
Submitted to:
Refinement Workshop 2018

c© Ian J. Hayes
This work is licensed under the
Creative Commons Attribution License.

Challenges of specifying
concurrent program components∗

Ian J. Hayes
School of Information Technology and Electrical Engineering,

The University of Queensland, Australia

The purpose of this paper is to review some of the challenges of formally specifying components of
shared-memory concurrent programs. The focus is to provide an abstract specification of a compo-
nent that is suitable for use both by clients of the component and as a starting point for refinement
to an implementation of the component. We present some approaches to devising specifications,
investigating different forms of specification suitable for different contexts. We examine handling
atomicity of access to data structures, blocking operations and progress properties, and transactional
operations that may fail and need to be retried.

1 Introduction

The objective of this paper is to present challenges to do with specifying concurrent program compo-
nents in order to promote discussion about possible different alternatives. Our main foci are atomicity,
blocking operations and transactional operations in the context of rely/guarantee specifications. Our aim
is to present the ideas rather than a fully formal development. Specifications play an important role in
decoupling the use of a component from its detailed implementation. Often the role of specifications as
a starting points for refinement to an implementation is emphasised but here we would like to balance
that with their role of being used by other components. Hence we try to focus on a top-down approach
to concurrent program specification, rather than a bottom-up approach.

Sequential programs. For sequential programs conventional Floyd/Hoare-style specifications [3, 9]
in terms of preconditions and postconditions form the basis of component specifications, however, just
pre and post conditions are inadequate for specifying concurrent operations because they do not handle
interference between the operations.

Shared variable concurrency. First, to state the obvious, variables that are local to a thread are not
subject to interference and hence can be treated in a manner similar to a sequential program. For variables
shared between parallel threads, interference becomes an issue. An important consideration is whether
access (e.g. read or write) of variables is atomic or not. At the lowest level, atomicity is determined by
the machine hardware and properties like its atomic access “word” size. A further complication at the
hardware level is that, due to caches and write buffers, the order of write/read accesses to shared memory
may not respect the sequential order of instruction execution. But perhaps we get a bit ahead of ourselves
if we worry about these issues when considering specifications.

A program component that needs to perform multiple atomic accesses can be subject to data races
where variables are updated in parallel by concurrent threads because the component may see inconsis-
tent data. At a more abstract level operations may be required to be atomic with respect to a shared data

∗This work was supported by Australian Research Council (ARC) Discovery Project DP130102901.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Challenges to specifying concurrent program components

structure. The implementation of such operations may require locks to ensure sequentialisation of access
to the data structure or it may use more sophisticated non-blocking algorithms that achieve the effect of
operation atomicity by utilising hardware-level atomicity [22].

A concept commonly used to show an implementation is valid is linearisability [8], whereby parallel
execution of a set of operations on a shared data structure is considered valid if it is equivalent to some
linear (sequential) execution of the same operations (subject to certain requirements).

Verifying concurrent programs. Early rules for reasoning about parallel programs by Hoare [11]
utilised preconditions and postconditions but had strict disjointness requirements on program variables
occurring in parallel threads, which effectively ruled out interference between parallel threads. The
approach of Owicki and Gries [19, 20, 21] treats parallel components like sequential programs with
intermediate assertions between each atomic step but then requires an extensive interference-freedom
proof. Concurrent separation logic [1, 18] also leverages disjointness but does so in a more fine-grained
and dynamic manner.

An early compositional approach to handle interleaved interference on shared variables was the
rely/guarantee approach of Jones [12, 13, 14]. This extended pre/post specifications with a rely condition,
a binary relation between program states expressing an assumption about the allowable interference that
any step of the environment of the component can impose on the shared variables. To constrain the inter-
ference generated by a thread, Jones uses a guarantee condition, also a binary relation on states limiting
the changes the components can make to the shared variables. The guarantee is required to be reflexive
(i.e. it contains the identity relation) so that the program may make stuttering steps that do not change the
observable variables. The guarantee of each parallel thread must imply the relies of all threads that run
in parallel with it. The rely/guarantee approach does not dictate any particular granularity of atomicity,
however, it does require all steps of a thread to satisfy its guarantee as long as all steps of the thread’s
environment satisfy its rely.

