
An Interval-based Sliding Horizon Motion Planning
Method ?

Julien Alexandre dit Sandretto ∗ Elliot Brendel ∗∗ Alexandre Chapoutot ∗

∗U2IS, ENSTA ParisTech, Université Paris-Saclay, 828 bd des maréchaux,
91762 Palaiseau, France

(e-mail: {alexandre,chapoutot}@ensta.fr).
∗∗ONERA - The French Aerospace Lab, Palaiseau F-91761, France

(e-mail: elliot.brendel@onera.fr).

Abstract: A new algorithm of motion planning based on set-membership approach is presented. The
goal of this algorithm is to find a safe and optimal path taking into account various sources of bounded
uncertainties on the dynamical model of the plant, on the model of the environment, while being
robust with respect to the numerical approximations introduced by numerical integration methods. The
main approach is based on a sliding horizon method to predict the behavior of the system allowing
the computation of an optimal path. As an example, the motion planning algorithm is applied to an
Autonomous Underwater Vehicle (AUV) case study, showing the benefit of the proposed approach.

Keywords: Formal synthesis, Reachability and safety analysis, Robust control.

1. INTRODUCTION

Motion planning algorithms are a center piece in the control
framework of mobile robots as they contribute to give them
the ability of autonomous behaviors. Furthermore, such class
of algorithms is critical as a failure can cause the abort of the
mission or can cause important amount of damage such as hu-
man loss. The validation of such algorithms is then mandatory
in order to increase the confidence of the end users. However,
those algorithms are also subject to constraints, e.g., to reduce
fuel consumption. In consequence, computing a safe path is
usually not enough, and an optimal one is search to minimize
some costs.

Moreover, one of the challenge in order to design robust and
reliable motion planning algorithms is to take into account
various sources of uncertainties. For example, the environment
is not exactly know and some disturbances must be considered.
Mathematical models of the mobile robots are not perfect, and
they usually come from some simplifications in order to apply
well-known control algorithms (e.g., in linear cases) or efficient
simulation methods. Lastly, computer-aided design produces
approximated results as it is based on numerical methods which
cannot produce the closed form solution of a problem, e.g., the
solution of an initial value problem for ordinary differential
equations. The set-membership framework is suitable to deal
with such kinds of uncertainties.

The last but often the most important source of uncertainty, the
robot sensors cannot produce a global map of the environment.
Indeed, the environment surrounding autonomous robot is usu-
ally built little by little as for example in SLAM approaches
Leonard and Durrant-Whyte (1991). In consequence, motion
planning algorithms have to be robust to partial information
? This work benefited from the support of the “Chair Complex Systems Engi-
neering - École polytechnique, THALES, DGA, FX, DASSAULT AVIATION,
DCNS Research, ENSTA ParisTech, Télécom ParisTech, Fondation ParisTech
and FDO ENSTA”.

on the environment (e.g., static obstacles) and should be in-
cremental in order to produce pieces of trajectory to the goal
objective. Sliding horizon approach is a good way to fulfill this
requirement in the design of motion planner.

Contributions: The main contribution of this article is the
combination of set-membership methods with an optimizing
approach to define a motion planner acting on a partial map
of the environment. Hence, a correct-by-construction algorithm
is defined with the intrinsic properties to be robust to bounded
uncertainties as it relies on set-membership approach Jaulin
et al. (2001). Moreover, embedding the motion planning prob-
lem into a Constraint Satisfaction Problems (CSP) Rueher
(2005), and more precisely into a global optimization frame-
work Hansen (2003), the proposed algorithm produces an op-
timal free-collision paths with respect to a given cost function
which is minimized. This CSP approach is also combined with
a sliding horizon method to produce robust paths with a partial
knowledge on the environment and having to deal only with
finite horizon dynamical CSP problems. An application of the
proposed motion planner on an AUV is given in Section 4 to
show its relevancy.

