃ λ y → Ticks2 y × (y ≈2 x))

A clocks refines another if they are defined on refined partial orders, while also obeying the following
predicates: each tick of the more abstract clock is refined by at least one tick of the concrete clock and
each tick of the concrete clock is the refinement of a tick of the abstract clock.

Proofs of semantic preservation: We prove the preservation of the semantics of the CCSL constructs
towards the refinement relation. This preservation is described and discussed about the two semantic
elements we presented, the sub-clocking and the union. The proofs are not presented here because they
are not relevant but they are available online. The preservation property about sub-clocking is as follows:
given four clocks ca,cb,c1,c2, if c1 is a sub-clock of c2, if c1 refines ca and c2 refines cb then ca is a
sub-clock of cb.

subclockingRefinement : c1 v1 c2 → c1 ≺refc c11 → c2 refc c22 → c11 v2 c22

14 Ordering Strict partial orders to model refinement

The preservation property about union is a follows: given four clocks c0 c1, c2 and c, if c1 refines c,
if c2 refines c and if c0 = c1∪ c2 then c0 refines c.

unionRefinement : c1 refc c → c2 refc c → c0 ≡ c1 ∪ c2 → c0 refc c

5 Conclusion

5.1 Assessment

This contribution provided a refinement relation for time models that allows system developers focusing
on their own view of the system rather than a common view shared among each of them. This enables
seizing their constraints even better without taking into account considerations from other levels of ob-
servation. The constraints on the system can then be described and solved at all different levels with the
assurance that none of them will be compromising the others. Furthermore, instant refinement can be
used to specify simulations and bisimulations (or mostly weak bisimulations) between systems. In this
case, the two specifications would not be different observation levels of the same system, but different
ways of specifying its behavior, or different systems that must satisfy the same interface.

More precisely, this paper presented a relation over strict partial orders whose goal is to model instant
refinement. Each level of abstraction is represented by a specific strict partial order while keeping the
link between them. This definition is mechanized in Agda, which allowed us to prove different algebraic
properties about it as well as connecting it to the mechanization of CCSL made in a previous work. The
bridge between these two works allowed us to prove the preservation of several CCSL operators through
our relation of refinement.

5.2 Future works

Several future works are currently being conducted:

• Ultimately, we would like to allow the system developers to express their constraints at the most
suitable level of abstraction. This could only be done if their constraints are propagated in the other
levels where other constraints are specified. Thus, we plan to complete the link between CCSL
and our instant refinement through the proof of multiple preservation properties. This extension
could also lead to automated reduction of constraints sets relying on additional properties about
CCSL operators.

• The CCSL team at INRIA2 plans to integration our notion of refinement to their toolsets. While
refinement cannot be considered as yet another CCSL operator, it could still be used to provide
more expressiveness through the use of several partial orders instead of a single one.

• We would like to apply our approach to a more complex example. In that purpose, we would
like to refactor and complete our previous work regarding the proof of correctness of a translation
between langages (process models to Petri nets) as a weak bisimulation that binds these languages
with our refinement relation. Indeed, weak bisimulation can be seen as a special case of refinement
which we would like to investigate.

2We thank the CCSL team at INRIA for the fruitful discussions we had around CCSL and the need for a refinement relation.

Mathieu Montin et al. 15

References

[1] Martı́n Abadi & Leslie Lamport (1991): The Existence of Refinement Mappings. Theor. Comput. Sci. 82(2).

[2] Jean-Raymond Abrial (2005): The B-book - assigning programs to meanings. Cambridge University Press.

[3] Jean-Raymond Abrial (2010): Modeling in Event-B - System and Software Engineering. Cambridge Univer-
sity Press.

[4] Jean-Raymond Abrial, Dominique Cansell & Dominique Méry (2005): Refinement and Reachability in
EventB. In Helen Treharne, Steve King, Martin C. Henson & Steve A. Schneider, editors: ZB 2005: Formal
Specification and Development in Z and B, 4th International Conference of B and Z Users, Guildford, UK,
April 13-15, 2005, Proceedings, Lecture Notes in Computer Science 3455, Springer, pp. 222–241.

[5] Charles André & Frédéric Mallet (2008): Clock Constraints in UML/MARTE CCSL. Research Report RR-
6540, INRIA.

[6] Ralph-Johan Back (1989): Refinement Calculus, Part II: Parallel and Reactive Programs. In: Stepwise
Refinement of Distributed Systems, Models, Formalisms, Correctness, REX Workshop, Mook, The Nether-
lands, May 29 - June 2, 1989, Proceedings, pp. 67–93.