Operations that may block. At the specification level, operations may block waiting for “communica-
tion” from another thread. For example, an operation wanting to read a message from a communication
channel may need to wait for a message to be written to the channel by another thread. Specifications of
such operations need to be able to express such waiting criteria. This affects the termination behaviour
of the operation. For example, if a message is never written to a channel, a read from the channel will
never terminate (block forever). There are two approaches to specifying such operations.

• Using an explicit await construct that allows both nonterminating behaviour if the await blocks
forever and terminating behaviour if it becomes unblocked.

• An implicit approach that specifies under what conditions an operation is guaranteed to terminate
as well as its behaviour when it does terminate, e.g. a read on a message channel is guaranteed to
terminate if the channel is non-empty.

These forms can give equivalent specifications, where the explicit form may be more useful for refining
the operation, while the implicit form makes it easier to reason about using the operation. Another source
of blocking is at the implementation level where atomicity constraints on operations may lead to the use
of locks that lead to an implementation blocking awaiting a lock.

Transactional operations. Utilising locks can generate bottlenecks because operations requiring the
locks are sequentialised and on multi-processor architectures they also generate more costly memory



Ian J. Hayes 3

synchronisation primitives. One approach to avoiding (or minimising) locks is to implement operations
that do most of their work locally and then perform a final atomic commit step that may fail if another
operation has committed while the first operation was executing based on the old data [22]. Such im-
plementations suffer issues similar to livelock where they can repeatedly try and fail, potentially forever
if there is continual interference from competing parallel operations. Note that in these situations, one
of the competing threads may succeed but an individual thread may be pre-empted every time and never
succeed. Fair scheduling is assumed, i.e. every thread is executed eventually, but that does not mean an
operation a thread is executing will succeed.

Specifying such operations has to allow for the case in which an operation is continually thwarted and
may never terminate, while guaranteeing termination if the interference on the data structure eventually
quiesces. Using cω to represent the execution of a command c zero or more times, including possibly
infinitely many times, such specifications have the general form

failω ; succeed (1)

where fail represents the operation failing due to interference (and not changing the state) and succeed
represents the operation successfully completing (and updating the state once). The iteration failω may
execute fail infinitely many times representing the continual thwarting by interference from parallel
operations. Arguments about termination usually need to resort to either

• timing arguments based on minimal separation between operations in any single thread leading
to a situation in which interference will eventually quiesce for long enough for the operation to
succeed, and

• arguments based on probabilities of two (or more) operations overlapping and competing.

Note that probability bounds can be derived from timing bounds. The probability can be sensitive to
load, i.e. the more threads competing, the lower the probability of success of any single operation. And
probabilities can be sensitive to the execution time of an operation: the longer it executes, the more likely
it is to overlap with a competing operation. Of course, such timing and probability arguments depend on
the context of the use of the data structure and can be tricky in practice.

Implicit specifications can also be used for such operations by specifying the conditions under which
they are guaranteed to terminate.

Overview. Sect. 2 addresses specifying atomic operations on a shared data structure (or resource). It
examines the use of Hoare’s with statement [10] and how it interacts with rely and guarantee condi-
tions. Sect. 3 examines blocking operations giving both explicit waiting conditions and more implicit
specifications using a temporal logic formula under which an operation terminates. Sect. 4 looks at trans-
actional operations that may either succeed, or try and fail, possibly indefinitely. Both explicit waiting
and implicit temporal logic specifications are considered.

2 Specifying atomicity

As an example, consider a message queue with operations to enqueue and dequeue messages. If there are
separate concurrent threads enqueuing and dequeuing, each operation needs to (appear to be) be atomic,
i.e. other operations cannot observe the state part way through the operation. If the queue were used



4 Challenges to specifying concurrent program components

in a purely sequential program, the enqueue and dequeue operations can be specified by Morgan-style
specification commands [16, 17] as follows.

enqueue(v : Val) =̂ qu:
[
qu′ = qu_ [v]

]
dequeue()res : Val =̂ {qu 6= [ ]} ; res,qu:

[
qu = [res′]_qu′

]
The enqueue operation takes a value v to append to the queue. Its postcondition is qu′ = qu_ [v], where
qu′ stands for the final value of the queue, qu stands for the initial value, “_” is sequence concatenation,
and [v] is the singleton sequence containing v. It modifies only the queue and hence it has a frame of qu
(before the colon). The dequeue operation returns a value res that is the head of the queue and removes
it from the queue in the process; it has a precondition that the queue is non-empty.

