
Control Synthesis and Classification for
Unicycle Dynamics using the Gradient and

Value Sampling Particle Filters ?

Ariadna Estrada ∗ Ian M. Mitchell ∗

∗Department of Computer Science, The University of British
Columbia. Vancouver, BC, Canada

(e-mail: {aestra42,mitchell}@cs.ubc.ca).

Abstract: Value functions arising from dynamic programming can be used to synthesize optimal
control inputs for general nonlinear systems with state and/or input constraints; however,
the inputs generated by steepest descent on these value functions often lead to chattering
behavior. In [Traft & Mitchell, 2016] we proposed the Gradient Sampling Particle Filter (GSPF),
which combines robot state estimation and nonsmooth optimization algorithms to alleviate this
problem. In this paper we extend the GSPF to velocity controlled unicycle (or equivalently
differential drive) dynamics. We also show how the algorithm can be adapted to classify whether
an exogenous input—such as one arising from shared human-in-the-loop control—is desirable.
The two algorithms are demonstrated on a ground robot.

Keywords: Path planning, state uncertainty, state constraint, control synthesis, value function,
Hamilton-Jacobi equation, particle filter, shared control, human-in-the-loop.

1. INTRODUCTION

Synthesis of globally optimal control actions for nonlinear
systems with constrained inputs and/or dynamics is a
challenging task, but it can be accomplished under quite
general conditions through various forms of dynamic pro-
gramming; for broad surveys of such techniques, see Bardi
and Capuzzo-Dolcetta (1997) and Bertsekas (2007). The
output of the dynamic programming process is generally
some form of value function which encodes the optimal
possible cost for each state in the state space. Given the
value function, choosing the optimal control reduces to
finding the input whose resulting motion through the state
space generates the steepest descent of the value function.

In this paper we explore an algorithm designed to handle
two challenges which arise when we attempt to apply
this value function descent procedure to synthesize an
(approximately) optimal path for a physical robot. First,
the optimal inputs are often discontinuous with respect to
the state, which can lead to chattering. Second, in practice,
we have only an estimate of the robot’s true state, not its
exact value. Our algorithm takes advantage of the latter
property to help resolve the former problem.

Of course, control synthesis is a well-studied problem, and
yet another path planner is not likely to be an exciting
novelty. However, our goal is not a fully autonomous robot,
but rather one which can share control intuitively, produc-
tively, safely, and continuously with a human operator.
We have not yet solved that bigger problem, but here we
demonstrate how the control synthesis algorithm can be

? This work was supported by the AGE-WELL Network Center
of Excellence and the National Science and Engineering Research
Council of Canada (NSERC) Discovery Grant #298211.

adapted to classify whether an exogenous input signal is
productive according to an underlying value function.

In Traft and Mitchell (2016) we described the Gradient
Sampling Particle Filter (GSPF) algorithm for an omnidi-
rectional, velocity-controlled robot. The GSPF solves the
two challenges described above for synthesizing control
inputs from a value function. The contributions of this
paper are:

• To extend the GSPF to synthesize control inputs
from a value function for a robot with velocity-
controlled unicycle dynamics. Unicycle dynamics are
mathematically equivalent to differential drive, and
so describe the most commonly encountered type of
wheeled ground robot.

• To modify the GSPF to classify whether an exogenous
input signal is productive with respect to the value
function. The proposed algorithm samples the value
function rather than its gradient, so we call it the
Value Sampling Particle Filter (VSPF).

• To demonstrate both algorithms on a physical robot.

2. BACKGROUND

In this section we briefly describe the three main algorith-
mic ideas that we make use of in this paper. Each derives
from a distinct area of mathematics and engineering; the
connection between them will be described in section 3.

