
Falsification of Temporal Logic
Requirements Using Gradient Based Local

Search in Space and Time

Shakiba Yaghoubi, and Georgios Fainekos

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, AZ, USA

Email: {syaghoub, fainekos}@asu.edu

Abstract: We study the problem of computing input signals that produce system behaviors
that falsify requirements written in temporal logic. We provide a method to automatically search
for falsifying time varying uncertain inputs for nonlinear and possibly hybrid systems. The input
to the system is parametrized using piecewise constant signals with varying switch times. By
applying small perturbations to the system input in space and time, and by using gradient
descent approach, we try to converge to the worst local system behavior. The experimental
results on non-trivial benchmarks demonstrate that this local search can significantly improve
the rate of finding falsifying counterexamples.

Keywords: Cyber-physical systems, Testing, Gradient Descent, Optimization, Temporal Logic.

1. INTRODUCTION

Autonomous automobile systems, industrial and medical
robots, smart grids, and process control systems are all ex-
amples of Cyber-Physical Systems (CPS) that are widely
used these days. All such systems have strict performance
and safety requirements. Hence analysis of Cyber-Physical
Systems’ requirements is an important and challenging
problem at the same time. Despite all the advances in
exhaustive system verification methods, the resulting tools
are not applicable in real-world-size problems: they either
work on small problem instances or on restricted classes
of systems (e.g, linear systems).

As a result testing methods are still primarily used in
the industry. To improve the testing stage performance
an automated framework to test the system by searching
over the space of uncertain inputs becomes necessary. To
decrease the necessary time and cost of the testing phase,
we need to increase the efficiency of the testing process
by optimizing the search. Since testing a system over
continuous time input signals is a search over an infinite
dimensional space, input parametrization has a significant
importance.

Piecewise constant inputs are used for input parameter-
ization in Yaghoubi and Fainekos (2017a) to falsify the
specifications of smooth nonlinear gray-box systems and in
Yaghoubi and Fainekos (2017b) to falsify the requirements
of the whitebox hybrid systems. To simplify the analysis,
in these works the input parameters are evenly spaced
so that the time points at which the input signal value
changes are constant. This input parameterization can
assist in capturing the transient properties related to the

? This work was partially supported by the NSF awards CNS
1350420, IIP-1361926, and the NSF I/UCRC Center for Embedded
Systems.

input signal amplitude. However, since some of the system
unsafe behaviors are related to temporal changes, temporal
parameterization of the input signal seems to be necessary,
as well.

Our main contribution in this paper is that we provide a
space-time parameterization for the time varying inputs to
the system, and use gradient descent (GD) to adaptively
change the amplitude and the switch time of the signal
to find optimal cases to be tested against system spec-
ifications. Because of the complexities that arise in the
sensitivity calculation for hybrid systems (see Donzé and
Maler (2007)), and to avoid unnecessary technicalities, we
develop our method assuming that the system dynamics
are smooth and nonlinear. However, the extension of the
results in this paper to hybrid systems is easily achievable
with the analysis in Yaghoubi and Fainekos (2017b), along
these lines, even though, we do not present the theory
here, one of the studied benchmarks in the paper which is
studied in section 6.2 is also a hybrid system. We also
show that combining stochastic global search methods
(here we used Simulated Annealing) with the local search
using GD directions can significantly increase the rate
of finding unsafe behaviors. In one of the experimental
studies while Simulated annealing was not able to find any
unsafe behavior in 50 runs, its combination with GD was
able to find an unsafe behavior in 11 runs.