To extend the operation specification to handle concurrency, as presented in Fig. 1, the operations
need to be augmented with rely and guarantee conditions and the atomicity of the operations needs to be
handled. In Fig. 1 the relies and guarantees are represented as rely and guarantee commands [2, 5, 7]. The
guarantee command (guar g) restricts every atomic step of the thread to satisfy g. The rely command
(rely r) represents an assumption that every environment step satisfies r; it aborts if the environment
performs a step not satisfying r, in a manner similar to the precondition command {p} aborting if the
initial state does not satisfy p. The rely and guarantee commands are combined with the remainder of
the specification using weak conjunction “e” [6, 4]. Weak conjunction is a specification operator, rather
than a programming operator. The weak conjunction ced performs steps allowed by both c and d unless
either c or d aborts at some point, in which case their weak conjunction aborts from that point.

For the message queue we assume there is a single writer thread performing enqueue operations
and a single reader thread performing dequeue operations. A suitable rely condition for enqueue is
that elements are only ever removed from the front of the queue by dequeue, i.e. the queue after any
interference is a suffix of the queue before. The rely condition for dequeue is that the interference from
concurrent enqueues only ever adds elements to the end of the queue and hence the queue before the
interference is a prefix of the queue after. The guarantees of each operation match the rely of the other
operation.

For sequential programs and in the original rely/guarantee approach the postconditions of operations
are considered end-to-end, i.e. they must hold between the states at the start and end of an operation
invocation. Such a postcondition is problematic in the context of a parallel thread modifying the queue,
for example, after an enqueue operation is initiated but before it can complete (or lock the data struc-
ture), the reader thread may dequeue a value. If the writer then completes the enqueue without further
interference, the end-to-end effect is that of both the dequeue and the enqueue, not just the enqueue.

From the above example, it is apparent that an end-to-end postcondition is not suitable in this case.
The alternative is a specification whereby the postcondition holds for some “atomic” step between the
start and end of the operation and the operation makes no changes to the queue before or after that step,
although other threads may. Here one needs to be careful about what is meant by “atomic”. For a simple
operation it may be possible to implement it by utilising hardware-level atomicity but a more complex
operation may need to lock the data structure. In the latter case, the lock is used to prevent concurrent
operations on the same data structure but does not preclude concurrent operations on unrelated data
structures overlapping their execution.

In the rely/guarantee approach a rely condition can be conditional on whether a thread has the lock
or not, so that (part of) the rely condition states that, if the thread has the lock on a data structure d, the
environment does not change d.

has lock(d) ⇒ d ′ = d (2)



Ian J. Hayes 5

resourcequ : seqVal initiallyqu = [ ]

enqueue(v : Val) =̂
(rely qu′ suffixof qu)e – implies single writer
(guar qu prefixof qu′)e – implies the rely of dequeue
with qu do qu:

[
qu′ = qu_ [v]

]
od

dequeue()res : Val =̂
(rely qu prefixof qu′)e – implies single reader
(guar qu′ suffixof qu)e – implies the rely of enqueue
{qu 6= [ ]} ; – stable under the rely condition
with qu do qu,res:

[
qu = [res′]_qu′

]
od

Figure 1: Message queue with read and write operations

2.1 Resources

The early work of Hoare [10] introduced the idea of a resource and a with statement that provides access
to the resource. A resource represents a shared data structure that is only accessible to a thread within a
command of the form,

with d do cod (3)

that ensures the resource d is not modified by the environment while the thread is executing c. A data
structure d is declared as a resource by a declaration of the form resourced, and within the scope of the
resource declaration, all uses of d must be within a with d do ...od statement.1 It is assumed that the data
structure of the resource is only accessed within with statements; this may be checked syntactically. The
implementation is responsible for ensuring the data structure isn’t modified by the environment while
executing within the with statement. The with statement allows stuttering steps before the body and
finite stuttering after the body of the with, c, is executed. As entry to a with statement by one thread may
block other threads wishing to gain access to the same resource, it is prudent to require that the bodies
of with statements terminate; that is required within this paper. The data structure of the resource often
has a data-type invariant associated with it that is established by its initialisation and maintained by each
operation (see the example in Section 3).