2.1 The Particle Filter

The particle filter is a non-parametric implementation of
the Bayes filter and—under the moniker Monte Carlo
Localization (MCL)—it is one of the most robust and

commonly used approaches to robot localization (for ex-
ample, see Thrun et al. (2005)). The idea behind MCL is
to represent state uncertainty with a set of samples from a
posterior distribution that approximates the true state of
the system. Each sample (called particle) is a hypothesis
of what the true state might be.

An MCL state estimate takes the form of a set of particle
states {x[m]}Mm=1 and particle weights {w[m]}Mm=1. Simi-
lar to other Bayes filter algorithms, MCL constructs its
approximation of the state at time t based on the set of
samples from time t− 1, the current observation z(t), and
the control u(t). First, for every particle in the set, a new
state hypothesis x[m](t) is generated by sampling the state
transition distribution (also called the motion model)

x[m](t) ∼ p(x[m](t)|u(t),x[m](t− 1)) (1)

Next, the particle’s weight is updated based on how well
the prediction x[m](t) matches the observation z(t) using
the observation model w[m](t) = p(z(t)|x[m](t)). Finally,
a “resampling” step is performed where a new set of
particles is sampled (with replacement) from the current
set with probability proportional to the particle’s weight.
The weights of the particles in the resampled distribution
are reset to unity. In the remainder of this paper, we will
only use the particle filter after resampling and hence can
ignore the weights.

2.2 Path Planning with Value Functions

We will work with a robot represented by state x ∈ Ω
subject to dynamics ẋ = f(x,u) which are Lipschitz
continuous in x and continuous in input u ∈ U . We assume
that Ω is the closure of an open set and U is compact and
convex. Our goal is to navigate the robot from its current
state to a known target set T ⊂ Ω which is also the closure
of an open set. Trajectories x(·) : [t0, tf] → Ω will be
judged by an additive cost metric

ψ(x0) = inf
x(·)

∫ tf

t0

c(x(s)) ds, (2)

where the cost function c(x) > 0, and feasible paths are
such that x(t0) = x0, x(tf) ∈ T and x(t) ∈ Ω \ T for
t0 ≤ t < tf . It may not be possible to achieve the minimum
cost ψ(x) to go from x to T , but paths exist which get
arbitrarily close.

The value function ψ in (2) satisfies a dynamic program-
ming principle and can be shown (for example, see Bardi
and Capuzzo-Dolcetta (1997)) to be the viscosity solution
of a static Hamilton-Jacobi (HJ) partial differential equa-
tion (PDE)

G(x,∇ψ(x)) = min
u
∇ψ(x) · f(x,u), for x ∈ Ω \ T

ψ(x) = 0 for x ∈ ∂T .
(3)

It is not generally possible to solve (3) analytically. For
the purposes of this paper, we follow Osher (1993) and
transform the problem into a time-dependent HJ PDE

∂

∂t
φ(t,x) + min

u

∇φ(t,x) · f(x,u)

c(x)
= 0 for x ∈ Ω, (4)

where φ(0,x) is chosen as an implicit surface function for
the target set {x | φ(0,x) ≤ 0} = T . After solving (4), the
value function can be extracted as

ψ(x) = min
t
{t | φ(t,x) = 0}.

It is also not generally possible to solve (4) analytically, but
we can approximate its solution using the Toolbox of Level
Set Methods (see Mitchell (2007)). It should be noted that
faster algorithms for solving equations of the form (3) are
available, such as Sethian and Vladimirsky (2003); Kao
et al. (2005); Falcone and Ferretti (2013), but for the
purposes of this paper we compute the approximation of
ψ(x) offline and hence are not so concerned about the
inefficiency of using (4).

Given the value function, the optimal action (which may
not be unique) at state x is to choose u to minimize the
Hamiltonian G(x,∇ψ(x)) in (3):

u∗ ∈ argmin
u
∇ψ(x) · f(x,u). (5)

Although ψ may not be differentiable we can develop some
intuition about this choice observing that formally

∇ψ(x) · f(x,u). =
dψ(x(t))

dt
Consequently, the choice of action (5) results in the fastest
possible decrease in ψ among feasible trajectories. How-
ever, this choice is equivalent to (constrained) steepest
descent of ψ (where the dynamics constrain the feasible
directions of motion) and so it can lead to the chattering
behavior often seen in steepest descent optimization.