[7] Ralph-Johan Back & Joakim von Wright (1989): Refinement Calculus, Part I: Sequential Nondeterminis-
tic Programs. In: Stepwise Refinement of Distributed Systems, Models, Formalisms, Correctness, REX
Workshop, Mook, The Netherlands, May 29 - June 2, 1989, Proceedings, pp. 42–66.

[8] Yves Bertot & Pierre Castéran (2004): Interactive Theorem Proving and Program Development - Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS Series.

[9] Ana Bove & Peter Dybjer (2008): Dependent Types at Work. In: Language Engineering and Rigorous
Software Development, Intl. LerNet ALFA Summer School 2008, Piriapolis, Uruguay, February 24 - March
1, 2008, Revised Tutorial Lectures, pp. 57–99.

[10] Manfred Broy (2001): Refinement of time. Theor. Comput. Sci. 253(1), pp. 3–26.

[11] Joseph T. Buck, Soonhoi Ha, Edward A. Lee & David G. Messerschmitt (1994): Ptolemy: A Framework for
Simulating and Prototyping Heterogenous Systems. Int. Journal in Computer Simulation 4(2).

[12] Benoı̂t Combemale, Julien DeAntoni, Benoit Baudry, Robert B. France, Jean-Marc Jézéquel & Jeff Gray
(2014): Globalizing Modeling Languages. IEEE Computer 47(6).

[13] Benoı̂t Combemale, Julien DeAntoni, Matias Vara Larsen, Frédéric Mallet, Olivier Barais, Benoit Baudry
& Robert B. France (2013): Reifying Concurrency for Executable Metamodeling. In: Software Language
Engineering - 6th Intl. Conf., SLE 2013, Indianapolis, IN, USA, October 26-28, 2013. Proc.

[14] Julien Deantoni, Charles André & Régis Gascon (2014): CCSL denotational semantics. Research Report
RR-8628.

[15] Julien DeAntoni, Papa Issa Diallo, Ciprian Teodorov, Joël Champeau & Benoı̂t Combemale (2015): Towards
a meta-language for the concurrency concern in DSLs. In: Proc. of the 2015 Design, Automation & Test in
Europe Conf. & Exhibition, DATE 2015, Grenoble, France, March 9-13, 2015.

[16] Julien Deantoni & Frédéric Mallet (2012): TimeSquare: Treat your Models with Logical Time. In: TOOLS -
50th Intl. Conf. on Objects, Models, Components, Patterns - 2012.

[17] Manuel Garnacho, Jean-Paul Bodeveix & Mamoun Filali-Amine (2013): A Mechanized Semantic Framework
for Real-Time Systems. In: Formal Modeling and Analysis of Timed Systems - 11th Intl. Conf., FORMATS
2013, Buenos Aires, Argentina, August 29-31, 2013. Proc.

[18] Mike Gemünde, Jens Brandt & Klaus Schneider (2013): Clock refinement in imperative synchronous lan-
guages. EURASIP J. Emb. Sys. 2013.

[19] Roger Hale, Rachel Cardell-Oliver & John Herbert (1993): An Embedding of Timed Transition Systems in
HOL. Formal Methods in System Design 3(1/2).

16 Ordering Strict partial orders to model refinement

[20] Cécile Hardebolle & Frédéric Boulanger (2007): ModHel’X: A Component-Oriented Approach to Multi-
Formalism Modeling. In: Models in Software Engineering, Workshops and Symposia at MoDELS 2007,
Nashville, TN, USA, September 30 - October 5, 2007, Reports and Revised Selected Papers.

[21] Jifeng He (1989): Process Simulation and Refinement. Formal Asp. Comput. 1(3), pp. 229–241.
[22] Wim H. Hesselink (2011): Simulation refinement for concurrency verification. Sci. Comput. Program. 76(9),

pp. 739–755.
[23] Leslie Lamport (1978): Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM

21(7), pp. 558–565.
[24] Matias Ezequiel Vara Larsen, Julien DeAntoni, Benoı̂t Combemale & Frédéric Mallet (2015): A Behavioral

Coordination Operator Language (BCOoL). In: 18th ACM/IEEE Intl. Conf. on Model Driven Engineering
Languages and Systems, MoDELS 2015, Ottawa, ON, Canada, September 30 - October 2, 2015.