Fig. 1 presents the specification of a message queue with enqueue and dequeue operations. The
enqueue appends a value v to the end of the queue atomically (with respect to qu), and the dequeue
operation removes and returns the first element of the queue atomically. The dequeue operation has
a precondition that the queue is non-empty; the precondition is stable under the rely condition which
assumes the queue is only ever extended. This version assumes that there is just one reader thread
and one writer thread because the rely condition of dequeue assumes the queue can only be extended
and hence it is not concurrently being dequeued by another thread, and the rely condition of enqueue
assumes the queue can only become a suffix of its previous state and hence it is not concurrently being
enqueued by another thread.

1A more general resource construct would allow a resource to encompass a set of variables but for the examples here a
resource will correspond to a single variable, so we’ll identify the resource with the variable.



6 Challenges to specifying concurrent program components

2.2 Rely/guarantee laws for resource access

The concept of a resource may be combined with the rely/guarantee approach. When a thread enters the
body of a with d do cod statement, the rely can be strengthened for the duration of c with d ′ = d and the
guarantee weakened so that d only need satisfy the guarantee over the complete operation, not every step.
The initial step of the refinement of operations specified via a with statement needs to “move” the rely
and guarantee conditions into the body of the with but in the process the rely and guarantee conditions
are transformed. A rely condition surrounding a with statement may be strengthened when it is moved
inside the with to state that d is not modified.

(rely r)ewith d do cod v with d do(rely r∧d ′ = d)e cod (4)

For the enqueue operation above (ignoring the guarantee for the moment) this law can be applied as
follows.

(rely qu′ suffixof qu)ewith qu do qu:
[
qu′ = qu_ [v]

]
od

v by (4)
with qu do(rely qu′ suffixof qu∧qu′ = qu)equ:

[
qu′ = qu_ [v]

]
od

= as qu′ = qu V qu′ suffixof qu
with qu do(rely qu′ = qu)equ:

[
qu′ = qu_ [v]

]
od

A guarantee condition surrounding a with may be weakened so that it only has to apply for the
resource data structure over the body of the with command. It is assumed that the guarantee is of
the form gd ∧ gx, where d is the only shared variable gd refers to, and gx does not refer to d. The
weakened guarantee gx is retained to handle references to variables other than d within the guarantee.
The specification

[
gd
]

requires gd to hold end-to-end over the body of the with. The lack of a frame
allows any variables to be modified but when it is combined with c, any frame of c will apply to their
weak conjunction.

(guar gd ∧gx)ewith d do cod v with d do(guar gx)e
[
gd
]
e cod (5)

For the enqueue operation above (ignoring the rely for the moment) this law can be applied as follows.

(guar qu prefixof qu′)ewith qu do qu:
[
qu′ = qu_ [v]

]
od

v by (5) with gd =̂ qu prefixof qu′ and gx =̂ true
with qu do(guar true)e

[
qu prefixof qu′

]
equ:

[
qu′ = qu_ [v]

]
od

= as (guar true) requires no guarantee and
[
q1
]
e x:
[
q2
]
= x:

[
q1∧q2

]
with qu do qu:

[
qu prefixof qu′∧qu′ = qu_ [v]

]
od

= as qu′ = qu_ [v] V qu prefixof qu′

with qu do qu:
[
qu′ = qu_ [v]

]
od

Combining the above applications of (4) and (5), the following refinement of the enqueue operation
holds.

(rely qu′ suffixof qu)e (guar qu prefixof qu′)ewith qu do qu:
[
qu′ = qu_ [v]

]
od

v using (5) and (4)
with qu do(rely qu′ = qu)equ:

[
qu′ = qu_ [v]

]
od

Note that in the body of the with there is no explicit guarantee and the rely condition assumes that qu
is never modified by the environment and hence the refinement of the body of the with is effectively a
sequential refinement (as one would expect).