Related Work: Motion planning is an active research area in
Robotics and many methods have been developed. Artificial
potential fields has been used in motion planning problems
such as in Bemporad et al. (1996) but without producing op-
timal path. A popular approach is to use stochastic sampling to
discretize the configuration space, e.g., the Rapidly-exploring
Random Trees (RRT) LaValle and Kuffner (2000) path planning
algorithm and its many variants. The (asymptotic) optimality
of the solution is provided by the optimal Rapidly-exploring
Random Trees (RRT*) first proposed in Karaman and Frazzoli
(2010). Other methods based on receding horizon approach
have also been considered to produce optimal collision-free
paths. For example, Mendes Filho and Lucet (2016) uses reced-
ing horizon in context of multi-robot or Wongpiromsarn et al.
(2012) considers complex mission described by temporal logic.

While all these methods are efficient to produce collision-free
paths, they usually did not take into account uncertainties and
so the robustness of the solution is not guaranteed.

Uncertainty in motion planning has been considered mainly
based on two representations: set-membership Page and Sander-
son (1995); Pepy et al. (2009); Alexandre dit Sandretto et al.
(2017) or co-variance matrices Lambert and Gruyer (2003);
Censi et al. (2008). While the latter is able to find paths with
a collision probability under a given threshold, set-membership
approaches can guarantee safe trajectories under a bounded
noise assumption. In Pepy et al. (2009); Alexandre dit San-
dretto et al. (2017), a preliminary conceptual reliable and robust
path planner based on RRT principles and solved in an set-
membership framework, where all uncertainties are considered,
bounded is introduced. Interval analysis principle along with
graph algorithms were previously used Jaulin (2001) to find
a collision-free shortest path for a polygonal rigid object in a
given configuration. Nevertheless, these approaches build ro-
bust and safe paths but usually cannot produce optimal paths.

Contents: The paper is organized as follows. Some preliminary
notions on motion planning problem, set-membership methods
and sliding horizon method are introduced in Section 2. The
main contribution of the paper is presented in Section 3 by
formulated the problem and the presentation of the algorithms.
In Section 4 a case study focus on AUV is described showing
the relevance of the proposed approach. Conclusion and per-
spective are drawn in Section 5

2. PRELIMINARY NOTIONS

In this section, the main notions useful for our approach to solve
the robust motion planning problem are introduced.

2.1 Dynamics of a vehicle

The dynamics of a vehicle, such as a car, a flight or a ship, can
be modeled by differential equations to analyze its behavior.
In the special case of autonomous vehicles - Unmanned Aerial
Vehicle (UAV), Autonomous Underwater Vehicle (AUV) or
Unmanned Ground Vehicle (UGV) - the dynamical modeling
is very important to define the controller and the path planner.
In this paper, it is assumed that the dynamics is modeled by
nonlinear ordinary differential equations as the ones coming
from the Newton’s laws.

Starting from a given point at time zero, an initial value problem
is defined by:

ẏ(t) = f (t,y(t),u(t)), with y(0) = y0 , (1)
where y(t) ∈ Rn and u(t) ∈ Rm denote the vector of states and
inputs, respectively.

2.2 Motion planning

A motion planning consists in producing a continuous path in
the configuration space, that satisfies system dynamics (move-
ment constraints), safety constraints (obstacles), inputs limita-
tions, and possibly optimizes a cost linked to a given aspect of
the movements. In a more enriched motion planning, the con-
sidered constraints can take into account the quality of ground,
ocean stream, up-draft, seabed shape, etc. These constraints can
be considered in connection with the task and/or the sensors. A
cost function is often added. This latter, linked to states of the

system (and not linked to inputs) can be a distance expressed
in the configuration space or a more complex functional cost
involving state and/or state derivatives.

2.3 Uncertainties and Validated Simulation

The simplest and most common way to represent and manip-
ulate sets of values is interval arithmetic (see Moore (1966)).
An interval [xi] = [xi,xi] defines the set of reals xi such that
xi ≤ xi ≤ xi. IR denotes the set of all intervals over reals.