[25] Florent Latombe, Xavier Crégut, Benoı̂t Combemale, Julien DeAntoni & Marc Pantel (2015): Weaving con-
currency in executable domain-specific modeling languages. In: Proc. of the 2015 ACM SIGPLAN Intl.
Conf. on Software Language Engineering, SLE 2015, Pittsburgh, PA, USA, October 25-27, 2015.

[26] Nancy A. Lynch & Frits W. Vaandrager (1995): Forward and Backward Simulations: I. Untimed Systems.
Inf. Comput. 121(2), pp. 214–233.

[27] Nancy A. Lynch & Frits W. Vaandrager (1996): Forward and Backward Simulations, II: Timing-Based Sys-
tems. Inf. Comput. 128(1), pp. 1–25.

[28] Jan Malakhovski: Brutal [Meta]Introduction to Dependent Types in Agda.
[29] Louis Mandel, Cédric Pasteur & Marc Pouzet (2015): Time refinement in a functional synchronous language.

Sci. Comput. Program. 111.
[30] Per Martin-Löf (1972): An Intuitionistic Theory of Types. Available at http://archive-pml.github.io/

martin-lof/pdfs/An-Intuitionistic-Theory-of-Types-1972.pdf.
[31] Per Martin-Löf (1984): Intuitionistic type theory. Notes by Giovanni Sambin. Studies in Proof Theory.

Available at http://archive-pml.github.io/martin-lof/pdfs/Bibliopolis-Book-1984.pdf.
[32] Jan Mikac & Paul Caspi (2005): Temporal refinement for Lustre. In: Proc. of the 5th Intl. Workshop on

Synchronous Languages, Applications and Programs, Edimburg, April 2005.
[33] Ulf Norell (2009): Dependently typed programming in Agda. In: Proc. of TLDI’09: 2009 ACM SIGPLAN

Intl. Workshop on Types in Languages Design and Implementation, Savannah, GA, USA, January 24, 2009.
[34] Christine Paulin-Mohring (2001): Modelisation of Timed Automata in Coq. In: Theoretical Aspects of

Computer Software, 4th Intl. Symp., TACS 2001, Sendai, Japan, October 29-31, 2001, Proc.
[35] Amir Pnueli (1977): The Temporal Logic of Programs. In: 18th Annual Symposium on Foundations of

Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, IEEE Computer Society,
pp. 46–57.

[36] Steve Reeves & David Streader (2003): Comparison of Data and Process Refinement. In Jin Song Dong
& Jim Woodcock, editors: Formal Methods and Software Engineering, 5th International Conference on
Formal Engineering Methods, ICFEM 2003, Singapore, November 5-7, 2003, Proceedings, Lecture Notes in
Computer Science 2885, Springer, pp. 266–285.

[37] Steve Reeves & David Streader (2008): General Refinement, Part One: Interfaces, Determinism and Special
Refinement. Electr. Notes Theor. Comput. Sci. 214, pp. 277–307.

[38] Willem P. de Roever & Kai Engelhardt (1998): Data Refinement: Model-oriented Proof Theories and their
Comparison. Cambridge Tracts in Theoretical Computer Science 46, Cambridge University Press.

[39] Jean-Pierre Talpin, Paul Le Guernic, Sandeep K. Shukla, Frederic Doucet & Rajesh K. Gupta (2004): Formal
Refinement Checking in a System-level Design Methodology. Fundam. Inform. 62(2), pp. 243–273.

[40] Glynn Winskel (1986): Event Structures. In: Petri Nets: Central Models and Their Properties, Advances in
Petri Nets 1986, Part II, Proc. of an Advanced Course, Bad Honnef, 8.-19. September 1986.

http://archive-pml.github.io/martin-lof/pdfs/An-Intuitionistic-Theory-of-Types-1972.pdf
http://archive-pml.github.io/martin-lof/pdfs/An-Intuitionistic-Theory-of-Types-1972.pdf
http://archive-pml.github.io/martin-lof/pdfs/Bibliopolis-Book-1984.pdf

	Introduction
	Separation of concerns
	Context
	State of the art
	Two different ways of considering refinement

	Time and refinement
	Instants
	Strict partial orders
	Our relation over strict partial orders

	A refinement example
	Mechanization of the refinement relation
	Agda
	Properties of the refinement relation
	It is a pre-order towards propositional equality
	It is a partial order towards the equivalence between relations

	It preserves CCSL operators

	Conclusion
	Assessment
	Future works