Ian J. Hayes 7

resourcequ : seqVal initiallyqu = [ ] invariant #qu≤ N

write(v : Val) =̂
(rely qu′ suffixof qu)e – implies single writer
(guar qu prefixof qu′)e – implies the rely of read
with qu await #qu < N do – stable under the rely condition
{#qu < N} ; qu:

[
qu′ = qu_ [v]

]
od

read()res : Val =̂
(rely qu prefixof qu′)e – implies single reader
(guar qu′ suffixof qu)e – implies the rely of write
with qu await qu 6= [ ] do – stable under the rely condition
{qu 6= [ ]} ; qu,res:

[
qu = [res′]_qu′

]
od

Figure 2: Message queue with blocking read and write operations

3 Specifying operations that may block

3.1 Blocking using an explicit await condition

Consider the example in Fig. 2 of a message queue with a bounded capacity of N messages. It has a write
operation that waits until the queue is not full and appends a value to the tail of the queue, and a read
operation that waits until there is a message in the queue and returns the head of the queue, removing
it in the process. The queue has a data-type invariant that its size is bounded by N. The initialisation
establishes the invariant (assuming N is a positive integer) and each operation on the queue can assume
the invariant when it starts and must be re-establish the invariant when it terminates.

A common approach to specifying potentially blocking operations is to use an await statement.
The form used here also includes a with component. The statement with d await b do cod waits until
condition b holds and then executes c. The resource d is attained each time b is evaluated, and retained
for the execution of c if b is true. For both the write and read operations the await conditions are stable
under the rely condition, i.e. if the await condition b holds before a step that satisfies the rely condition
r, then b holds in the after state.

3.2 Blocking using temporal logic termination conditions

The specifications of read and write in Fig. 2, by including await statements, allow non-terminating
behaviour in the cases where the await condition never becomes true, e.g. a read will wait forever if
the queue remains empty because no writes are performed. However, read terminates if the queue is
eventually non-empty and write terminates if the queue is eventually non-full. That leads to an alternative
specification using temporal logic termination conditions in Fig. 3. To accommodate the termination
conditions, a command of the form,

terminate t · c (6)

is introduced, in which t is a temporal logic formula and c is a command. If the temporal logic formula t
holds, the operation must terminate and specification c must be satisfied, but if t does not hold c must be



8 Challenges to specifying concurrent program components

resourcequ : seqVal initiallyqu = [ ] invariant #qu≤ N

write(v : Val) =̂
terminate♦(#qu < N) ·

(rely qu′ suffixof qu)e – implies single writer
(guar qu prefixof qu′)e – implies the rely of read
with qu do qu:

[
qu′ = qu_ [v]

]
od

read()res : Val =̂
terminate♦(qu 6= [ ]) ·

(rely qu prefixof qu′)e – implies single reader
(guar qu′ suffixof qu)e – implies the rely of write
with qu do qu,res:

[
qu = [res′]_qu′

]
od

Figure 3: Message queue with conditions to ensure termination

satisfied and termination is not required, but is allowed. Neither of the specifications of write and read
in Fig. 3, contain the explicit awaits used in Fig. 2. The postcondition of the read is unsatisfiable if the
queue always remains empty because

[ ] = [res′]_qu′ ≡ false .

However, if the condition ♦(qu 6= [ ]) holds, i.e. the queue is eventually non-empty, the postcondition
eventually becomes feasible from the state in which the queue is non-empty. Note that qu 6= [ ] is stable
under the rely condition and so it will not be falsified by the environment.

For the read operation, the negation of ♦(qu 6= [ ]) is �(qu = [ ]), i.e. the queue is always empty.
If �(qu = [ ]) the read operation is not required to terminate. In addition, if in every state qu = [ ],
the postcondition of read is unsatisfiable because [ ] = [res′]_ [ ] is false, and hence the terminating
behaviour of read is infeasible, and therefore the only possible behaviour if read is to not terminate.

More subtly, any finite prefix of a trace of a read operation for which qu = [ ] in every state cannot
have satisfied the postcondition of read and hence cannot have terminated. However, it is still possible
that another thread may execute a write at some later time establishing qu 6= [ ] and allowing the read to
terminate. For the finite prefix of the trace, the behaviour of the read must correspond to the stuttering
allowed by the with statement before it enters its body. Hence for every finite prefix of a trace of
read in which qu = [ ] in every state, the operation performs only finite stuttering steps and, further,
nontermination is allowed if �(qu = [ ]). Hence the behaviours allowed by the specifications in Fig. 3
are actually equivalent to those of the specifications in Fig. 2.