2.3 The Gradient Sampling Algorithm

The gradient sampling (GS) algorithm of Burke et al.
(2005) is a simple yet powerful optimization method de-
signed to find a local minimum of a function which is not
necessarily differentiable or convex. At each iteration of
GS, the gradient of the objective function is sampled on
a set of randomly chosen points within a radius ε > 0 of
the current iterate x(t). It can be shown that the convex
hull of this set of gradients is an approximation of the
Clarke ε-subdifferential of the objective function at x(t).
The minimum norm vector g(t) in this convex hull can
be found by solving a quadratic program. If ‖g(t)‖ 6= 0,
then g(t) is a consensus descent direction for all gradient
samples, and a standard line search procedure is used to
determine a new iterate x(t+ 1) = x(t) + αg(t) for some
α > 0. If ‖g(t)‖ = 0, then a Clarke ε-stationary point has
been found, and no consensus descent direction exists. In
this case the standard GS algorithm reduces the sampling
radius ε and generates a new set of samples. The algorithm
terminates when the radius ε decreases to a predetermined
threshold. In practice, the GS robustly converges to a local
minimum for the types of objective functions considered
here, and largely avoids the chattering associated with
steepest descent optimization.

3. THE GRADIENT SAMPLING PARTICLE FILTER
(GSPF) FOR CONTROL SYNTHESIS

The GSPF algorithm of Traft and Mitchell (2016) com-
bines path planning using gradient descent on a value
function and tracking state uncertainty with a particle fil-
ter. The resulting algorithm converges to stationary points
while significantly reducing the chattering effect generated
when running gradient descent on nearly non-differentiable
value functions. The key idea behind the GSPF is to

sample the gradient at the particles’ locations instead of
sampling it at random points.

p[m](t) = ∇ψ(x[m](t)) (6)

Denoting the convex hull of the set of gradient samples as

P(t) = conv({p[1](t), ...,p[m](t)}),
a consensus direction that guarantees descent is computed
by finding the point p~(t) with minimum norm

p~(t) = argmin
p∈P(t)

‖p‖2 . (7)

A convex quadratic program is used to find this point
efficiently. If the solution ‖p~(t)‖ 6= 0, then p~(t) is a
descent direction for all particles. For the omnidirectional
dynamics studied in Traft and Mitchell (2016), the chosen
action is simply to move in the direction

u~(t) =
p~(t)

‖p~(t)‖2
. (8)

In this section we extend the GSPF to handle a robot with
kinematic unicycle dynamics

dx

dt
= ẋ =

ẋẏ
θ̇

 =

[
v cos θ
v sin θ
ω

]
= f(x, v, ω) (9)

where the state x ∈ Ω ⊆ R2 × [0, 2π] consists of a
planar position x, y and a heading θ and the control
u consists of a linear velocity v ∈ [vmin, vmax] and an
angular velocity ω ∈ [ωmin, ωmax]. These dynamics are
not omnidirectional, so we cannot use (8) to choose our
action. Substituting (6) and (9) into (5) we arrive at a
nicely separable optimization

argmin
u
∇ψ(x) · f(x,u)

= argmin
v,ω

p · f(x, v, ω),

= argmin
v,ω

pxv cos θ + pyv sin θ + pθω,

= argmin
v

v(px cos θ + py sin θ) + argmin
ω

pθω,

where px, py and pθ are the components of the gradient in
the state dimensions x, y and θ respectively. The choice of
optimal action is then given by

v∗ =

vmax if px cos θ + py sin θ < 0;

0 if px cos θ + py sin θ = 0;

vmin otherwise.