2. PRELIMINARIES

We consider dynamical systems of the form

Σ : ẋ = F (x, u) (1)

where x ∈ X ⊆ Rn is the system state, u ∈ U [0,T] ⊆ L[0,T]
2

is the input function that given a specific point in time t ∈
[0, T] returns a value in the bounded set U ⊂ R (u : t→ U),
and F : Rn × U [0,T] → Rn is a C1 flow. We assume that

…

𝑢(𝑡)

𝑡

𝑢1

𝑢2

𝑢𝑑

𝑢3

𝑡𝑑−1𝑡1 𝑡2 𝑇

Fig. 1. Piecewise constant input parameterization

…

𝑢(𝑡)

𝑡

𝑢1

𝑢2

𝑢𝑑

𝑢3

𝑡𝑑−1𝑡1 𝑡2 𝑇

…

𝑢

𝑡𝑡𝑑−1𝑡1 𝑡2 𝑇

…

𝑢

𝑡

𝑢1

𝑢2
𝑢3

𝑢𝑑

Fig. 2. Input perturbation: The left plot shows a pertur-
bation in space (δuu) and the right plot shows one in
time (δut).

the system can be initiated from a set of initial conditions
X0 ⊆ X. Even though a closed form solution for (1) cannot
be found in most of the cases, we can find a numerical
solution to it assuming that the simulation time T is
bounded. Given an initial condition x0 ∈ X0, and an input
u ∈ U [0,T] we denote this solution at time t with s(x0, u, t).
We indicate a piecewise constant input u consisting of d
pieces using a sequence (u1, t1, u2, t2, ..., td−1, ud) where
0 < t1 < ... < td−1 < td = T and u1, ..., ud ∈ U . This
input is described below and it is shown in Fig. 1.

u(t) = ui, for t ∈ [ti−1, ti], i = 1, ..., d (2)

System (1) can be perturbed around its solution s(x0, u, t),
if we make a small change δx0 in its initial condition
or δu in its input. We assume that x0 + δx0 ∈ X0 and
u + δu ∈ U [0,T]. The change in the system solution is
indicated as δs(x0, u, t) and it is equal to s(x0 + δx0, u +
δu, t)− s(x0, u, t).

A perturbation δu(t) in a piecewise constant input can be
the result of small changes (δu1, ..., δud) in the values of
(u1, ..., ud) denoted by δuu or small changes (δt1, ..., δtd−1)
in the values of (t1, ..., td−1) denoted by δut (see Fig. 2).

System requirements are usually expressed formally as
Metric or Signal Temporal Logic (TL) formulas (abbre-
viated as MTL and STL, respectively, see the survey in
Bartocci et al. (2018) for more information). TL formulas
are built by combining atomic propositions or predicates
using logical and temporal operators. The robustness of a
system trajectory with respect to a TL formula φ shows
how well it satisfies the specification: positive values in-
dicate satisfaction and negative values indicate violation.
The greater the robustness absolute value, the farther
the system trajectory is from being satisfied/falsified (see
Fainekos and Pappas (2009) for details on how the robust-
ness is defined and calculated). As a result in a guided
search for a system unsafe behavior, the algorithm should
actively try to decrease the robustness value.

3. PROBLEM FORMULATION

Given a system as described in Eq. (1) and an initial
condition and input to the system which determines a
solution s(x0, u, t) with the robustness value r w.r.t. a
system requirement φ, we would like to find δx0 and δu
such that s(x0 + δx0, u + δu, t) has a robustness value
rp < r w.r.t φ. Due to the definition of robustness of a
trajectory s(x0, u, t) w.r.t a formula φ the absolute value

of the robustness corresponds to the distance between a
point s(x0, u, t

∗
x0,u) on the trajectory and a point z∗x0,u that

belongs to one of the sets which corresponds to a predicate
in φ. This set is called the critical set w.r.t s(x0, u, t)
and t∗x0,u is called the critical time. As a result, finding
a neighboring trajectory of s(x0, u, t) with a robustness
value smaller than r, can be reduced to minimizing the
following local cost function w.r.t x0 and u. This is shown
in Yaghoubi and Fainekos (2017b).