4 Transactional operations

Some implementations of operations are optimistic in that they complete most of the operation locally
to the thread and then have a final commit phase that may fail if another operation has committed. Such
operations consist of a repeated failure behaviour (that does not change the shared data structure) in the
presence of interference followed by a successful commit phase. Of course, in the presence of repeated
interference the successful commit may never occur.



Ian J. Hayes 9

resources : seqVal initiallys = [ ]

push(v : Val) =̂ push failω ; push success(v)
where push fail =̂ ε〈s′ 6= s〉

push success(v : Val) =̂ with s do s:
[
s′ = [v]_ s

]
od

pop()res : Val =̂ pop failω ; res := pop success()
where pop fail =̂ ε〈s′ 6= s〉

pop success()res : Val =̂ with s do s,res:
[
(s 6= [ ]⇒ s = [res′]_ s′)∧
(s = [ ]⇒ res′ = null

]
od

Figure 4: Stack with possibly failing push and pop operations

4.1 Specification using explicit failure

Treiber [23] provided a non-blocking lock-free implementation of a stack in which the push and pop
operations may try and fail due to interference from a parallel push or pop operation, and hence may
need to be retried until they succeed. Fig. 4 gives a specification of a stack with push and pop operations
that may fail and need to retry, possibly indefinitely. The push fail operation may be executed any number
of times but each time it is executed the environment makes a step that changes the stack s. If from some
point of time the environment never changes s, then the push fail becomes infeasible and the operation
must perform push success which pushes the value on the stack. The definition of pop is similar. The
command ε〈s′ 6= s〉 corresponds to the environment performing a step that modifies s; it may also perform
a finite number of stuttering program steps (i.e. steps that do not change observable variables). If the
environment performs a step modifying s, ε〈s′ 6= s〉 terminates but if not, it becomes infeasible. The
number of times push fail is iterated is non-deterministic but it cannot execute an infeasible push fail,
i.e. one in which s is never changed by the environment, and hence termination of the iteration is forced
in that case, so that the push success alternative is taken.

4.2 Specification using temporal logic termination conditions

Note that if the stack s is never changed by the environment, the behaviour of the push (or pop) operation
reduces to just its successful behaviour. More subtly, if eventually the environment stops changing s, then
there can only be a finite number of failure iterations before the operation succeeds. This latter condition
can be converted into a temporal logic termination condition ♦�ε(s′ = s), i.e. eventually all environment
steps do not change the value of the stack, which leads to the specification given in Fig. 5. An extended
form of temporal logic is used here that distinguishes program and environment steps and allows one
to specify a constraint on a step in the form of a relation, in this case s′ = s. If parallel activity on the
stack eventually quiesces, Treiber’s push and pop operations are guaranteed to terminate, and hence the
specifications with the quiescence termination conditions do not need to include the failure possibilities.

The negation of the termination condition is �♦ε(s′ 6= s), i.e. from every state there is eventually an
environment step that modifies s. However –unlike for the blocking queue– that does not make either
postcondition unsatisfiable and hence if the negation of the termination condition holds, each operation
may either terminate satisfying its postcondition or never terminate. In a similar manner to the blocking
queue, for a finite trace for which an operation has not yet satisfied its postcondition, it is still possible



10 Challenges to specifying concurrent program components

resources : seqVal initiallys = [ ]

push(v : Val) =̂ terminate♦�ε(s′ = s) ·with s do s:
[
s′ = [v]_ s

]
od

pop()res : Val =̂ terminate♦�ε(s′ = s) ·with s do s,res:
[
(s 6= [ ]⇒ s = [res′]_ s′)∧
(s = [ ]⇒ res′ = null

]
od

Figure 5: Stack with conditions to ensure termination

to extend the trace so that the postcondition is satisfied, and even so that the s is no longer modified by
the environment, and hence the only allowable behaviour of the operation for a finite trace that has not
yet satisfied its postcondition is finite stuttering. Hence if the termination condition is not satisfied an
operation may either terminate successfully satisfying its postcondition or fail to terminate but only ever
perform stuttering steps, i.e. it never modifies s. Hence the specifications in Fig. 5 are equivalent to those
in Fig. 4.