ω∗ =

ωmax if pθ < 0;

0 if pθ = 0;

ωmin otherwise.

(10)

Note that even though the state and the gradient space
are three-dimensional, the optimal actions are chosen in
two separate one-dimensional spaces.

There are two approaches to adapting (10) to the GSPF
framework: Compute a consensus gradient p~(t) using (7)
and substitute it in (10) to find the optimal actions,
or evaluate the optimal controls v[m] and ω[m] for each
particle using (10) and then seek consensus choices among
these actions. In this paper, we will explore the latter
approach because we can demonstrate that if consensus
actions are found then progress is made toward the target.

We explain the procedure for finding a consensus angular
velocity ω~(t) first.

(1) For each particle location, sample the gradient of the
value function: p[m](t) = ∇ψ(x[m](t)).

(2) Compute the optimal angular velocity, ω[m](t), for
each gradient in p[m](t) following (10).

(3) Compute the convex hull of these angular velocities

Aω(t) = conv({ω[1](t), . . . , ω[m](t)}).
Note that the convex hull in this one-dimensional
space will be an interval.

(4) Determine the consensus ω~ as the minimum norm
point in Aω. Since this set is an interval, there is no
need for a convex optimization as in (7):

ω~(t) =

ωmax if ∀m,ω[m](t) = ωmax;

ωmin if ∀m,ω[m](t) = ωmin;

0 otherwise.

The procedure for finding a consensus linear velocity v~(t)
is the same, except that we follow the formula for v∗ in (10)
for step 2.

Like the original version of the GSPF, this unicycle version
will converge to all stationary points rather than only
the desirable local minimum at the target set. Therefore,
it will not find a nonzero consensus action whenever
the particle cloud surrounds a stationary point in the
value function. For example, if ω~(t) = 0 then some
particles wish to turn left while others want to turn
right and no consensus is possible. Fundamentally, this
situation signals a localization failure: The uncertainty in
the robot state is sufficient that any nonzero input may
be counterproductive. Ideally, our response would be to
improve our localization by, for example, taking additional
sensor readings. We recognize that such a response is not
always possible or desirable, so in the remainder of this
section, we adapt the stationary point classification and
resolution procedure from Traft and Mitchell (2016) to
the unicycle dynamics. Similar to the consensus policy
discussed above, we describe this strategy for the angular
velocity. We denote the action choice from this method
with ω◦(t) because it is not necessarily optimal when it
takes nonzero value.

The purpose of the stationary point classification proce-
dure is to determine whether the particles surround a
local minimum (which by construction implies that the
target has been reached to the extent possible) or a local
saddle or maximum (from which we should try to escape
by some nonzero choice of action). To differentiate these
two cases, we construct a linear approximation of the
particles’ optimal angular velocity ω[m](t) as a function of
the particles’ heading θ[m](t). We use a least squares best
fit because it is the cheapest to evaluate, but other choices
are possible. Some care must also be taken to handle the
periodic boundary conditions for θ ∈ [0, 2π].

If the slope of this approximation is negative, particles
with smaller heading want to turn left while particles with
larger heading want to right; in other words, we are at
a local minimum in the value function with respect to
angular velocity. This situation is likely to arise when
the robot is moving toward the goal with some particles
slightly to the right of the optimal path and some slightly
to the left but no intervening obstacles. In this case, there
is no clear benefit to turning, and we choose ω◦(t) = 0.

4.8 4.9 5 5.1

-1

-0.5

0

0.5

1

O
pt

im
al

-1 0 1

x cos + y sin

-1

-0.5

0

0.5

1

O
pt

im
al

 v

Fig. 1. Classification at a stationary point. Angular veloc-
ity is at a minimum because the slope of the fitted line
is negative so we set ω◦(t) = 0. The linear velocity is
at a maximum so we vote and choose v◦(t) = vmax.