Jx0,u(x′0, u
′) = ||s(x′0, u′, t∗x0,u)− z∗x0,u|| (3)

Note that we are actually interested in minimizing the ro-
bustness function. However, this function is a complicated,
non-smooth, and non-convex function which is hard to deal
with specially since the search space is usually large dimen-
sional. As a result, we try to minimize the cost in Eq. (3)
which locally minimizes the robustness function. Focusing
on the minimization of Eq. 3 has advantages over searching
for the minimizer of the robustness function directly: Jx0,u

is smooth and differentiable and using gradients we can
find directions of improvement to guide the search in the
large dimensional search space. The problem of our interest
is stated below:

Problem 3.1. Given the system of Eq. (1), a compact time
interval [0, T], a set of initial conditions X0, an input set U ,
a point x0 ∈ X0 and an input u(t) ∈ U [0,T] such that the
system trajectory satisfies 0 < Jx0,u(x0, u), find vectors
δx0, δuu, δut that satisfy the following property:

∃∆1,∆2 such that ∀h1 ∈ (0,∆1), h2 ∈ (0,∆2): Jx0,u(x′0, u
′)

≤ Jx0,u(x0, u) where x′0 = x0 + h1δx0 ∈ X0 and u′(t) =

u(t)+h2δu(t) ∈ U [0,T] and δu(t) is the change in the input
as a result of applying δuu and/or δut to the input.

4. TIME-SPACE GRADIENT DESCENT

As mentioned in Yaghoubi and Fainekos (2017b), to find
the solution to Problem 3.1, note that:

dJx0,u(x0, u) =
∂Jx0,u

∂s
δs(x0, u, t

∗
x0,u) = −nTs δs(t∗x0,u)

(4)

where ns = z∗x0,u − s(x0, u, t
∗
x0,u) and δs(t) , δs(x0, u, t).

Using chain rule:

δs(t) =
∂s

∂x0
δx0 + Σdi=1

∂s

∂ui
δui + Σd−1

i=1

∂s

∂ti
δti (5)

where ∂s
∂p is the trajectory sensitivity to parameter p which

will be calculated later. Observe that using cx0
, cui

, cti > 0
the following directions are descent w.r.t Jx0,u:

δx0 = cx0

∂s

∂x0

T

ns

δui = cui

∂s

∂ui

T

ns, i = 1, ..., d

δti = cti
∂s

∂ti

T

ns, i = 1, ..., d− 1

(6)

So we just need to calculate ∂s
∂x0

(sensitivity to initial con-

dition), ∂s
∂ui

(sensitivity to the input values) and ∂s
∂ti

(sensi-

tivity to the input switch times). Calculating ∂s
∂x0

, ∂s∂ui
has

been shown before in Abbas et al. (2014) and Yaghoubi
and Fainekos (2017b) and will be reviewed here, but we
will show how to calculate ∂s

∂ti
here for the first time.

4.1 Sensitivity analysis

Sensitivity to initial condition: By perturbing the sys-
tem around its initial conditions and using Newton’s
method one can easily see that the dynamics of ∂s

∂x0
follows

d

dt
(
∂s

∂x0
) = D1F

∣∣
s(x0,u)

∂s

∂x0
,

∂s

∂x0
(0) = In×n (7)

where In×n is an identity matrix and Di denotes the
partial differentiation w.r.t the i-th element.

Sensitivity to input value: Since the input value ui,∀i =
1, .., d is only activated in the interval [ti−1, ti) with t0 =
0, td = T , the dynamics of ∂s

∂ui
follows

∂s

∂ui
(0) = 0

d

dt
(
∂s

∂ui
) =

D1F

∣∣
s(x0,u)

∂s

∂ui
+D2F

∣∣
s(x0,u)

, if t ∈ [ti−1, ti)

D1F
∣∣
s(x0,u)

∂s

∂ui
otherwise

(8)

Defining ∂s
∂u , [∂s∂u1

, ..., ∂s∂ud
], the dynamics of ∂s

∂u can be
written in closed form as

∂s

∂u
(0) = 0

d

dt
(
∂s

∂u
) = D1F

∣∣
s(x0,u)

∂s

∂u
+D2F

∣∣
s(x0,u)

h(t), if t ∈ [ti−1, ti)

(9)

where h(t) = [h1(t), ..., hd(t)] and

hi(t) =

{
1 if t ∈ [ti−1, ti)
0 otherwise

(10)

Sensitivity to input switch time: To calculate ∂s
∂ti

, recall
that this is the change in the solution as a result of a
change in the switch time ti denoted as δti. Assuming
δti > 0,∀i = 1, ..., d − 1, for any t < ti,