If the termination conditions on the stack operations are replaced by true, that requires the operations
always terminate even under interference from other threads performing push and pop operations. That
gives strictly stronger specifications because their termination conditions are weaker. An implementation
might then be required to make use of a lock that sequentialises access to the stack in the order in which
the lock is requested (such as a ticket lock) in order to ensure termination.

5 Conclusions

To specify concurrent program components one needs to be able to address issues such as operation
atomicity, operations blocking on conditions or locks, and transactional operations that may fail and
need to be retried. Hoare’s resource concept provides a notion of atomicity with respect to a resource.
A contribution of this paper is to examine its interaction with rely and guarantee conditions in order to
enable the initial refinement step of Hoare’s with statements to code. Brookes [1] also makes use of the
concept of a resource in concurrent separation logic. He generalises Hoare’s concept to handle the heap
as well as variables.

The specifications of operations using with statements do not dictate whether they are refined to
implementations using locks or to non-blocking implementations or even a programming language that
supports with statements. One issue not addressed here is that operations requiring multiple resources,
e.g. an operation that needs to perform operations on two separate resources and needs to be considered
atomic as a whole. In this case the with statement needs to allow for multiple resources, and if locking is
used in the implementation of the operations, to avoid deadlock, the locking has to ensure that resources
are locked in the same order.

Operations that block waiting for some condition have the potential for non-terminating behaviour.
That has been addressed via two ways of specifying such operations: a form that explicitly includes
both its terminating and non-terminating behaviours; and an implicit form that includes a condition that
guarantees termination.

Non-blocking algorithms can provide more efficient solutions for managing shared data structures
than using locks, but some algorithms have the issue that, under interference, they may fail and need to



Ian J. Hayes 11

be retried. In the worst case an operation may be continually thwarted and never get a chance to complete
and hence its specifications needs to either allow for that possible behaviour or provide conditions under
which it will terminate successfully, i.e. that the interference quiesces so that it can complete.

The approach taken in this paper is to indicate some directions for devising specifications for con-
current program components. In doing so we have shown that specifications with explicit await clauses
can be expressed in a more abstract form with a temporal logic formula giving the condition under which
termination is guaranteed. Such specifications have greater expressive power than those using explicit
await constructs because temporal logic formulae allow termination conditions that cannot be expressed
as await conditions, for example, if the blocking queue allowed multiple readers and hence its await con-
dition was no longer stable, an alternative condition of�♦(qu 6= [ ]) would require an implementation to
guarantee the termination of each read operation under interference from other reads, provided a writer
was also actively appending values to the queue. An implementation of read might, for example, use a
lock that sequentialises access in the order in which the lock is requested (such as a ticket lock) in order
to ensure termination.

Liang and Feng [15] have recently addressed handling progress conditions for blocking operations
(which they refer to as partial methods). Their approach makes use of await statements but they give
four different interpretations to await statements depending on whether one requires the operations to be
starvation free or deadlock free, and depending on whether the enabling conditions are treated as weakly
or strongly fair. These different interpretations give different termination behaviour for operations. The
approach advocated here is to make use of different temporal logic conditions to cover these cases.

At this stage our treatment has not been fully formalised and further work is required to support
refinement of such specifications to code.

Acknowledgements. Thanks are due to Robert Colvin, Cliff Jones, Larissa Meinicke, and Kirsten Win-
ter, and the anonymous reviewers for feedback on the ideas presented here. This research was supported
Australian Research Council Discovery Grant DP130102901.

References

[1] S. Brookes (2007): A semantics for concurrent separation logic. Theoretical Computer Science 375(1–3),
pp. 227–270.

[2] R. J. Colvin, I. J. Hayes & L. A. Meinicke (2016): Designing a semantic model for a wide-spectrum language
with concurrency. Formal Aspects of Computing 29, pp. 853–875.

[3] R. W. Floyd (1967): Assigning meanings to programs. In: Proceedings of Symposia in Applied Mathematics:
Math. Aspects of Comput. Sci., 19, pp. 19–32.

