
Submitted to:
Linearity & TLLA 2018

c© C. Olarte, V. de Paiva, E. Pimentel & G. Reis
This work is licensed under the
Creative Commons Attribution License.

Benchmarking Linear Logic Translations

Carlos Olarte
Universidade Federal do Rio Grande do Norte, Brazil

carlos.olarte@gmail.com

Valeria de Paiva
Nuance Communications, USA

valeria.depaiva@gmail.com

Elaine Pimentel∗

Universidade Federal do Rio Grande do Norte, Brazil

elaine.pimentel@gmail.com

Giselle Reis†

Carnegie Mellon University, Qatar

giselle@cmu.edu

Benchmarking automated theorem proving (ATP) systems using standardized problem sets is a well-
established method for measuring their performance. However, the availability of such libraries for
non-classical logics is very limited. In this work we seek to start a discussion of benchmarks for
Girard’s linear logic and some of its variants. For some quick bootstrapping of the collection of
problems, we use translations of the collection of Kleene’s intuitionistic theorems in the traditional
monograph Introduction to Metamathematics. We analyze four different translations of intuitionistic
logic into linear logic and compare their proofs using linear logic based provers with focusing.

1 Introduction

Benchmarking automated theorem proving (ATP) systems using standardized problem sets is a well-
established method for measuring their performance. However, the availability of such libraries for
non-classical logics is very limited. For intuitionistic logic several small collections of formulas have
been published and used for testing ATP systems and Raths, Otten and Kreitz [15] consolidated and
extended these small sets to provide the ILTP Library http://www.cs.uni-potsdam.de/ti/iltp/.
For modal systems there is at least the QMLTP library [18, 14].

In this paper, we aim to start the discussion for a similar benchmark for Girard’s linear logic [6] and
some of its variants. Linear logic is a substructural logic that is a refinement of classical and intuition-
istic logic, combining the dualities of the former with many of the constructive properties of the latter.
Ideas from linear logic have been influential in fields such as programming languages, game semantics,
quantum physics, as well as linguistics, particularly because of its emphasis on resource-boundedness,
duality, and interaction. In particular, linear logic has had an important role as a logical framework
for specifying and reasoning about logical and computational systems (the list is long; some examples
are [3, 11, 4, 13]). As a consequence, several provers have been built for linear logic for different pur-
poses.1 However, so far, there has been no discussion of the efficiency or adequacy of these provers. In
this work we set up to construct a collection of propositional tests, and to verify their proofs, as a first
approximation for the desired benchmark.

When designing a benchmark, one has to carefully decide on a set of formulas that is meaningful
in, at least, three ways: (1) the formulas should be able to distinguish several different characteristics
∗Olarte and Pimentel are supported by CAPES, CNPq and the project FWF START Y544-N23.
†This paper was made possible by grant NPRP 7-988-1-178 from the Qatar National Research Fund (a member of the Qatar

Foundation). The statements made herein are solely the responsibility of the authors.
1Listing some: LLprover: http://bach.istc.kobe-u.ac.jp/llprover/, linTAP: http://www.leancop.de/

lintap/, LL prover explorer: https://github.com/andykitchen/linear-logic, Lolli: http://www.lix.

polytechnique.fr/~dale/lolli/, Alcove: http://cic.puj.edu.co/~caolarte/alcove2/.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://www.cs.uni-potsdam.de/ti/iltp/
http://bach.istc.kobe-u.ac.jp/llprover/
http://www.leancop.de/lintap/
http://www.leancop.de/lintap/
https://github.com/andykitchen/linear-logic
http://www.lix.polytechnique.fr/~dale/lolli/
http://www.lix.polytechnique.fr/~dale/lolli/
http://cic.puj.edu.co/~caolarte/alcove2/


2 Linear Logic

of the logical systems and provers; (2) the set should contain important theorems and paradigmatic
formulas (non necessarily provable); and (3) the set should be large enough, so to serve as a comparison
for different provers and systems. In this work, we will not be much concerned about (3), but rather
concentrate on (1) and (2), benchmarking translations of a set of intuitionistic formulas into linear logic.

It turns out that propositional linear logic (LL) has many aspects that need to be considered. For
example, one could adopt its classical (CLL) or intuitionistic (ILL) versions. Hence one important task
would be to determine the difference in provability between them, and this is already far from trivial.
While it is possible to differentiate the syntax of formulas and the presentation of the inference rules
by the standard restriction on the right context to having at most one formula in ILL2, FILL [2] is a
multiple-conclusion system with the same connectives and rules as in CLL, but restricting the form of
the application of such rules. Restricting ourselves to formulas with the same syntax in classical and
intuitionistic versions of LL, the first interesting question would be which formulas are provable in CLL
but not in ILL. This is the same issue e.g. when building a benchmark for intuitionistic logic versus
the existing ones for classical logic. But the linear case is far more complicated, since the lack of the
structural rules of weakening and contraction in both ILL and CLL makes these systems “closer” to
each other than in the case of classical and intuitionistic logics. Indeed, only very recently [8] the first
conservativity results presented in [16] were generalized.

Another important aspect to be taken into consideration is focusing [1]. It turns out that both ILL and
CLL admit complete focused proof systems, and provers can be built using proof search strategies based
on this discipline, which reduces the proof search space. This has an immediate effect on the proposal
of formulas composing a possible benchmark, since the amount of exponentials in a formula can make a
significant difference on the performance of provers.