∂s
∂ti

(t) = 0. Since

δti is assumed to be small in value, for any t ∈ [ti, ti+δti),
δs(t) = s(x0, u

′, t)−s(x0, u, t) = (F (x, ui)−F (x, ui+1))δti,
where u′ is a result of changing ti to ti + δti in u. So:

∂s

∂ti
≈ F (x, ui)− F (x, ui+1) (11)

For any t > ti,
∂s
∂ti

evolves as d
dt (

∂s
∂ti

) = D1F
∣∣
s(x0,u)

∂s
∂ti

. So

the dynamics of ∂s
∂ti

can be approximated as:

∂s(t)

∂ti
= 0 if t < ti

∂s(ti)

∂ti
= F (x, ui)− F (x, ui+1) if t = ti

d

dt
(
∂s

∂ti
) = D1F

∣∣
s(x0,u)

∂s

∂ti
, if t > ti

(12)

Since there is a reset in the value of the ∂s(t)
∂ti

, we can

use a hybrid automaton (HA) to evaluate it. Considering
St = [St1 , ...Std−1

] = [∂s∂t1 , ...
∂s

∂td−1
], this is shown in Fig. 3.

Note that the time-space gradient descent calculation
can be readily combined with the results in our paper
Yaghoubi and Fainekos (2017b) to calculate descent di-
rections for hybrid systems.

𝜃1
…

𝑢(𝑡)

𝑡

𝑢1

𝑢2

𝑢𝑑

𝑢3

𝑡𝑑−1𝑡1 𝑡2 𝑇

…

𝑢

𝑡𝑡𝑑−1𝑡1 𝑡2 𝑇

…

𝑢

𝑡

𝑢1

𝑢2
𝑢3

𝑢𝑑

𝑙1:

ሶ𝑆𝑡 = 𝐷1𝐹 ቚ
𝑠 𝑥0,𝑢

𝑆𝑡

𝑆𝑡 = 0

𝑡 = 𝑡𝑖/
𝑆𝑡𝑖 = 𝐹 𝑥, 𝑢𝑖 − 𝐹(𝑥, 𝑢 𝑖+1

𝑙1:

ሶ𝑆𝑡𝑖 = 𝐷1𝐹 ቚ
𝑠 𝑥0,𝑢

𝑆𝑡𝑖

{𝑆𝑡𝑖 = 0 }

𝑡 = 𝑡𝑖/
𝑆𝑡𝑖 = 𝐹 𝑥, 𝑢𝑖 − 𝐹(𝑥, 𝑢 𝑖+1)

𝑙1:

ሶ𝑆𝑡 = 𝐷1𝐹 ቚ
𝑠 𝑥0,𝑢

𝑆𝑡

𝑆𝑡 = 0

𝑡 = 𝑡𝑖/
𝑆𝑡𝑖 = 𝐹 𝑥, 𝑢𝑖 − 𝐹(𝑥, 𝑢𝑖+1)

…𝑉1
𝑉𝑛 𝜃𝑛

𝜃𝑛−1

Fig. 3. HA for calculating the sensitivity to the input
switch times

The space-time gradient descent framework is described
in Algorithm 1. The function Simul&Sens simulates
the system Σ and stores the numerical solution in sx0,u

and calculates the sensitivity functions using Eq. (7),
(9) and (12) and stores them in ∂s/∂p. The function
getrob returns the robustness value of the trajectory with
respect to the specification along with the critical time and
approach vector information. The function inbox shrinks
the new initial conditions and input to fit in X0, U . And
finally the function GD calculates the descent directions
w.r.t Eq. 6.

5. A DISCUSSION ON THE CHOICE OF INPUT
PARAMETERIZATION

Despite their simplicity, we found piecewise constant in-
puts appealing for falsification of system requirements, due
to different reasons:

(1) We can easily ensure that u ∈ U [0,T]. It is harder
to ensure this property using other parameterization
methods like spline or polynomial interpolation or
Fourier series without putting further constraints-
like bounding the sum of Fourier coefficients- on the
input. These additional constraints can reduce the
input efficiency in practice since for example if we
bound the sum of Fourier coefficients by umax the
maximum input value can reach umax only if the
phase shifts are zero.