[4] I. J. Hayes (2016): Generalised rely-guarantee concurrency: An algebraic foundation. Formal Aspects of
Computing 28(6), pp. 1057–1078, doi:10.1007/s00165-016-0384-0.

[5] I. J. Hayes, R. J. Colvin, L. A. Meinicke, K. Winter & A. Velykis (2016): An algebra of synchronous atomic
steps. In J. Fitzgerald, C. Heitmeyer, S. Gnesi & A. Philippou, editors: FM 2016: Formal Methods: 21st
International Symposium, Proceedings, LNCS 9995, Springer International Publishing, Cham, pp. 352–369,
doi:10.1007/978-3-319-48989-6 22.

[6] I. J. Hayes, C. B. Jones & R. J. Colvin (2014): Laws and semantics for rely-guarantee refinement. Technical
Report CS-TR-1425, Newcastle University.

[7] I.J. Hayes, L.A. Meinicke, K. Winter & R.J. Colvin (2017): A synchronous program algebra: a basis for
reasoning about shared-memory and event-based concurrency. Ext. report at arXiv:1710.03352.

http://dx.doi.org/10.1007/s00165-016-0384-0
http://dx.doi.org/10.1007/978-3-319-48989-6_22
http://arxiv.org/abs/1710.03352


12 Challenges to specifying concurrent program components

[8] Maurice Herlihy & Jeannette M. Wing (1990): Linearizability: A Correctness Condition for Concurrent
Objects. ACM Trans. Program. Lang. Syst. 12(3), pp. 463–492.

[9] C. A. R. Hoare (1969): An Axiomatic Basis for Computer Programming. Communications of the ACM
12(10), pp. 576–580, 583.

[10] C. A. R. Hoare (1972): Towards a Theory of Parallel Programming. In: Operating System Techniques,
Academic Press, pp. 61–71.

[11] C. A. R. Hoare (1975): Parallel programming: an axiomatic approach. Computer Languages 1(2), pp.
151–160.

[12] C. B. Jones (1981): Development Methods for Computer Programs including a Notion of Interference. Ph.D.
thesis, Oxford University. Available as: Oxford University Computing Laboratory (now Computer Science)
Technical Monograph PRG-25.

[13] C. B. Jones (1983): Specification and Design of (Parallel) Programs. In: Proceedings of IFIP’83, North-
Holland, pp. 321–332.

[14] C. B. Jones (1983): Tentative Steps Toward a Development Method for Interfering Programs. ACM ToPLaS
5(4), pp. 596–619.

[15] Hongjin Liang & Xinyu Feng (2018): Progress of Concurrent Objects with Partial Methods. Proc. ACM
Program. Lang. 2(POPL), pp. 20:1–20:31.

[16] C. C. Morgan (1988): The Specification Statement. ACM Trans. Prog. Lang. and Sys. 10(3), pp. 403–419.
[17] C. C. Morgan (1994): Programming from Specifications, second edition. Prentice Hall.
[18] P. W. O’Hearn (2007): Resources, Concurrency and Local Reasoning. Theoretical Computer Science 375(1-

3), pp. 271–307.
[19] S. Owicki (1975): Axiomatic Proof Techniques for Parallel Programs. Ph.D. thesis, Department of Computer

Science, Cornell University.
[20] S. S. Owicki & D. Gries (1976): An axiomatic proof technique for parallel programs I. Acta Informatica

6(4), pp. 319–340.
[21] Susan Owicki & David Gries (1976): Verifying Properties of Parallel Programs: An Axiomatic Approach.

Commun. ACM 19(5), pp. 279–285.
[22] Michael L. Scott (2013): Shared-Memory Synchronization. Morgan & Claypool Publishers.
[23] R. K. Treiber (1986): Systems Programming: Coping with Parallelism. Technical Report RJ 5118, IBM

Almaden Research Center.


	Introduction
	Specifying atomicity
	Resources
	Rely/guarantee laws for resource access

	Specifying operations that may block
	Blocking using an explicit await condition
	Blocking using temporal logic termination conditions

	Transactional operations
	Specification using explicit failure
	Specification using temporal logic termination conditions

	Conclusions