Finally, concerning (2), there is no consensus in the community on a set of “principal” theorems that
should be used as a test for LL-based theorem provers. In this work, we will consider the translation of
a fragment of Kleene’s list for intuitionistic logic (IL). The first challenge is to understand how these
intuitionistic theorems should be interpreted in LL. A first answer would be: use one of the well known
translations of IL into LL. This naive approach has, at least, two problems. First, it is not adequate to
elect one translation, since different translations have very different computational behaviors, as it will
be clear in Section 2.2. Second, some translations would not give the best interpretation of linear logic
formulas. As a simple example, A→ A should most probably be translated as A−◦A, without bangs
since this is equivalent, as a theorem, to the identity. But any sound translation from IL to LL adds bangs
to implicational formulas. Hence none of them would preserve the formula’s interpretation.

We analyze four different translations from IL to LL using Kleene’s collection of IL theorems. Prov-
ability and proof time of the 244 generated sequents are compared using our ILL prover based on focus-
ing. Since one of the considered translations is not validity preserving, we propose provable versions
(not following any systematic translation) for those 27 formulas. Finally, we add two CLL formulas, not
provable in ILL. The whole set will not only provide some interesting insights on different behaviors of
LL formulas coming from different translations in the literature, but also present a significative set of 273
formulas for benchmarking linear logic based provers.

Outline. The rest of the paper is organized as follows. Section 2 presents LL, focusing, translations
and decorations; Section 3 presents Kleene’s list and their linearization; Section 4 concludes the paper
and presents some future research directions.

2We note that in the literature there are two versions of ILL, having at most or exactly one formula in the right context. This
is similar to the problem of considering intuitionistic/minimal logics. Since in this work we will use a multiplicative fragment
of ILL, we opted for the version of ILL having ⊥ in the grammar.



C. Olarte, V. de Paiva, E. Pimentel & G. Reis 3

2 Linear Logic

Although we assume that the reader is familiar with linear logic, we review some of its basic proof theory
(see [17] for more details).

Linear logic is a substructural logic proposed by Girard [6] as a refinement of classical and intu-
itionistic logic, joining the dualities of the former with many of the constructive properties of the latter.
Formulas for propositional linear logic (LL) are built from the following grammar

F ::= p | 1 | 0 | > | ⊥ | F⊗F | FOF | F & F | F⊕F | F−◦F | ?F | !F

where atomic formulas p or their negations p⊥= p−◦⊥ are called literals. The logical connectives for LL
can be divided into the following groups: the multiplicative version of conjunction, true, disjunction, and
false, which are written as ⊗, 1, O, ⊥, respectively; and the additive version of these connectives, which
are written as &, >, ⊕, 0, respectively; and the exponentials ! and ?. LL sequents have the form Γ ` ∆

where Γ,∆ are multisets of formulas. We will consider first the two sided sequent formulation of classical
linear logic (presented in Figure 2), to be able to smoothly extend the discussion to the intuitionistic case.
We recall that contraction and weakening of formulas are controlled using the exponentials and rules
contR,contL,weakR,weakL. The rules of ILL are depicted in Figure 3.

2.1 Focusing

Andreoli introduced in [1] a notion of normal form for cut-free derivations in linear logic. The connec-
tives of LL can be divided into two classes: negative (O, ⊥, &, >, and ?) and positive (⊗, 1, ⊕, 0, and
!). Note that the dual of a negative connective is positive and vice-versa. In general, the introduction
rules for negative connectives are all invertible, meaning that the conclusion of any of these introduction
rules is equivalent to its premises. The introduction rules for the positive connectives are not necessarily
invertible and may require a choice or a context restriction on the application of rules. The notions of
negative and positive polarities are extended to formulas in the natural way by considering the outermost
connective, e.g., A⊗B is positive while AOB is negative. Any bias can be assigned to atomic formulas.

A focused proof is organized around two “phases” of proof construction: the negative phase for
introducing negative connectives and the positive phase for the positive connectives. In the focusing
discipline, negative formulae are decomposed eagerly until only positive formulae are left, then one of
them is non-deterministically chosen to be focused on. Figures 4 and 5 present the systems LLF and
ILLF, the focused versions of CLL and ILL, respectively.

2.2 Translations and Decorations

A naive approach for building a set of test formulas for LL based provers would be to use one of the
well known translations of intuitionistic (or classical) formulas into LL. Since there are several ways
of translating a formula from IL to LL, we asked ourselves which one would be the best option, if any.
Each translation characterizes a different linear view of intuitionistic formulas and it is interesting and
relevant to establish a comparison between them. We analyze four different translations: a multiplicative
translation, the so called Girard’s translation, Girard’s positive translation and Miller and Liang’s 0/1
translation.

The multiplicative translation trivially substitutes the intuitionistic connectives by their multiplicative
linear version

(p)m = p (A→ B)m = Am−◦Bm (A∧B)m = Am⊗Bm

(t)m = 1 (A∨B)m = AmOBm ( f )m = ⊥



4 Linear Logic

Translation of sequents is given by (Γ ` A)m = Γm ` Am. Observe that this translation does not preserve
provability: for instance, diagonals A⊗A→ A exist in IL, but not in LL.

Girard’s translation [6], also known as call-by-name, is the most well known translation of IL into
LL.