(2) Using time and space parameterization, we can test
a wide variety of input properties which can reveal
different (possibly unsafe) system behaviors: using
the time instances we can test time/frequency related
features and using the value instances we can test
transient properties. Also, the input can change its
value u1 to u2 ∈ U at any time (this is important since
for example the optimal input for linear systems is a
bang-bang control in many cases (see Kirk (2012)).)

(3) While calculating the time and space gradients is
straightforward for piecewise constant inputs, it is a
bottleneck for other interpolation methods.

6. CASE STUDIES

In this section two case studies are used to evaluate the
performance of the time-space gradient descent in testing
system requirements. We used MATLAB 2017a on an
Intel(R) Core(TM) i7-4790 CPU @3.6 GHZ with 16 GB
memory processor with Windows 10 Enterprise for all the
case studies and experimental results in this paper.

6.1 Powertrain system

This benchmark is introduced as the third model in Jin
et al. (2014). Some preliminary results on the original
model are presented in Dokhanchi et al. (2017). These

Algorithm 1 Space-Time GD algorithm for robustness

Require: System model Σ, initial condition and param-
eterized input x0 and u, sets of possible initial condi-
tions and input values X0 and U , system specification
ϕ, final time T , step size h, number of descent itera-
tions k1, maximum number of the step size decrease
k2 and the multiplier of the step size p < 1.

Ensure: Local optimal initial condition x∗0, local optimal
input u∗ and the related optimal robustness value r∗

1: (x′0, u
′, r∗) ← (x0, u0,∞)

2: for i = 1 to k1 do
3: (sx0,u, ∂s/∂p) ← Simul&Sens(Σ, x′0, u

′, T)
4: (r, t∗, ns) ← GetRob(sx0,u, ϕ)
5: if r ≤ r∗ then
6: (x0, u) ← (x′0, u

′), (x∗0, u
∗, r∗) ← (x′0, u

′, r)
7: else
8: h′←h
9: for j = 1 to k2 do

10: h′ ← h′.p
11: (x′0, u

′) ← inbox(x0, u,X0, U, h
′, δx, δu, δt)

12: (sx0,u, ∂s/∂p) ← Simul&Sens(Σ, x′0, u
′, T)

13: (r, t∗, ns) ← GetRob(sx0,u, ϕ)
14: if r ≤ r∗ then
15: (x∗0, u

∗, r∗) ← (x′0, u
′, r)

16: Break
17: end if
18: end for
19: if r > r∗ then
20: Break
21: end if
22: end if
23: (dx, du) ← GD(t∗, ns, ∂s/∂p).
24: (x′0, u

′) ← inbox(x0, u,X0, U0, h, δx, δu, δt)
25: end for

results reveal some of the challenges about this model.
The model we study in this paper is the stiff polynomial
approximation of the original model. It is a closed loop
model of an engine under an air/fuel controller. The closed
loop system consists of 5 states and takes two exogenous
inputs: the throttle angle θin and, the engine speed ω. We
test the system in the “Normal” operation mode w.r.t the
following requirement: “The air/fuel (A/F) ratio remain
in the invariant set [14.56, 14.84] from t = 3 to the end of
the simulation time T=50.”

During the test, the engine speed is supposed to re-
main constant but it can attain different values in
[900π/30, 1100π/30]. The throttle input however is a time
varying input as a result of possibly different behaviors
by the driver, but it is assumed to be bounded in the
set [0, 81.2]. We used 1 parameter to describe ω and 21
parameters (11 for signal values and 10 for switch times)
to describe θin. Starting from a trajectory with robustness
0.129, we find a falsifying trajectory with robustness -0.003
using GD in 4 iterations. The initial and final trajectories
and the inputs are shown in Fig. 4 and 5, respectively.

Note that some properties for this model have been ver-
ified/falsified in Fan et al. (2015), but they only test the
system under time invariant uncertainties and assume that
the driver behaviors (that affect θin) are limited to two
specific behaviors. However, here, we test the system over
different driver behaviors.

