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Abstract: This paper studies estimation of reach probability for a generalized stochastic hybrid system 
(GSHS). For diffusion processes a well-developed approach in reach probability estimation is to 
introduce a suitable factorization of the reach probability and then to estimate these factors through 
simulation of an Interacting Particle System (IPS). The theory of this IPS approach has been extended to 
arbitrary strong Markov processes, which includes GSHS executions. Because Monte Carlo simulation of 
GSHS particles involves sampling of Brownian motion as well as sampling of random discontinuities, the 
practical elaboration of the IPS approach for GSHS is not straightforward. The aim of this paper is to 
elaborate the IPS approach for GSHS by using complementary Monte Carlo sampling techniques. For a 
simple GSHS example, it is shown that and why the specific technique selected for sampling 
discontinuities can have a major influence on the effectiveness of IPS in reach probability estimation. 
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1. INTRODUCTION 

This paper addresses the safety verification of unsafe subsets 
in the state space of a continuous-time generalized stochastic 
hybrid system (GSHS). GSHS involves discrete-valued and 
continuous-valued state components that dynamically interact 
(e.g. Bujorianu and Lygeros, 2006). Such safety verification 
problem can also be formulated as a stochastic reachability 
estimation problem (e.g. Prandini and Hu, 2007; Abate et al., 
2009). Reach probability estimation is well studied in control 
systems domain and in safety domain. In the control domain 
the focus is on developing an (approximate) abstraction of 
the system for which it can be shown that the reach 
probability problem is sufficiently similar (Alur et al., 2000; 
Julius and Pappas, 2009). Approximate abstractions typically 
make use of a finite partition of the state space (e.g. Prandini 
and Hu, 2007; Abate et al., 2011; Di Benedetto et al., 2015).  

In the safety domain, reach probability is evaluated by using 
a finite partition method or by using Monte Carlo (MC) 
simulation. For realistic applications the latter requires 
support from analytical methods to accelerate the simulation. 
Literature on such acceleration distinguishes two main 
approaches: importance sampling and multi-level splitting. 
Importance sampling draws samples from a reference 
stochastic system model in combination with an analytical 
compensation for sampling from the reference model instead 
of the intended model. Bucklew (2004) gives an overview of 
importance sampling and analytical compensation 
mechanisms. For complex models analytical compensation 
mechanisms typically fall short and multi-level splitting is the 
preferred approach (e.g. Botev and Kroese, 2008; L’Ecuyer et 
al., 2009; Rubinstein, 2010; Morio and Balesdent, 2016). 

 

The basic idea of multi-level splitting is to enclose the target 
set, i.e. the set for which the reach probability has to be 
estimated, by a series of strictly increasingly subsets. This 
allows to split a simulated particle realization of the process 
considered into multiple copies each time such particle hits 
one of the enclosing subsets. This multi-level setting allows 
to express the small reach probability of the inner level set as 
a product of larger reach probabilities for the sequence of 
enclosing subsets (see e.g. Glasserman et al, 1999).  Cérou et 
al. (2005, 2006) embedded this multi-level factorization in 
the Feynman-Kac factorization equation for strong Markov 
processes (Del Moral, 2004). This Feynman-Kac setting 
subsequently supported the evaluation of the reach 
probability through sequential Monte Carlo simulation in the 
form of an Interacting Particle System (IPS), including proof 
of convergence (Cérou et al., 2006). Cérou and Guyader 
(2007) extends the  IPS algorithm to adaptively selecting the 
sequence of subsets to be used for a scalar diffusion. Guyader 
et al. (2011) further develop the multi-level splitting 
approach in estimating small reach probabilities by a 
diffusion process given a quantile. Morio and Balesdent 
(2016) show the effectiveness of IPS in rare event estimation 
for simple diffusion examples in aerospace.  

Blom et al. (2006, 2007a) applied IPS to rare event 
estimation for a GSHS model of an advanced air traffic 
scenario. The hybrid state space of this model is very large, 
i.e. involving 490 discrete states and a 28-dimensional 
Euclidean state space. In order to prevent particle depletion 
or impoverishment a very large number of particles had to be 
used. In an attempt of improving the quality of the set of 



 

 
 

 

particles, Blom et al. (2007b, 2009) develops and applies 
hybrid extensions of IPS for air traffic. Complementary, 
Prandini et al. (2011) investigates the integration of air traffic 
complexity modelling with IPS. 