(p)g = p (A→ B)g = !Ag−◦Bg (A∧B)g = Ag & Bg

(t)g = > (A∨B)g = !Ag⊕ !Bg ( f )g = 0

Sequents are translated as (Γ ` A)g = !Γg ` Ag. Girard’s translation preserves provability but is not a
decoration in the sense of [5], namely, a proof of A in IL is transformed into a proof of Ag in LL which is
not isomorphic to the original one.

Girard proposed in the same paper [6] another translation, known as call-by-value. Henceforth, we
will call this translation positive, since IL formulas become positive LL formulas.

(p)p = ! p (A→ B)p = !(Ap−◦Bp) (A∧B)p = Ap⊗Bp

(t)p = 1 (A∨B)p = Ap⊕Bp ( f )p = 0

Sequents are translated as (Γ`A)p =Γp `Ap. It is easy to see that the positive translation is a decoration:
proofs of Ap in LL are isomorphic to proofs of A in IL.

Another interesting translation is the 0/1 translation [9], which distinguishes the polarity of formulas
in a sequent.

(p)0 = p (A→ B)0 = !A1−◦ !B0 (A∧B)0 = !A0 & !B0

(t)0 = > (A∨B)0 = !A0⊕ !B0 ( f )0 = 0

(p)1 = p (A→ B)1 = !(!A0−◦B1) (A∧B)1 = !(A1 & B1)
(t)1 = 1 (A∨B)1 = !A1⊕ !B1 ( f )1 = 0

The translation of sequents is given by (Γ ` A)0/1 = !Γ0 ` A1. Using this translation, focused proofs
in LLF are in bijetive correspondence with proofs in IL. In a loose sense, this can be considered a
decoration if the isomorphism is interpreted “modulo focusing”. In the focusing context, this is referred
to as adequacy on the level of derivations [12].

Basically these four translations differ on their use of bangs and their polarization of atoms. The
multiplicative translation introduces no bangs; Girard’s translation forces atoms to have negative polarity
and backchaining proofs; the positive translation selects the global preference to be forward-chaining
and all atoms have positive polarity; the 0/1 translation is asymmetric, and it does not impose any
restriction on atoms. We will show an interesting comparison of the implementation of these translations
in Section 4.

3 Kleene’s Examples and their Linearization

Kleene’s “Introduction to Metamathematics” [7] has a collection of interesting intuitionistic theorems.
They are rather straightforward, thus they would not be especially useful for testing the efficiency of
a prover. Instead, they can be regarded as a minimal set of intuitionistic theorems that a sound prover
should be able to derive. As such, they can be valuable in uncovering bugs and sources of unsoundness.
Our goal is to set up a similar set for LL.

The first challenge is to understand how these intuitionistic theorems should be interpreted in LL.
Deciding whether to translate intuitionistic disjunction as the multiplicative disjunction O of Linear



C. Olarte, V. de Paiva, E. Pimentel & G. Reis 5

Logic or the additive disjunction ⊕ changes the target system under consideration, thus we prefer to not
consider the intuitionistic disjunction to begin with. Hence we will consider what we call the rudimentary
fragment of IL, which is very well-behaved. Semantically this fragment corresponds to cartesian closed
categories.

The following 61 theorems are collected from [7], from page 113 onwards, and contain only the
(→,∧) fragment. The bi-implication is defined as A↔ B = (A→ B)∧ (B→ A).

1. ` A→ A
2. A→ B,B→C ` A→C
3. A→ (B→C) ` B→ (A→C)

4. A→ (B→C) ` A∧B→C
5. A∧B→C ` A→ (B→C)

6. A→ B ` (B→C)→ (A→C)

7. A→ B ` (C→ A)→ (C→ B)
8. A→ B ` A∧C→ B∧C
9. A→ B `C∧A→C∧B

10. ¬A ` A→ B
11. A ` ¬A→ B
12. B ` A→ B
13. A→ B ` ¬B→¬A
14. A→¬B ` ¬¬B→¬A
15. A→ B,B→ A ` A↔ B
16. A↔ B ` A→ B
17. A↔ B ` B→ A
18. A↔ B,A ` B
19. A↔ B,B ` A
20. ` A↔ A
21. A↔ B ` B↔ A
22. A↔ B,B↔C ` A↔C
23. A→ (B→C),¬¬A,¬¬B ` ¬¬C
24. ¬¬(A→ B) ` ¬¬A→¬¬B
25. ¬¬(A→ B),¬¬(B→C) ` ¬¬(A→C)

26. ` ¬¬(A∧B)↔ (¬¬A∧¬¬B)
27. ` ¬¬(A↔ B)↔ (¬¬(A→ B)∧¬¬(B→ A))
28. A↔ B ` (A→C)↔ (B→C)