0 5 10 15 20 25 30 35 40 45 50

t

14.5

14.55

14.6

14.65

14.7

14.75

14.8

14.85

A
/F

initial
final
unsafe boundary

Fig. 4. GD increases the air/flow ratio over and undershoot
causing it to find a falsifying trajectory.

0 10 20 30 40 50
114

115

116

117

0 10 20 30 40 50

t

0

50

100

in

initial
Final

Fig. 5. Initial and falsifying engine speed and throttle
input.

6.2 Maneuvering object

This benchmark is a hybrid model also used in Yaghoubi
and Fainekos (2017b). The maneuvering object has a pair
of off-centered thrusters as the control input. The location-
based (hybrid) dynamics of the vehicle is as follows:ẋiẋ4

ẋ5

ẋ6

 =

 xi+3

0.1x4+Σi=1,2si(l)(x1−αi)+F1cos(x5)−F2sin(x5)

0.1x5+Σi=1,2si(l)(x2−βi)+F1sin(x5)−F2cos(x5)

−bF1/I + aF2/I

(13)

where i = 1, 2, 3 and (x1, x2) is the positions along the
x and y axis. The hybrid model consists of 3 locations:
the first to third locations are specified using the sets
{x |x1 < 4}, {x | 4 ≤ x1 ≤ 8}, and {x |x1 > 8},
respectively. At the first, second and third locations, we
have s1 = s2 = 0,s1 = −1, s2 = 0, and s1 = 0, s2 = −2,
respectively. Also, (α1, β1) and (α2, β2) are the centers
of the unsafe sets U1 and U2, respectively. We consider
a = b = I = 1.

The system is required to satisfy this requirement: “Always
avoid U1 = [5.5, 6.5] × [2.5, 3.5] and U2 = [9.5, 10.5] ×
[1.5, 3.5], and eventually reach the goal set A = [11, 13]×
[3, 5] within T=10 seconds.”

The search is over the time and the amplitude of the piece-
wise constant inputs F1 ∈ [0, 0.3][0,T], F2 ∈ [−.2.2][0,T] and
also initial conditions for x1 ∈ [0, 1] and x2 ∈ [0.4, 0.8].
We parametrize F1 and F2 using 19 parameters each (10
parameters for signal values and 9 for switch times), so
the search is over a 40 dimensional space. Using gradient
descent in Algorithm 1 on the negation of the requirement
formula, we find inputs F1 and F2 that satisfy the require-
ment. The initial trajectory has robustness 3.3483 w.r.t
the negation of the requirement (so it does not satisfy the
requirement) and gradient descent decreases the robust-

Fig. 6. Maneuvering object trajectories: GD gradually
improves the trajectories and finally finds a satisfying
trajectory

0 1 2 3 4 5 6 7 8 9
0.15

0.2

0.25

0.3

F 1

0 1 2 3 4 5 6 7 8 9

t

-0.2

-0.1

0

0.1

F 2

Fig. 7. Maneuvering object control inputs: the shifts along
the t-axis are as a result of time descent and the shift
along the F-axis are as a result of space descent.

ness to -0.12462 in 4 iterations and finds a trajectory that
satisfies the requirement. The system trajectories and their
corresponding inputs in these 4 iterations are shown in Fig.
6 and Fig. 7. We show the signals with darker marker as
the iteration number increases.

7. EXPERIMENTAL RESULTS

To globally search for the minimizer of the robustness
function, we combined Simulated Annealing(SA) with GD.
We performed two statistical studies on the “Maneuvering
object” and the “Powertrain” benchmarks to determine
the effectiveness of applying GD.

In both experiments, we ran SA and SA+GD 50 times
starting from same initial conditions and with equal total
number of samples N=100. In the “Maneuvering object”
case study, we searched for the falsifying behaviors to the
requirement mentioned in Section 6.2 and GD was applied
15 times to any SA sample with a robustness value less
than 5.5 in SA+GD 1 . The results are presented in Table
1. In the second study on the “Powertrain” benchmark, we
tested the system under the requirement in Section 6.1. In
SA+GD, we apply GD 15 times to all of the SA samples
and we take the next SA sample based on the last GD
sample. The results are presented in Table 2.