Interval arithmetic extends to IR elementary functions over R.
For instance, the interval sum, i.e., [x1]+[x2] = [x1+x2,x1+x2],
encloses the image of the sum function over its arguments. An
interval vector or a box [x] ∈ IRn, is a Cartesian product of n
intervals.

Validated numerical integration methods are interval counter-
part of numerical integration methods. A validated numerical
integration of a differential equation, as defined in (1) assuming
piece-wise constant input, consists in a discretization of time,
such that t0 6 · · ·6 tend, and a computation of enclosures of the
set of states of the system y0, . . . , yend, by the help of a guar-
anteed integration scheme. In details, a guaranteed integration
scheme is made of

• an integration method Φ(f ,y j, t j,h), starting from an ini-
tial value y j at time t j and a finite time horizon h (the step-
size), producing an approximation y j+1 at time t j+1 =
t j + h, of the exact solution y(t j+1;y j), i.e., y(t j+1;y j) ≈
Φ(f ,y j, t j,h);

• a truncation error function lteΦ(f ,y j, t j,h), such that
y(t j+1;y j) = Φ(f ,y j, t j,h)+ lteΦ(f ,y j, t j,h).

A validated numerical integration method is a two step method
starting at time t j and for which i) it computes an enclosure [ỹ j]
of the solution of (1) over the time interval [t j, t j+1] to bound
lteΦ(f ,y j, t j,h); ii) it computes a tight enclosure of the solution
of (1) for the particular time instant t j+1. There are many meth-
ods for these two steps among Taylor series and Runge-Kutta
methods see Nedialkov et al. (1999); Alexandre dit Sandretto
and Chapoutot (2016) and the references therein for more de-
tails.

As a result, validated numerical integration methods produce
two functions depending on time

R :
{
R→ IRn

t 7→ [y] (2)

with for a given ti, R(ti) = {y(ti;y0) : ∀y0 ∈ [y0]} ⊆ [y], and

R̃ :
{
IR→ IRn

[t, t] 7→ [ỹ] (3)

with R̃([t, t]) = {y(t;y0) : ∀y0 ∈ [y0]∧∀t ∈ [t, t]} ⊆ [ỹ].

In Alexandre dit Sandretto et al. (2017), validated numerical in-
tegration has been combined with CSP tools. Indeed, functions
R() and R̃() are abstracted, but guaranteed, solutions of (1).
Therefore, the process of validated simulation, mixed with con-
straint programming and abstraction of time functions provides
an efficient tool for the prediction of the system evolution.

2.4 Sliding Horizon Method

A sliding, or receding, horizon-based method is used when the
future cannot be anticipated, such as in a moving environment
or a progressively discovered environment.

In the proposed method, the predicted horizon needs to be
prolonged, but long term validated simulations are difficult to
obtain. A sliding horizon approach is then interesting to pro-
gressively discover the environment and by the way reducing
the duration of the simulations. A sliding horizon based motion
planning is then close to Model Predictive Control. The main
difference is the desired result: MPC is a control synthesis,
then it produces solutions in the control space (with cost on
control variables), while motion planning is a path planner, then
it produces solutions in the state space (with cost on states).

A sliding horizon-based method consists on computing a value
(an optimal control or a path) from a time t0 for a period T0
(as long as possible) in order to anticipate the future, i.e., the
horizon, injecting this value in the system, and re-computing
this value at time t1, with t0 + t1 < T0, for a new horizon period
T1 (T1 may be equal to T0). The initial condition of the problem
on t1 is the state of the system evaluated or measured (in the
case of control synthesis) at t1.

3. ROBUST AND GUARANTEED MOTION PLANNING
BASED ON SLIDING HORIZON

3.1 Problem Formulation

A dynamical system as defined in (1), where y is the state and
u is an input function, is considered.
Remark 1. The input function u is used to modify the motion
of the system and it is not necessary a control variable. For
example, in the case of an autonomous car, u would be the Eu-
ler’s angles and the speed of the car (bounded by the dynamical
limits of the car), while the control variables could be the angle
of wheels and the engine regime.