29. A↔ B ` (C→ A)↔ (C→ B)
30. A↔ B ` (A∧C)↔ (B∧C)

31. A↔ B ` (C∧A)↔ (C∧B)

32. A↔ B ` ¬A↔¬B
33. ` ((A∧B)∧C)↔ (A∧ (B∧C))

34. ` (A∧B)↔ (B∧A)
35. ` (A∧A)↔ A
36. A ` (A→ B)↔ B
37. B ` (A→ B)↔ B
38. ¬A ` (A→ B)↔¬A
39. ¬B ` (A→ B)↔¬A
40. B ` (A∧B)↔ A
41. ¬B ` (A∧B)↔ B
42. ` A→¬¬A
43. ` ¬¬¬A↔¬A
44. ` ¬(A∧¬A)
45. ` ¬(A↔¬A)
46. ` ¬¬(¬¬A→ A)
47. ` (A∧ (B∧¬B))↔ (B∧¬B)
48. ` (A→ B)→¬(A∧¬B)
49. ` (A→¬B)↔ (¬(A∧B))
50. ` (¬(A∧B))↔ (¬¬A→¬B)
51. ¬¬B→ B ` (¬¬A→ B)↔ (A→ B)
52. ¬¬B→ B ` (A→ B)↔ (¬(A∧¬B))
53. ` (¬¬A→ B)→¬(A∧¬B)
54. ` (A∧B)→¬(A→¬B)
55. ` (A∧¬B)→¬(A→ B)
56. ` ¬¬A∧B→¬(A→¬B)
57. ` (¬¬A∧¬B)↔¬(A→ B)
58. ` ¬(A→ B)↔¬¬(A∧¬B)
59. ` ¬¬(A→ B)↔¬(A∧¬B)
60. ` ¬(A∧¬B)↔ (A→¬¬B)
61. ` (A→¬¬B)↔ (¬¬A→¬¬B)

3.1 Tests

We specified in rewriting logic (RW, see e.g., [10]) and implemented in Maude (http://maude.cs.
uiuc.edu) a very basic prover for IL as well as for ILLF and LLF. The use of RW leads to a clear
separation between deterministic inference rules that can be eagerly applied (as those in the negative
phase) and non-deterministic inference rules where backtracking may be needed (as those in the pos-
itive phase). Moreover, the minimal distance between the represented logic (IL, ILLF and LLF) and
its specification in RW allowed us to quickly implement a good prototypical tool useful for our tests.
Although more efficient provers can be built by e.g., including sophisticated heuristics and specialized

http://maude.cs.uiuc.edu
http://maude.cs.uiuc.edu


6 Linear Logic

data structures, our prototypical implementations were enough to compare the different translations.
We have implemented the proofs of the original IL sequent, together with the derivation tree of each
of the corresponding ILL sequents, when provable. The results are summarized in Figure 1 (note that
some provable sequents timed out). The code in Maude, the pdf file containing all the proofs and the
list of formulas used here in a format similar to that of the TPTP Problem Library can be found at
https://github.com/carlosolarte/Benchmarking-Linear-Logic.

Applying each translation defined in Section 2.2 to each of the 61 sequents presented in the last
section gives rise to 244 different LL sequents. As already noted, provability is not preserved in the
multiplicative translation. The reason for that, other than the obvious absence of structural rules in the
left context, is that the multiplicative false ⊥ is relevant, so while 0 ` B for any B in IL, A⊗ (A−◦⊥) 6` B
in LL. The other three translations fix this by systematically adding bangs and additive connectives. This
procedure, as seen in the tests, does not give the best translation to formulas for LL provers.

We present below an alternative description for the 27 the sequents not provable in ILL (see Ap-
pendix B for the whole list) for the multiplicative version of the Kleene sequents, with a small set of
bangs and/or additives.

10. A−◦0 ` A−◦B

11. A ` (A−◦0)−◦B

12. B ` !A−◦B

16. (A−◦B)⊗ !(B−◦A) ` A−◦B

17. !(A−◦B)⊗ (B−◦A) ` B−◦A

18. A ˛ B,A ` B⊗ (B−◦A)

19. A ˛ B,B ` A⊗ (A−◦B)

26. a. ` ((A & B)⊥⊥)−◦ (A⊥⊥& B⊥⊥)
b. ` (A⊥⊥⊗B⊥⊥)−◦ (A⊗B)⊥⊥

27. a. ` (!(A−◦ B)⊗ !(B−◦ A))⊥⊥ −◦ [(A−◦ B)⊥⊥ &
(B−◦A)⊥⊥]

b. ` (A−◦B)⊥⊥⊗ (B−◦A)⊥⊥−◦ (A ˛ B)⊥⊥

35. ` (!A⊗ !A)˛ !A

36. A ` ((A−◦B)−◦B)⊗ (B−◦ (!A−◦B))

37. B ` (!(A−◦B)−◦B)⊗ (B−◦ (!A−◦B))

38. A⊥ ` (!(A−◦B)−◦A⊥)⊗ ((A−◦0)−◦ (A−◦B))

39. B−◦0 ` (A−◦B)˛ (A−◦0)

40. B ` ((A⊗ !B)−◦A)⊗ (A−◦ (A⊗B))

41. B−◦0 ` ((!A⊗B)−◦B)⊗ (B−◦ (A⊗B))

45. ` (!(A−◦A⊥)⊗ ((!A)⊥−◦ !A))⊥

46. ` (!(!(A⊥−◦0))−◦A)⊥)⊥

47. ` A⊗ (B⊗ (B−◦0))˛ (B⊗ (B−◦0))

57. a. ` (A⊥⊥⊗B⊥)−◦ (A−◦B)⊥

b. ` (!A−◦B)⊥−◦ ((A−◦0)⊥& B⊥)

58. a. ` !((!A−◦B)⊥)−◦ ((A⊗B⊥)−◦0)⊥

b. ` (A⊗B⊥)⊥⊥−◦ (A−◦B)⊥

59. a. ` (A−◦B)⊥⊥−◦ (A⊗B⊥)⊥

b. ` ((A⊗B⊥)−◦0)−◦ (!(!A−◦B)⊥)⊥

As a “bonus”, there are two more formulas we think are of interest when planning a benchmark for
LL: the classical linear version of Pierce’s Law and a minimal example of a non-provable ILL formula
without bottom that is a CLL theorem [8].