On the other hand, if the slope of the approximation is
positive, particles with smaller heading want to further
decrease it by turning negatively while particles with larger
heading want to further increase it; in other words, we are
at a local maximum in the value function with respect to
angular velocity. This situation is likely to arise when the
robot is facing almost directly away from the target or the
target is almost exactly on the far side of an obstacle. In
such situations, there may be no consensus as to whether
left or right is optimal, but because the value function
is continuous, there is also little difference in terms of
time to reach the target no matter which choice is made.
Therefore, we use a simple voting procedure to break the
deadlock. For σ ∈ {−1, 0,+1} we define

ασω(t) = count
m

(
{x[m](t) | sign(p

[m]
θ (t)) = σ}

)
,

to determine how many particles want to turn right
(α−1ω (t)), not turn (α0

ω(t)) and turn left (α+1
ω (t)). We

identify which option σ∗ω(t) is favored by the plurality of
particles and we choose a corresponding input value

σ∗ω(t) = argmax
σ

ασω(t),

ω◦(t) =

ωmin if σ∗ω(t) = −1;

0 if σ∗ω(t) = 0;

ωmax if σ∗ω(t) = +1;

The procedure to find a v◦(t) is the same, except
that the abscissae of the linear fit are provided by
x[m](t) cos θ[m](t)+y[m](t) sin θ[m](t) instead of θ[m](t) and

ασv (t) = count
m

({
x[m](t)

∣∣∣∣sign

(
p
[m]
x (t) cos θ[m](t)

+p
[m]
y (t) sin θ[m](t)

)
= σ

})
.

Figure 1 illustrates the classification and resolution strat-
egy using data from the first example in section 5. The plot
on the left shows the results for angular velocity. The black

dots are p
[m]
θ (t) and red dots are ω[m](t) as functions of

θ[m](t). A line is fit to the red dots, and the negative slope
indicates a local minimum, so we choose ω◦(t) = 0. The
plot on the right shows the results for linear velocity. The
positive slope of the fitted line indicates a local maximum,
so the voting procedure is invoked, σ∗v(t) = +1 (in fact,
α+1
v (t) is the majority vote in this case, not just the

plurality) and we choose v◦(t) = vmax.

We conclude our description of the adaptation of GSPF to
the unicycle dynamics by noting that the classification and
resolution procedure also serves as a termination criterion,

just as it did in the omnidirectional version from Traft and
Mitchell (2016). Any particle which lies inside the target
set will have p[m](t) = 0; consequently, if any particle
lies within the target set no nonzero consensus action will
be found. If improved localization is not pursued, one of
three outcomes will occur. If the particles surround the
target, a local minimum will be detected, and the input
will be chosen as zero. If the particles do not surround
the target, but the majority lies inside it, then σ∗ω(t) = 0
and σ∗v(t) = 0 and the input will again be chosen as zero.
Finally, if the particles do not surround the target, but the
majority lies outside it, then the voting procedure will find
a nonzero input which favors this group of particles.

4. VALUE SAMPLING PARTICLE FILTER FOR
CONTROL CLASSIFICATION

GSPF synthesizes actions which are optimal under the cost
metric (2) to the extent possible given the state uncer-
tainty captured by the particle filter. Assuming that the
robot is granted the authority to control its own motion
completely, this (admittedly limited) form of optimality is
appropriate given the state uncertainty and the fact that
the cost function encodes all information available to the
robot about the desirability of trajectories.

By contrast, in the shared control scenario the robot is
sharing motion decisions with an exogenous input coming
from another agent, such as a human-in-the-loop. We
assume that the agent generating this input may have
access to information beyond that available to the robot
and which cannot be communicated to the planner in an
appropriate form (such as modification to the cost function
or particle weights). On the other hand, we also assume
that neither the robot’s information nor the other agent’s
strictly dominates, so neither should be ignored.