In addition, a constraint function h : y 7→ h(y) and a cost
function g : y 7→ g(y) are defined, constraints coming from
safety properties (obstacle avoiding in particular) and cost from
task constraints for example. Thus, the problem is to find the
trajectory y(t,u) depending on u which is the solution of

(P) :

{ argminu g(y(t,u))
ẏ(t) = f (y(t),u(t))
h(y(t,u))< 0

.

Remark 2. Only the solution function y(t,u), i.e., the path, is
relevant for the motion planning problem. Despite, the compu-
tation is based on the input function u in Problem (P), the main
result will be y(t,u).

3.2 Overview of the Algorithm

The robust and guaranteed motion planning using sliding hori-
zon proposed in this paper is defined by the steps:

(1) an input u1 solution of (P) on a time span [0,T], with T
the prediction period, and from the initial state y0, is com-
puted using a prediction procedure and an optimization
algorithm;

(2) a simulation on a time span [0,T ′], with T ′ the sliding pe-
riod (T ′ < T), and from the initial state y0, is performed.
It provides the trajectory y1(t) driven by the input u1. This
step is used to construct the path;

(3) an input u2 solution of (P) on a time span [T ′,T ′+T], and
from the initial state y1(T ′), is computed. This is the first
step slided of T ′;

(4) as in the second step, a simulation on a time span [T ′,2T ′],
and from the initial state y1(T ′) is performed. It provides
the trajectory y2(t) driven by the input u2. This path is
concatenated with the one obtained at step 2);

(5) and so forth.

To find the input ui, we browse through the set of the dynami-
cally acceptable inputs, assuming that it is a finite set, until the
input which drives to y(t) satisfies the constraint h(y(t)) < 0
and minimizes the cost g(y(t)), ∀t ∈ [(i−1)T ′, iT ′] is found.

3.3 Algorithms

The overall method is divided in two algorithms, the main
one (see Algorithm 1) is the global procedure handling the
sliding horizon progress. The second one (see Algorithm 2)
solves Problem (P). A third algorithm (see Algorithm 3) which
improved the second one is also given.

Algorithm 1 Sliding horizon
Require: y0, T , T ′, n, f , h, g, D, Path=()
Ensure: Path (optimal and safe)

for n steps do
uoptim←− SolveP(y0,T, f ,h,g,D)
(R(t), R̃(t))←− Predict

(
f ,y0,uoptim,T ′

)
y0←− R(T ′)
Concatenate (Path, R̃(t))

end for

Main Algorithm In Algorithm 1, n is the total iteration
number of the algorithm and y0 is the initial state for an
iteration. h and g are the constraint function and the cost
function, respectively. T ′ and T are the same than given in
Section 3.2 and D is the set of inputs which is assumed to
be finite. The function SolveP solves our problem (P) (and
is given in Algorithm 2). The Predict method returns a list of
boxes R(t) and R̃(t) that contains the solution of ẏ = f (y,u)
for a given u in a guaranteed way using validated simulation
method (see Section 2.3). Path is the list of trajectories from
the initial state driven by the inputs found for every iteration of
the algorithm, this is then the solution of our problem of path
planning (considering the dynamics).

Optimization Algorithm In order to find an input which is
solution of (P), a discretization of the set of the acceptable
inputs is performed, and the one which minimizes g while
satisfying the constraint h is returned. In Algorithm 2, D is a

Algorithm 2 SolveP function
Require: y0, T , f , h, g, D
Ensure: Optimal input uoptim

c←−+∞

for u ∈ D do
(R(t), R̃(t))←− Predict(f ,y0,u,T)
if g(R(T))< c and h(R̃([0,T]))< 0 then

utemp←− u
c←− g(R(T))

end if
end for
uoptim←− utemp

finite set of inputs, utemp is the previous validated input, and c
is the cost corresponding to utemp. The result is given in term of
the “optimal input” uoptim, which is proven to drive the system
to the optimal and safe trajectory, while being easier to save in
memory than the complete path.