62. ` ((A−◦ ?B)−◦A)−◦ ?A

63. ` (((A⊗>)& (B⊗>))−◦0)−◦ ((A−◦C)⊕ (B−◦D))

4 Conclusion

In this work we benchmarked different translations from IL into ILL, having as a result an initial set of
formulas for benchmarking linear logic based provers. Starting with the (→,∧)-fragment of Kleene’s
theorems, we generated 244 different ILL sequents using 4 automatic translations: multiplicative, Gi-
rard’s, positive and 0/1. The first translation is the only one that does not preserve provability. For each
of those 27 ILL sequents that are not provable via the multiplicative translation, we proposed an alterna-
tive provable sequent with a small set of additives and bangs added. This makes these particular sequents

https://github.com/carlosolarte/Benchmarking-Linear-Logic


C. Olarte, V. de Paiva, E. Pimentel & G. Reis 7

# LJ m g p 0/1

1 31 46 43 83 59
2 48 111 168 226 185
3 49 94 128 208 189
4 48 97 326 219 313
5 38 98 108 182 197
6 48 106 157 252 214
7 51 108 156 261 201
8 34 91 114 191 271
9 35 89 111 173 257

10 34 19 (x) 79 98 98
11 34 18 (x) 82 97 97
12 19 20 (x) 42 74 59
13 47 89 137 184 180
14 62 96 186 297 757
15 48 156 181 527 331
16 34 19 (x) 91 139 137
17 35 21(x) 94 132 142
18 34 24 (x) 97 115 114
19 35 20 (x) 92 113 115
20 18 90 43 126 108

# LJ m g p 0/1

21 54 160 196 515 1825
22 150 228 � � �
23 2318 164 � � �
24 211 142 4694 5522 �
25 4063 202 � � �
26 140 20 (x) 27482 � �
27 � 23 (x) � � �
28 86 227 � � �
29 86 240 � � �
30 48 191 292 3424 �
31 54 209 353 3752 �
32 83 202 12683 � �
33 21 166 123 281 609
34 18 131 81 217 276
35 21 18 (x) 50 180 153
36 35 19 (x) 107 209 184
37 18 19 (x) 67 151 139
38 54 21 (x) 157 333 319
39 67 22 (x) 271 595 626
40 21 18 (x) 67 165 178

# LJ m g p 0/1

41 33 21 (x) 130 172 209
42 41 61 83 120 122
43 96 183 271 528 7431
44 34 59 88 102 141
45 96 19 (x) � 5241 �
46 66 25 (x) 185 250 427
47 61 19 (x) 234 186 875
48 48 94 146 181 370
49 66 161 204 535 46292
50 94 245 2618 18580 �
51 882 295 � � �
52 112 257 � � �
53 67 126 255 335 14764
54 49 74 115 170 268
55 49 92 136 187 345
56 64 97 181 253 3946
57 385 20 (x) � � �
58 118 20 (x) � � �
59 168 20 (x) � � �
60 96 214 4004 8427 �
61 9785 288 � � �

Figure 1: Comparison of translations: x indicates that the formula is not provable; � indicates timeout
(over 60 seconds). Times are measured in miliseconds.

amenable to the use of all the power of focusing theorem provers. In fact, the excess of bangs in formulas
tends to neutralize the efficacy of focusing, due to the positive/negative behavior of the exponentials. To
emphasize the crucial differences between ILL and CLL we added the classical linear version of Pierce’s
Law and a minimal counter-example of conservativity from ILL to CLL. Thus our initial proposal for a
suitable benchmark for ILL has 273 formulas, testing aspects like provability and focusing.

It is worth noticing that (1) we include⊥ in the grammar of ILL; (2) all the sequents of our collection
can also serve as tests in CLL. The decision in (1) was motivated by the fact that the resulting sequents
fall into the multiplicative fragment of ILL. But observe that one could clearly exchange ⊥ for 0 in the
multiplicative translation (that would not be multiplicative anymore) and still obtain a significant set of
23 formulas not provable via this new translation. The same will happen in (2), since some sequents
involving double negations become provable.

For a first experiment with the proposed set of sequents, we have implemented provers for LJ, ILL
and CLL. All three are focused-based, but bear in mind that the LJ prover does not have positive phases,
it is only doing the invertible part of the proof eagerly. The results presented in Figure 1 serve as an
initial comparison between the different translations chosen for generating our set of sequents, not for
comparing different linear logic provers.

For future work, we intend to collect some more test-formulas, specially those involving disjunction,
and to test different provers already available online.