In the previous section, we explored the scenario of how
to choose among a set of conflicting actions generated
from the samples in the particle filter. In this section, we
pursue that same capability for the case of an exogenous
input: Determine whether that input is consistent with
the robot’s current knowledge of its location and how the
target set can be reached. Such a classification could be
used to drive an intervention or other mode switching
behavior in a shared control system. We leave to future
research the subsequent question of what intervention to
apply when the input is inconsistent with robot knowledge.

In the GSPF, an input u(t) is desirable if ∇ψ(x(t)) ·
f(x(t),u(t)) ≤ 0; in other words, the chosen action does
not lead to an instantaneous increase in ψ. However, this
requirement to align with (the negative of) ∇ψ may be
too tight a constraint. To see why, consider the case where
a symmetric obstacle lies exactly between the robot and
the target set. Paths to the left or right of the obstacle
take approximately the same time, which manifests as
a ridge in the value function ψ. With probability one,
the actual state of the robot does not lie exactly on the
ridge, so ∇ψ exists and either left or right is technically
optimal. In this scenario both choices could be reasonably
classified as desirable even though one will generate motion
leading to an instantaneous increase in ψ; at the same
time moving straight the obstacle is likely not desirable,
even though it might generate an instantaneous decrease

in ψ. Therefore, instead of using ∇ψ(x(t)) (“gradient
sampling”) to measure the decrease in ψ, we will use the
difference given by

∆ψ(x(t)) = ψ(x(t+ 1))− ψ(x(t)) (11)

(“value sampling”). The future state x(t+ 1) is estimated
according to the motion model (1) using the exogenous
input signal, ue(t), and the current state, x(t).

In the GSPF, we sought a motion command that achieved
descent for all current particle samples. In the context
of classifying an input from an agent which may have
additional knowledge, such a constraint can be relaxed
because the agent may know that certain states currently
represented by particles are highly unlikely. Therefore,
instead of seeking consensus we ask only that the chosen
action produces descent for a sufficient fraction of the
particles. That fraction is an adjustable parameter which
could range from a single particle to the entire particle set.

Finally, GSPF considers inputs desirable as long as they do
not lead to an instantaneous increase in the value function.
For classification purposes, we may want to set a minimum
acceptable level of decrease as measured by (11).

In summary, the Value Sampling Particle Filter (VSPF)
evaluates an exogenous input ue(t) by

(1) For each particle, predict what the future state would
be if we applied ue(t)

x[m](t+ 1) ∼ p(x[m](t+ 1) | ue(t),x[m](t)). (12)

(2) For each particle, evaluate the difference in the value
function

∆ψ(x[m](t)) = ψ(x[m](t+ 1))− ψ(x[m](t)). (13)

(3) Classify the input as desirable based on a summary
criterion across the particles; for example,

count
m

(
{x[m](t) | ∆ψ(x[m](t)) ≤ µ}

)
≥ k (14)

or ∑
m

{∆ψ(x[m](t)) | ∆ψ(x[m](t)) ≤ 0} ≤ µ

for some thresholds k > 0 and µ ≤ 0.

Computationally, the cost of VSPF is linear in the number
of particles: For each particle we need one motion predic-
tion, two interpolations of ψ, and a small constant number
of basic arithmetic and comparison operations.

5. EXAMPLES

We test the GSPF and VSPF on a Segway Robotic Mobil-
ity Platform (RMP) 100 equipped with a Hokuyo UTM-
30LX laser rangefinder with a field of view of 150 degrees.
We use a Lenovo ThinkPad W530 (8 cores, 2.6 GHz Intel
Core i7) with 8GB of RAM and Ubuntu 14.04 LTS. We
implement the algorithms using the ROS framework paired
with Matlab R2016b and the Robotics System Toolbox.
The robot’s compatibility with ROS allows us to efficiently
use the adaptive Monte Carlo Localization (AMCL) imple-
mentation approach described in Thrun et al. (2005).