Algorithm 3 Improvement of Algorithm 2: SolveP function
Require: y0, T , f , h, g, D
Ensure: Optimal input uoptim

c←−+∞

D′←− D
for u ∈ D′ do

(R(t), R̃(t))←− Predict(f ,y0,u,T)
if g(R(T))< c and h(R̃([0,T]))< 0 then

utemp←− u
c←− g(R(T))

end if
D′←− D′ \{u}
(RD′ (t), R̃D′ (t))←− Predict(f ,y0,D′,T)
if c 6 g(RD′ (T)) then

break
end if

end for
uoptim←− utemp

Improvement of Algorithm 2 An improvement of the previous
algorithm using the set-membership approach is proposed.
Remark 3. The proposed improvement makes the algorithm
more complex. We provide the two versions for clarity.

For each input u found, considering that D′ is the set of the re-
maining untested inputs, a set-based simulation on all the set D′
can be performed by the help of validated numerical integration
methods (see Section 2.3). We denote by (RD′(t), R̃D′(t)) the
obtained over-approximated trajectories. If c 6 g(RD′(T)), we
ensured that the previous validated input u is optimal and no
more iteration over D is needed.

3.4 Discussion

In this section, complexity and soundness of the approach are
discussed.

In Algorithm 1, the number n of iterations depends on the
complete path duration τ such as n = d τ−T

T ′ + 1e with T the
prediction period and T ′ the sliding period with T ′ < T < τ .

Naive SolveP algorithm (see Algorithm 2) has a linear com-
plexity in function of the discretization of the input u. If an
input u is found, it is safe, i.e., the solution of the dynamical
system respects all the constraints, and it is optimal with respect
to the discretization. In the improved version, see Algorithm 3,
if a solution is found, it is the same than the one found by
Algorithm 2 so it is safe and optimal. On contrary, although the
complexity is still linear in the inputs, the Predict function is
called twice, except that the second call of Predict function
can quickly prune the search space of the inputs.

Predict function is based on the guaranteed numerical inte-
gration methods as presented in Section 2.3. In consequence,
the complexity depends on the dimension of the dynamical
system and the order of the integration methods Nedialkov et al.
(1999).

4. MOTION PLANNING FOR AN AUV

The motion planning of an AUV which has to move the closest
to the seabed is considered. In consequence, the cost function
is the depth of the gravity center of the AUV. As security
constraints, we want to ensure that the AUV is closer to the
seabed than the distance dmax and further than dmin. It is the
procedure for the AUV to avoid the seabed, which is the main

obstacle in this example. Other obstacles can be added without
any differences in the algorithm as we consider that everything
is motionless during the sliding period. If something crosses
the trajectory, the avoidance will be handled by a decision
procedure or the controller, but not by the motion planner.

4.1 Dynamics of an AUV

The gravity center of the AUV is subjected to the ODE defined
in Jaulin (2015) and given in Equation (4).

ẋ = vcosθ cosψ

ẏ = vcosθ sinψ

ż = −vsinθ

ψ̇ =
sinϕ

cosθ
· v ·u1 +

cosϕ

cosθ
· v ·u2

θ̇ = cosϕ · v ·u1− sinϕ · v ·u2
ϕ̇ = −0.1sinϕ +θ · v · (sinϕ ·u1 + cosϕ ·u2)

(4)

where s = (x,y,z,ψ,θ ,ϕ) is the state vector which can be split
into the vector (x,y,z) of the coordinates of the gravity center
and the vector (ψ,θ ,ϕ) of the Euler angles; u = (u1,u2) is the
input vector; v is the velocity.

Note that (4) has been simplified by substituting tanθ by θ in
the definition of ϕ̇ to avoid technical issues of the implementa-
tion. Nonetheless, the algorithm remains valid.