8 Linear Logic

References
[1] Jean-Marc Andreoli (1992): Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic and

Computation 2(3), pp. 297–347.
[2] Torben Braüner & Valeria de Paiva (1996): Cut-Elimination for Full Intuitionistic Linear Logic. Technical

Report, BRICS Report Series.
[3] Iliano Cervesato & Frank Pfenning (2002): A Linear Logical Framework. Information & Computation

179(1), pp. 19–75.
[4] Kaustuv Chaudhuri & Giselle Reis (2015): An Adequate Compositional Encoding of Bigraph Structure in

Linear Logic with Subexponentials. In: LPAR-20, pp. 146–161.
[5] Vincent Danos, Jean-Baptiste Joinet & Harold Schellinx (1995): On the linear decoration of intuitionistic

derivations. Arch. Math. Log. 33(6), pp. 387–412, doi:10.1007/BF02390456.
[6] Jean-Yves Girard (1987): Linear Logic. Theoretical Computer Science 50, pp. 1–102.
[7] S. Kleene (1952): Introduction to Metamathematics.
[8] Olivier Laurent (2018): Around Classical and Intuitionistic Linear Logics. In: 33rd Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS.
[9] Chuck Liang & Dale Miller (2009): Focusing and polarization in linear, intuitionistic, and classical logics.

Theor. Comput. Sci. 410(46), pp. 4747–4768, doi:10.1016/j.tcs.2009.07.041.
[10] José Meseguer (2012): Twenty years of rewriting logic. J. Log. Algebr. Program. 81(7-8), pp. 721–781.
[11] Dale Miller & Elaine Pimentel (2013): A formal framework for specifying sequent calculus proof systems.

Theor. Comput. Sci. 474, pp. 98–116.
[12] Vivek Nigam & Dale Miller (2010): A Framework for Proof Systems. Journal of Automated Reasoning 45(2),

pp. 157–188, doi:10.1007/s10817-010-9182-1.
[13] Carlos Olarte & Elaine Pimentel (2017): On concurrent behaviors and focusing in linear logic. Theor.

Comput. Sci. 685, pp. 46–64, doi:10.1016/j.tcs.2016.08.026.
[14] Thomas Raths & Jens Otten (2012): The QMLTP problem library for first-order modal logics. In: Interna-

tional Joint Conference on Automated Reasoning, pp. 454–461.
[15] Thomas Raths, Jens Otten & Christoph Kreitz (2007): The ILTP problem library for intuitionistic logic.

Journal of Automated Reasoning 38(1-3), pp. 261–271.
[16] Harold Schellinx (1991): Some Syntactical Observations on Linear Logic. J. Log. Comput. 1(4), pp. 537–

559, doi:10.1093/logcom/1.4.537.
[17] Anne S. Troelstra (1992): Lectures on Linear Logic. CSLI Lecture Notes 29, Center for the Study of Lan-

guage and Information, Stanford, California.
[18] Max Wisniewski, Alexander Steen & Christoph Benzmüller (2016): TPTP and Beyond: Representation of

Quantified Non-Classical Logics. In Christoph Benzmüller & Jens Otten, editors: ARQNL 2016. Automated
Reasoning in Quantified Non-Classical Logics.

http://dx.doi.org/10.1007/BF02390456
http://dx.doi.org/10.1016/j.tcs.2009.07.041
http://dx.doi.org/10.1007/s10817-010-9182-1
http://dx.doi.org/10.1016/j.tcs.2016.08.026
http://dx.doi.org/10.1093/logcom/1.4.537


C. Olarte, V. de Paiva, E. Pimentel & G. Reis 9

A Some sequent systems

p ` p
init

` 1
1R

Γ ` ∆,>
>R

Γ ` ∆

Γ ` ∆,⊥
⊥R

Γ ` ∆

Γ,1 ` ∆
1L ⊥`

⊥L
Γ,0 ` ∆

0L

Γ ` ∆,F,G
Γ ` ∆,FOG

OR
Γ ` ∆,F Γ ` ∆,G

Γ ` ∆,F & G
&R

Γ1 ` ∆1,F Γ2 ` ∆2,G
Γ1,Γ2 ` ∆1,∆2,F⊗G

⊗R
Γ ` ∆,Fi

Γ ` ∆,F1⊕F2
⊕Ri

Γ1,F ` ∆1 Γ2,G ` ∆2

Γ1,Γ2,FOG ` ∆1,∆2
OL

Γ,Fi ` ∆

Γ,F1 & F2 ` ∆
&Li

Γ,F,G ` ∆

Γ,F⊗G ` ∆
⊗L

Γ,F ` ∆ Γ,G ` ∆

Γ,F⊕G ` ∆
⊕L

Γ,F ` ∆,G
Γ ` ∆,F−◦G

−◦R
Γ1 ` ∆1,F Γ2,G ` ∆2

Γ1,Γ2,F−◦G ` ∆1,∆2
−◦L

Γ ` ∆,?F,?F
Γ ` ∆,?F

contR
Γ ` ∆

Γ ` ∆,?F
weakR

Γ ` ∆,F
Γ ` ∆,?F

derR
!Γ ` F,?∆

!Γ ` !F,?∆
!R

Γ, !F, !F ` ∆

Γ, !F ` ∆
contL

Γ ` ∆

Γ, !F ` ∆
weakL

Γ,F ` ∆

Γ, !F ` ∆
derL

!Γ,F ` ?∆

!Γ,?F ` ?∆
?L

Figure 2: Sequent system CLL.