In both cases, the falsification rate has improved signifi-
cantly with the help of GD. In the case of the ”Maneuver-
ing object” benchmark it achieves one order of magnitude
improvement. In the case of the Powertrain benchmark,
1 Since trajectories with greater robustness values are too far away
from falsifying the requirements to be found using local search.

Table 1.
Maneuvering object

Optim. method SA SA+GD
Num. of falsification 6/40 24/40

Avg. min robustness value 4.4435 3.2116
max min robustness value 10.1442 10.1301
min min robustness value -0.5313 -0.6104

Table 2.
Power-train

Optim. method SA SA+GD
Num. of falsification 0/50 11/50

Avg. min robustness value 0.0725 0.0573
max min robustness value 0.1376 0.1382
min min robustness value 0.0162 -0.0436

while SA+GD falsifies the requirement in 11 out of 50
runs, SA has not been able to find any falsifying input.

8. RELATED WORK

8.1 Simulation-guided falsification

For a discussion on simulation guided verification ap-
proaches see Kapinski et al. (2015).

Simulation-guided strategies for testing system properties
are devised based on the notion of falsification. Guided by
optimization methods, they try to intelligently create test
instances that reveal undesirable system behaviors w.r.t a
system requirement. Some examples are:

S-TaLiRo and Breach: S-TaliRo (Annpureddy et al.
(2011)) and Breach (Donzé (2010)) are Matlab toolboxes
that use global optimization solvers to search for coun-
terexamples to system requirements expressed as TL for-
mulas. The tools search the space of the uncertain param-
eters to find trajectories with minimal robustness values
w.r.t the given requirement. They can analyze arbitrary
Simulink models or user defined functions that model a
system. To search over space of the varying time inputs to
the system, the tools require a parameterization represen-
tation of the input signal.

S-TaliRo uses stochastic optimization methods like Simu-
lated Annealing, and Ant Colony optimization method,
while Breach uses Nelder-Mead simplex-based methods
with multiple restarts as the optimization algorithm.

Our method is built on top of S-TaliRo and uses the input
parameterization mentioned in Section 2 and looks for
the values of the parameters that locally minimize the
robustness cost function.

Multiple Shooting: In Zutshi et al. (2014), an approach
called multiple shooting is used for falsifying safety prop-
erties. They use trajectory segments (disconnected sim-
ulation traces) starting from initial values sampled from
the whole state space to find a falsifying trajectory. Us-
ing system gradient information and NLP solvers they
reduce the gaps between segments to create approximate
trajectories from promising segmented trajectories. Like
our approach, this tool requires gradient information for
minimizing segments’ endpoint distances, and as a result
it is not applicable to general black-box models with arbi-
trary complexity.

RRT-REX: RRT-REX (Dreossi et al. (2015)) is a tool-
box based on rapidly growing random tree (RRT) algo-
rithms which are used for path planning. It utilizes Star-
discrepancy coverage measure to guide the exploration of
the search space. This measure shows how well a continu-
ous state space is covered. The tool does not require the
input signal to be parametrized and the input is allowed to
change values based on the robustness values of a partial
system trajectory. While the tool looks promising for some
models and specifications, it shows poor performance on
specifications defined with precise temporal instants. This
is not an issue for our method as this precise time instant
becomes the critical time t∗x0,u mentioned in Section 3 with
respect to which the GD directions are calculated.

8.2 Optimal control of switched systems

The problem of finding optimal piecewise constant inputs
with varying switch times is similar to the problem of
finding optimal control policy in switched systems. In
Axelsson et al. (2005) an algorithm to find the local
optimal policy for mode switches in hybrid dynamical
systems is provided. The design variable consists of the
switching times and their numbers, and the cost criterion
is a functional of the states. In Gonzalez et al. (2010)
a hierarchical algorithm is provided that converges to
an optimal policy for mode scheduling that consists of
a discrete component, the sequence of modes, and two
continuous components, the duration and the continuous
input of each mode.