4.2 Underwater environment

We define a function (x,y) 7→ seabed(x,y) which returns the
depth of the seabed at the coordinates (x,y). We also define
dmin and dmax two constants such that the AUV stays at a
distance to the seabed between dmin and dmax. Some constraints
on AUV angles are considered: yaw and roll are bounded in an
interval (to go in a quite straight way and to not capsize) and
pitch is bounded by an extreme value (to limit the dive angle).
Finally, in order to force the AUV to move forward through the
x dimension, we impose xend > xinit. Thus, the problem is to find
the input u solution of

(PAUV) :



min
u

z
ṡ = f (s,u)
z > seabed(x,y)+dmin
z < seabed(x,y)+dmax
xend > xinit
θ < 0.8
ϕ,ψ ∈ [−0.5,0.5]

It is important to keep in mind that the seabed is globally
unknown by the system. It is discovered during the motion
(by the help of sensors), with a window corresponding to the
sliding horizon. It is then impossible to know the seabed after
the prediction period.

4.3 Experiments

Settings of the experiments The seabed function is defined
by

seabed : (x,y) 7→ 3(1− x)2e−x2−(y+1)2

−10
(x

5
− x3− y5

)
e−x2−y2

−e−(x+1)2−y2

3

Then the following seabeds are considered

Fig. 1. Seabed picture.

Scenario Original algorithm Improved algorithm Gain
Seabed 1 3535 2665 25%
Seabed 2 3535 3235 9%
Seabed 3 3535 2685 24%
Seabed 4 3535 2355 34%
Table 1. Number of predictions for the four scenar-
ios with the Algorithm 2 and its improved version

Algorithm 3.

• seabed 1: (x,y) 7→ seabed
(x−30

20 , y
2

)
−100;

• seabed 2: (x,y) 7→ seabed
(y

2 ,
x−30

20

)
−100;

• seabed 3: (x,y) 7→ seabed
(−x+30

20 , y
2

)
−100;

• seabed 4: (x,y) 7→ seabed
(y

2 ,
−x+30

20 , y
2

)
−100.

Each seabed is a rotation of the first one (see Figure 1). Seabeds
are defined by a function for experiments, but the motion
planner has access only on the sliding window.

The limits on depth are defined such that dmin = 1 meter
dmax = 10 meters. The velocity v is fixed to 0.1 m.s−1 and the
initial state s0 to (0,0,−92,0.1,0.1,0.1). As discretization of
the set of the inputs, we define

D =

{
−0.3+

0.6k
9

: k ∈ [[0,9]]
}2

.

Finally, the prediction and sliding periods are T = 30s and
T ′ = 15s, for a total number of steps n = 35.

Implementation of the SolveP function The presented method
has been implemented in the DynIBEX framework 1 . It pro-
poses a validated simulation procedure based on Runge-Kutta
methods and provides some differential constraint program-
ming facilities Alexandre dit Sandretto et al. (2017). Every
simulation has been computed using Heun’s method with a
10−4 precision which is a good trade-off between speed and
precision of the results.

With the parameters described in Section 4.3.1, solving the mo-
tion planning problem requires less of calling to the prediction
method (i.e., ODE solver) with the improved Algorithm 3 than
with the Algorithm 2, as shown in Table 1.

4.4 Discussion

Results of the presented method are given in term of depth w.r.t.
time in Figure 2. The depth is computed with seabed(x,y). The
path provided by the motion planning method for the seabeds 1,
1 http://perso.ensta-paristech.fr/˜chapoutot/dynibex/

3 and 4 allows the AUV to follow the seabed remaining between
a distance dmin and dmax from it. As shown in Figure 2 top right,
the execution for the second seabed failed after 9 steps, because
of the variations of the seabed (a deep ditch and then a climb).
In this picture, after t = 135 seconds, a simulation is done with
the entire interval of inputs u= [−0.3,0.3]2, and no solution can
be found without collision with the seabed. This phenomenon
is due to the fact that the dive velocity of the AUV is high at the
moment when the seabed grows quickly.

A solution to this failure of the algorithm could be obtained
by increasing T and decreasing T ′ in order to see the obstacle
sooner but with a longer computation time (see Figure 3). An
other solution is to add a constraint to the problem, for example
we bounded lb(ż)>−0.03 m.s−1 and the algorithm achieved to
find a path across the seabed (see Figure 4). Indeed, it succeeds
by avoiding the gap and reaching the optimal depth further.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a validated algorithm to solve a
motion planning problem, considering constraints and cost on
states. Our approach showed its efficiency in an application
of motion planning for an Autonomous Underwater Vehicle.
An improvement exploiting set membership is used to avoid
some tests on inputs which reduces significantly the number of
simulations. The presented approach can in some cases failed
because of its dependency to many parameters that the user has
to calibrate.