p ` p
init

` 1
1R

Γ ` >
>R

Γ `
Γ `⊥

⊥R
Γ `C

Γ,1 `C
1L ⊥`

⊥L
Γ,0 `C

0L

Γ ` F Γ ` G
Γ ` F & G

&R
Γ1 ` F Γ2 ` G
Γ1,Γ2 ` F⊗G

⊗R
Γ ` Fi

Γ ` F1⊕F2
⊕Ri

Γ,Fi `C
Γ,F1 & F2 `C

&Li

Γ,F,G `C
Γ,F⊗G `C

⊗L
Γ,F `C Γ,G `C

Γ,F⊕G `C
⊕L

Γ,F ` G
Γ ` F−◦G

−◦R
Γ1 ` F Γ2,G `C
Γ1,Γ2,F−◦G `C

−◦L

!Γ ` F
!Γ ` !F

!R
Γ, !F, !F `C

Γ, !F `C
contL

Γ `C
Γ, !F `C

weakL
Γ,F `C
Γ, !F `C

derL

Figure 3: System ILL.

The (one-sided) focused system LLF for classical linear logic is presented in Figure. 4. There are
two kinds of arrows in this proof system and a pair of contexts to the left of the arrows: Θ is a set
of formulas whose main connective is a question-mark, being hence the bounded context, while Γ is a
multi-set of linear formulas, behaving as the bounded context. Sequents with the ⇓ belong to the positive
phase and introduce the logical connective of the “focused” formula (the one to the right of the arrow):
building proofs of such sequents may require non-invertible proof steps to be taken. Sequents with the ⇑
belong to the negative phase and decompose the multiset of formulas on the right in such a way that only
inference rules over negative formulas are applied: the others are “stored” in the linear context using
R ⇑. The structural rules D1,D2 and R ⇓ make the transition between negative and positive phases. The
positive phase begins by choosing a positive formula F on which to focus (using D1,D2). Positive rules
are applied to F until either 1 or a negated atom is encountered (and the proof must end by applying the



10 Linear Logic

initial rules) or the promotion rule (!) is applied or a negative subformula is encountered (R ⇓) when the
proof switches to the negative phase.

Formulas in LLF are taken to be in negation normal form using the standard classical linear logic
dualities, e.g., (F ⊗G)⊥ ≡ F⊥OG⊥. Hence negation has only atomic scope. As usual, we represent
A−◦B as A⊥OB.

Introduction Rules
`Θ : Γ ⇑ L
`Θ : Γ ⇑ L,⊥ ⊥ `Θ : Γ ⇑ L,> > `Θ :⇓ 1 1

`Θ : Γ ⇑ L,F,G
`Θ : Γ ⇑ L,FOG

O

`Θ : Γ ⇑ L,F `Θ : Γ ⇑ L,G
`Θ : Γ ⇑ L,F & G &

`Θ : Γ ⇓ F `Θ : Γ′ ⇓ G
`Θ : Γ,Γ′ ⇓ F⊗G

⊗ `Θ : Γ ⇓ Fi

`Θ : Γ ⇓ F1⊕F2
⊕i

`Θ,F : Γ ⇑ L
`Θ : Γ ⇑ L,?F ?

`Θ :⇑ F
`Θ :⇓ !F !

Identity, Reaction, and Decide rules

`Θ : A⊥p ⇓ Ap
I1 `Θ,A⊥p :⇓ Ap

I2
`Θ : Γ,S ⇑ L
`Θ : Γ ⇑ L,S

R ⇑

`Θ : Γ ⇓ P
`Θ : Γ,P ⇑ D1

`Θ,P : Γ ⇓ P
`Θ,P : Γ ⇑ D2

`Θ : Γ ⇑ N
`Θ : Γ ⇓ N

R ⇓

Figure 4: The focused proof system LLF for classical linear logic. Here, L is a list of formulas, Ap is a
positive literal, S is positive or a literal, P is positive and N is negative.

In this work, we will use both: LLF for classical proofs and its intuitionistic version ILLF, presented
in Figure 5.



C. Olarte, V. de Paiva, E. Pimentel & G. Reis 11

Negative Phase

Θ : Γ,F,G−→C
Θ : Γ,F⊗G−→C

⊗L
Θ : Γ,F −→ G

Θ : Γ−→ F−◦G
−◦R

Θ : Γ−→C
Θ : Γ,1−→C

1L
Θ : Γ−→

Θ : Γ−→⊥ ⊥R

Θ : Γ−→> >R
Θ : Γ,0−→C

0L
Θ,F : Γ−→C
Θ : Γ, !F −→C

!L

Θ : Γ−→ F Θ : Γ−→ G
Θ : Γ−→ F & G

&R
Θ : Γ,F −→C Θ : Γ,H −→C

Θ : Γ,F⊕H −→C
⊕L

Positive Phase

Θ : Γ1−F→ Θ : Γ2−G→
Θ : Γ1,Γ2−F⊗G→

⊗R

Θ : Γ1−F→ Θ : Γ2
G−→C

Θ : Γ1,Γ2
F−◦G−−−→C

−◦L Θ : Γ−Fi→
Θ : Γ−F1⊕F2→

⊕Ri

Θ : Γ
Fi−→C

Θ : Γ
F1&F2−−−→C

&Li

Θ :−1→
1R

Θ : ⊥−→
⊥L Θ :−→ F

Θ :−!F→
!R

Θ : Γ−A→
IR given A ∈ (Θ∪Γ) and Γ⊆ {A}

Structural Rules
Θ,Na : Γ

Na−→C
Θ,Na : Γ−→C

DL1
Θ : Γ

Na−→C
Θ : Γ,Na −→C

DL2
Θ : Γ−Pa→
Θ : Γ−→ Pa

DR

Θ : Γ,Pa −→C

Θ : Γ
Pa−→C

RL Θ : Γ−→ N
Θ : Γ−N→

RR

Figure 5: System ILLF: a focused proof system for ILL. Here, A is an atomic formula; Na is a negative
non atomic formula; Pa is a positive or atomic formula; N is a negative formula.