We approximate the value function using the Toolbox of
Level Set Methods from Mitchell (2007) and approximate
the gradient using upwinded first order finite differences at
each node of the grid. To sample the gradient at any point

0 5 10 15

X [meters]

-6

-4

-2

0

2

4

6

8

10

12

Y
 [m

et
er

s]

(a)

0 5 10 15

X [meters]

-6

-4

-2

0

2

4

6

8

10

12

Y
 [m

et
er

s]

(b)

Fig. 2. Examples of paths generated by the GSPF.

within the grid we use Matlab’s interpn function with
the default linear interpolation (trilinear in this case).

5.1 Control Synthesis

Our first two examples illustrate how we can synthesize
control actions for the unicycle dynamics with the mod-
ified GSPF algorithm. Figure 2 exhibits two navigation
scenarios with a red star at the robot’s target and a blue
line denoting its trajectory (as estimated by AMCL). The
green circles are examples of locations along the trajecto-
ries where there is no consensus action. The algorithm was
able to resolve these stationary points using the method
described in section 3 without triggering additional sensor
readings. For the location in figure 2a, the resolution re-
sulted in forward motion (see figure 1 and accompanying
text). For the location in figure 2b, the classification occurs
according to the plots in figure 3. Since the slopes of the
fitted lines are positive, we classify the saddle point as a
maximum in both v and ω. Following the voting procedure
we set v◦(t) = vmax and ω◦(t) = ωmin.

2.5 2.55 2.6

-1

-0.5

0

0.5

1

O
pt

im
al

-7.4 -7.2 -7 -6.8 -6.6

x cos + y sin

-1

-0.5

0

0.5

1

O
pt

im
al

 v

Fig. 3. Stationary point classification for Fig. 2b. Classified
as local maximum in v and ω. Voting generates clearly
favored actions ω◦(t) = ωmin and v◦(t) = vmax.

These examples show that the GSPF is capable of gener-
ating smooth paths and navigating the robot through a
doorway while keeping a safe distance from obstacles.

5.2 Control classification

Our third example demonstrates the proposed VSPF ap-
proach to classify motion commands according to their
degree of productivity towards a goal. In this case, the user
has a predefined target and provides velocity controls to
the robot using a joystick device. For this example, we used

0 2 4 6 8 10

X [meters]

-6

-4

-2

0

2

4

6

Y
 [m

et
er

s]

(1)

(2)

(3) (4)

(5)

(6)

(a) Sample trajectory for a user
operated robot. The direction

of the arrows denote ue(t).

1 2 3 4 5 6

Section

-0.5

0

0.5

1

1.5

(x

t)

(b) Difference in ψ (11) for the
identified points in figure 4a.
Negative values are desirable.

Fig. 4. Classification of exogenous control signals.

metric (14) with µ = 0 and k = 0.7 to determine whether
the user input signal is desirable. Figure 4a depicts the
scenario with the direction of the arrows encoding the
user’s input at each point along the trajectory.

At location (1), the user is deliberately driving away from
the goal. The control classification algorithm predicts the
future states of the particles under the user input (12),
samples the value function at the current and predicted
particle locations, and evaluates the difference (13). The
corresponding change for each particle in the value func-
tion, ∆ψ(x[m]), is represented by the left-most set of
circles in figure 4b. Since there is no decrement for any
of the particles, the algorithm classifies the user signal as
undesirable (red arrows represent undesirable inputs).

The value function differences at the remaining labeled
locations on the trajectory show distinct patterns. When
the user maintains the controls consistent with the goal,
such as locations (2) and (6), the differences are negative
for all particles and the control is classified as productive
(green arrows). If the user steers too close to obstacles,
as in location (3), there is also an increment in the
value function meaning that this action is undesirable. At
location (4) the user steers away from the obstacle but also
away from the goal, resulting in an insufficient portion of
the particles (less than 70%) predicting a decrease in the
value function, thus the input is classified as undesirable.
In location (5), we see the case where the goal is to the left
of the current position. When the user continues without
turning, the estimated differences are all positive, and the
control is classified as undesirable.