As a future work, a procedure to dynamically choose the
parameters such as prediction period or additional constraints
on system behavior could be considered, w.r.t. a prediction of
the seabed for example.

REFERENCES

Alexandre dit Sandretto, J. and Chapoutot, A. (2016). Validated
Explicit and Implicit Runge-Kutta Methods. Reliable Com-
puting, 22.

Alexandre dit Sandretto, J., Chapoutot, A., and Mullier, O.
(2017). Formal verification of robotic behaviors in presence
of bounded uncertainties. In Proc. of IEEE International
Conference on Robotic Computing.

Bemporad, A., Luca, A.D., and Oriolo, G. (1996). Local
incremental planning for a car-like robot navigating among
obstacles. In Proc. of IEEE International Conference on
Robotics and Automation, 1205–1211.

Censi, A., Calisi, D., Luca, A.D., and Oriolo, G. (2008). A
bayesian framework for optimal motion planning with un-
certainty. In Proc. of IEEE International Conference on
Robotics and Automation.

Hansen, E.R. (2003). Global Optimization Using Interval
Analysis. Marcel Dekker Inc.

Jaulin, L. (2001). Path planning using intervals and graphs.
Reliable Computing, 7(1), 1–15.

Jaulin, L. (2015). Mobile Robotics. ISTE Press - Elsevier.
Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. (2001). Ap-

plied Interval Analysis. Springer.
Karaman, S. and Frazzoli, E. (2010). Optimal kinodynamic

motion planning using incremental sampling-based methods.
In Proc. of IEEE Conference on Decision and Control.

Lambert, A. and Gruyer, D. (2003). Safe path planning in
an uncertain-configuration space. In Proc. of IEEE Inter-
national Conference on Robotics and Automation.

Fig. 2. Results of the AUV motion planning with seabed 1 to 4 from top left to bottom right.

Fig. 3. Result for the seabed 2 with longer prediction period.

LaValle, S.M. and Kuffner, J.J. (2000). Rapidly-exploring
random trees: Progress and prospects. In Proc. of Workshop
on the Algorithmic Foundations of Robotics.

Leonard, J.J. and Durrant-Whyte, H.F. (1991). Simultaneous
map building and localization for an autonomous mobile
robot. In Proc. of IEEE/RSJ International Workshop on
Intelligent Robots and Systems, volume 3, 1442–1447.

Mendes Filho, J.M. and Lucet, E. (2016). Multi-robot motion
planning: a modified receding horizon approach for reaching
goal states. Acta Polytechnica, 56(1), 10–17.

Moore, R.E. (1966). Interval Analysis. Prentice Hall.
Nedialkov, N.S., Jackson, K., and Corliss, G. (1999). Validated

solutions of initial value problems for ordinary differential
equations. Applied Mathematics and Computation, 105(1),
21 – 68.

Page, L.A. and Sanderson, A.C. (1995). Robot motion planning
for sensor-based control with uncertainties. In Proc. of

Fig. 4. Result for the seabed 2 with additional constraint on
diving speed.

IEEE International Conferenc on Robotics and Automation,
volume 2, 1333–1340.

Pepy, R., Kieffer, M., and Walter, E. (2009). Reliable robust
path planning with application to mobile robots. Interna-
tional Journal of Applied Mathematics and Computer Sci-
ence, 19(3), 413–424.

Rueher, M. (2005). Solving continuous constraint systems. In
International Conference on Computer Graphics and Artifi-
cial Intelligence.

Wongpiromsarn, T., Topcu, U., and Murray, R.M. (2012). Re-
ceding horizon temporal logic planning. IEEE Transactions
on Automatic Control, 57(11), 2817–2830.