12 Linear Logic

B Multiplicative translation of Kleene’s list

1. ` A−◦A (identity)
2. A−◦B,B−◦C ` A−◦C (transitivity of implication)
3. A −◦ (B −◦ C) ` B −◦ (A −◦ C) (exchange of

premises)
4. A−◦ (B−◦C) ` A⊗B−◦C (uncurrying)
5. A⊗B−◦C ` A−◦ (B−◦C) (currying)
6. A−◦B ` (B−◦C)−◦ (A−◦C) (precomposing maps)
7. A −◦ B ` (C −◦ A) −◦ (C −◦ B) (post-composing

maps)
8. A−◦B ` A⊗C−◦B⊗C (tensor is a bifunctor)
9. A−◦B `C⊗A−◦C⊗B (tensor is a bifunctor)

10. A⊥ 6` A−◦B
11. A 6` A⊥−◦B
12. B 6` A−◦B but (projection is non-linear)
13. A−◦B ` B⊥−◦A⊥ (linear negation is contravariant)
14. A−◦B⊥ ` B⊥−◦A⊥

15. A−◦B,B−◦A ` A ˛ B
16. A ˛ B 6` A−◦B (cannot throw away B−◦A)
17. A ˛ B 6` B−◦A (cannot throw away A−◦B)
18. A ˛ B,A 6` B
19. A ˛ B,B 6` A
20. ` A ˛ A
21. A ˛ B ` B ˛ A
22. A ˛ B,B ˛C ` A ˛C
23. A−◦ (B−◦C),A⊥⊥,B⊥⊥ `C⊥⊥

24. (A−◦ B)⊥⊥ ` A⊥⊥ −◦ B⊥⊥ (double negation is a
functor)

25. (A−◦B)⊥⊥,(B−◦C)⊥⊥ ` (A−◦C)⊥⊥

26. 6` (A⊗B)⊥⊥˛ A⊥⊥⊗B⊥⊥

27. 6` (A ˛ B)⊥⊥˛ (A−◦B)⊥⊥⊗ (B−◦A)⊥⊥

28. A ˛ B ` (A−◦C)˛ (B−◦C)

29. A ˛ B ` (C−◦A)˛ (C−◦B)
30. A ˛ B ` (A⊗C)˛ (B⊗C)

31. A ˛ B ` (C⊗A)˛ (C⊗B)

32. A ˛ B ` A⊥˛ B⊥

33. ` ((A⊗B)⊗C)˛ (A⊗ (B⊗C)).
34. ` A⊗B ˛ B⊗A

35. 6` A⊗A ˛ A (⊗ is not idempotent)
36. A 6` (A−◦B)˛ B

37. B 6` (A−◦B)˛ B

38. A⊥ 6` (A−◦B)˛ A⊥

39. B⊥ 6` (A−◦B)˛ A⊥

40. B 6` (A⊗B)˛ A

41. B⊥ 6` ((!A⊗B)−◦B)⊗ (B−◦ (A⊗B))

42. ` A−◦A⊥⊥

43. ` A⊥⊥⊥˛ A⊥

44. ` (A⊗A⊥)⊥

45. 6` (A ˛ A⊥)⊥

46. 6` (((A−◦0)−◦0)−◦A)⊥⊥

47. 6` A⊗ (B⊗B⊥)˛ (B⊗B⊥)

48. ` (A−◦B)−◦ (A⊗B⊥)⊥

49. ` (A−◦B⊥)˛ (A⊗B)⊥

50. ` (A⊗B)⊥˛ (A⊥⊥−◦B⊥)

51. B⊥⊥−◦B ` (A⊥⊥−◦B)˛ (A−◦B)

52. B⊥⊥−◦B ` (A−◦B)˛ (A⊗B⊥)⊥

53. ` (A⊥⊥−◦B)−◦ (A⊗B⊥)⊥

54. ` A⊗B−◦ (A−◦B⊥)⊥

55. ` A⊗B⊥−◦ (A−◦B)⊥

56. ` (A⊥⊥⊗B)−◦ (A−◦B⊥)⊥

57. 6` (A⊥⊥⊗B⊥)˛ (A−◦B)⊥

58. 6` (A−◦B)⊥˛ (A⊗B⊥)⊥⊥

59. 6` (A−◦B)⊥⊥˛ (A⊗B⊥)⊥

60. ` (A⊗B⊥)⊥˛ (A−◦B⊥⊥)

61. ` (A−◦B⊥⊥)˛ (A⊥⊥−◦B⊥⊥)


	Introduction
	Linear Logic
	Focusing
	Translations and Decorations

	Kleene's Examples and their Linearization
	Tests

	Conclusion
	Some sequent systems
	Multiplicative translation of Kleene's list