9. CONCLUSION

In this paper, we used piecewise constant signals with
varying switch times to parameterize the system input
space. With this parameterization scheme we can test
the system against general temporal logic requirements.
The search for unsafe behaviors is optimized locally by
finding descent directions for the parameters (signal value
and switch time). Using non-trivial benchmarks, we show
that combining global stochastic search with local search
significantly improves the rate of finding system bugs.

REFERENCES

Abbas, H., Winn, A., Fainekos, G., and Julius, A.A.
(2014). Functional gradient descent method for metric
temporal logic specifications. In American Control
Conference (ACC), 2014, 2312–2317. IEEE.

Annpureddy, Y., Liu, C., Fainekos, G.E., and Sankara-
narayanan, S. (2011). S-taliro: A tool for temporal
logic falsification for hybrid systems. In TACAS, volume
6605, 254–257. Springer.

Axelsson, H., Wardi, Y., and Egerstedt, M. (2005).
Transition-time optimization for switched systems.
IFAC Proceedings volumes, 38(1), 453–458.

Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G.,
Maler, O., Nickovic, D., and Sankaranarayanan, S.
(2018). Specification-based monitoring of cyber-physical
systems: A survey on theory, tools and applications.
In Lectures on Runtime Verification - Introductory and
Advanced Topics, volume 10457 of LNCS, 128–168.
Springer.

Dokhanchi, A., Yaghoubi, S., Hoxha, B., and Fainekos,
G. (2017). Arch-comp17 category report: Preliminary

results on the falsification benchmarks. In G. Frehse and
M. Althoff (eds.), ARCH17. 4th International Workshop
on Applied Verification of Continuous and Hybrid Sys-
tems, volume 48 of EPiC Series in Computing, 170–174.
EasyChair.

Donzé, A. (2010). Breach, a toolbox for verification and
parameter synthesis of hybrid systems. In International
Conference on Computer Aided Verification, 167–170.
Springer.

Donzé, A. and Maler, O. (2007). Systematic simulation
using sensitivity analysis. Hybrid Systems: Computation
and Control, 174–189.

Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X.,
and Deshmukh, J.V. (2015). Efficient guiding strategies
for testing of temporal properties of hybrid systems. In
NASA Formal Methods Symposium, 127–142. Springer.

Fainekos, G. and Pappas, G. (2009). Robustness of
temporal logic specifications for continuous-time signals.
Theoretical Computer Science, 410(42), 4262–4291.

Fan, C., Duggirala, P.S., Mitra, S., and Viswanathan, M.
(2015). Progress on powertrain verification challenge
with c2e2. In ARCH@ CPSWeek, 207–212.

Gonzalez, H., Vasudevan, R., Kamgarpour, M., Sastry,
S.S., Bajcsy, R., and Tomlin, C.J. (2010). A descent
algorithm for the optimal control of constrained nonlin-
ear switched dynamical systems. In Proceedings of the
13th ACM international conference on Hybrid systems:
computation and control, 51–60. ACM.

Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., and
Butts, K. (2014). Powertrain control verification bench-
mark. In Proceedings of the 17th international confer-
ence on Hybrid systems: computation and control, 253–
262. ACM.

Kapinski, J., Deshmukh, J., Jin, X., Ito, H., and Butts, K.
(2015). Simulation-guided approaches for verification of
automotive powertrain control systems. In American
Control Conference (ACC), 2015, 4086–4095. IEEE.

Kirk, D.E. (2012). Optimal control theory: an introduction.
Courier Corporation.

Yaghoubi, S. and Fainekos, G. (2017a). Hybrid approxi-
mate gradient and stochastic descent for falsification of
nonlinear systems.

Yaghoubi, S. and Fainekos, G. (2017b). Local descent for
temporal logic falsification of cyber-physical systems. In
Seventh Workshop on Design, Modeling and Evaluation
of Cyber Physical Systems.

Zutshi, A., Deshmukh, J.V., Sankaranarayanan, S., and
Kapinski, J. (2014). Multiple shooting, cegar-based
falsification for hybrid systems. In Proceedings of the
14th International Conference on Embedded Software,
5. ACM.