This example shows that the VSPF can flexibly classify an
exogenous input signal according to whether it is likely to
be making progress toward a target set.

6. CONCLUSIONS AND FUTURE WORK

We extended the GSPF algorithm for control synthesis
with value functions under state uncertainty from omni-
directional to unicycle dynamics. We then demonstrated
how the algorithm can be adapted to classify whether
an exogenous input is desirable (as judged by the value
function), this time by sampling the value function itself
rather than its gradient (the VSPF).

For the GSPF synthesis algorithm, we are exploring meth-
ods of extending it to more complex dynamics and un-
derlying quality metrics other than value functions. We
demonstrated the VSPF classification algorithm with the
same value function used for GSPF synthesis, but VSPF
can also be used for safety assurance through appropriately
defined value function representations of viability kernels
or reachable sets, such as those described in Kaynama et al.
(2015); Mitchell et al. (2016).

ACKNOWLEDGEMENTS

The authors would like to thank Neil Traft and Ren Yi for
their work on earlier versions of the GSPF, Lili Meng and
Zicong Fan for their help with ROS and the robots, and
Dr. Clarence de Silva and UBC’s Industrial Automation
Lab for the loan of the Segway RMP.

REFERENCES

Bardi, M. and Capuzzo-Dolcetta, I. (1997). Optimal
Control and Viscosity Solutions of Hamilton-Jacobi-
Bellman equations. Birkhäuser, Boston.

Bertsekas, D.P. (2007). Dynamic Programming and Opti-
mal Control. Athena Scientific, Belmont, Massachusetts,
3 edition.

Burke, J.V., Lewis, A.S., and Overton, M.L. (2005). A
robust gradient sampling algorithm for nonsmooth, non-
convex optimization. SIAM Journal on Optimization,
15(3), 751–779.

Falcone, M. and Ferretti, R. (2013). Semi-Lagrangian
Approximation Schemes for Linear and HamiltonJacobi
Equations. SIAM. doi:10.1137/1.9781611973051.

Kao, C.Y., Osher, S., and Tsai, Y.H. (2005). Fast sweeping
methods for static Hamilton-Jacobi equations. 42(6),
2612–2632.

Kaynama, S., Mitchell, I.M., Oishi, M.M.K., and Dumont,
G.A. (2015). Scalable safety-preserving robust control
synthesis for continuous-time linear systems. IEEE
Transactions on Automatic Control, 60(11), 3065–3070.

Mitchell, I.M. (2007). A toolbox of level set methods (ver-
sion 1.1). Technical Report TR-2007-11, Department
of Computer Science, University of British Columbia,
Vancouver, BC, Canada. URL http://www.cs.ubc.
ca/~mitchell/ToolboxLS/toolboxLS.pdf.

Mitchell, I.M., Yeh, J., Laine, F.J., and Tomlin, C.J.
(2016). Ensuring safety for sampled data systems: An
efficient algorithm for filtering potentially unsafe input
signals. In Proceedings of the IEEE Conference on
Decision and Control, 7431–7438. Las Vegas, NV. doi:
10.1109/CDC.2016.7799417.

Osher, S. (1993). A level set formulation for the solution
of the Dirichlet problem for Hamilton-Jacobi equations.
24(5), 1145–1152.

Sethian, J.A. and Vladimirsky, A. (2003). Ordered upwind
methods for static Hamilton-Jacobi equations: Theory
and algorithms. 41(1), 325–363.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic
robotics. MIT press.

Traft, N. and Mitchell, I.M. (2016). Improved action and
path synthesis using gradient sampling. In Proceedings
of the IEEE Conference on Decision and Control, 6016–
6023. Las Vegas, NV. doi:10.1109/CDC.2016.7799193.