MC simulation of GSHS involves interlacing the simulation 
of solutions of diffusion equations with the simulation of 
sudden events and jumps triggered by boundary hittings and 
in-homogeneous Poisson point processes. For the MC 
sampling of in-homogeneous Poisson points, there are two 
approaches (e.g. Glasserman, 2004): thinning of samples 
from a homogeneous Poisson process, and Bernoulli 
sampling. In the above mentioned IPS applications to GSHS, 
a form of Poisson thinning has been used. However, the 
expectation is that Bernoulli sampling may have a significant 
advantage. The aim of the present paper is to explicitly 
address the details of incorporating both MC sampling 
approaches in an IPS algorithm for an arbitrary GSHS, and to 
evaluate the effects on IPS performance for a simple rare 
event estimation example. In doing so, the paper identifies  
Bernoulli sampling as the fundamentally better choice in IPS 
based reach probability estimation for a GSHS. 

The paper is organized as follows. Section 2 outlines the 
definition and execution of GSHS. Section 3 reviews IPS 
theory and algorithmic steps for an arbitrary GSHS. Section 4 
incorporates sampling techniques in the basic IPS steps for an 
arbitrary GSHS. Section 5 applies these sampling techniques 
in IPS based reach probability estimation for a simple GSHS 
example. Section 6 draws conclusions.  

2. GSHS DEFINITION 

Throughout this and the following sections, all stochastic 
processes are defined on a complete stochastic basis 
( , , , , ) F T  with ( , , ) F a complete probability space 
and   an increasing sequence of sub--algebra’s on the time 
line T  ,i.e.,  ),t ,t  ,(J F F  , J  containing all P-
null sets of F  and s t  J F F F  for every s t . 

(Bujorianu and Lygeros, 2006) formalized the concept of 
GSHS or general stochastic hybrid automata as follows: 

Definition 1 (GSHS). A GSHS is a collection 
( , , ,  , , , , )d X f g Init R  where 

   is a countable set of discrete-valued variables; 
 :d    is a map giving the dimensions of the 

continuous state spaces; 
  ( ): dX    maps each    into an open subset 

X   of  ( )d  ; 
  ( ): df    is a vector field, where { } X 






   ; 

 dim ( ): d mg     is a ( )X  -valued matrix, dimm ; 

 Init : ( ) [0,1]    an initial probability measure on  ; 

  :    is a transition rate function; 
 : ( ) [0,1]R     is a transition measure. 

Definition 2 (GSHS Execution). A stochastic process { }t tx ,  
is called a GSHS execution if there exists a sequence of 
stopping times 0 1 20s s s      such that: 

 0 0( , )x  is a  -valued random variable satisfying the 
probability measure Init; 

 For 1, ,  1,j jt s s j  { , }t tx  is a solution of the SDE: 
 = 0

( , ) ( , )t t t t t t

td
dx f x dt g x dW


  
 (1) 

with tW  m -dimensional standard Brownian motion; 

 js  is the minimum of the following two stopping times: 

i) first hitting time 1js   of the boundary of 1s jX


  by 
the process { }tx ; and ii) first moment 1js   of a 
transition event to happen at rate ( , )t tx  . 

 At stopping time js  the novel hybrid state 
{ , }

j js sx satisfies the conditional probability measure 

, | , ( | , ) (( , ), )
j j j js s s sx xp A x R x A   

 
  for any ( )A   . 

In order to assure that a GSHS execution has a solution the 
following assumptions are adopted:  

A1 (non-Zeno property): 1{ } 0j jE s s   ,  -a.s. 

A2: For each 0 0( , )x  , equation (1) has a unique solution 
on a finite time interval [0, ]T . 

A3   is measurable and finite valued. 

A4 ( ) 1,Init    and (( , ), ) 1R x   for each ( , )x  . 

Bujorianu and Lygeros (2006) show that the stochastic 
process { }t tx ,  generated by execution of a GSHS satisfies 
the strong Markov property.  

3. IPS BASED REACH PROBABILITY ESTIMATION 

3.1. GSHS reach probability 

The problem is to estimate the probability   that { , }t tx  
reaches a closed subset D    within finite period [0, ]T , i.e.  

( )P T              (2) 

with   the first hitting time of D  by { , }t tx :  

 inf{ 0,( , ) }t tt x D     (3) 

Cérou et al. (2006) developed the IPS theory and algorithmic 
steps for estimating reach probability for a strong Markov 
process on a general Polish state space. Thanks to the strong 
Markov property of the process { , }t tx defined by the 
execution of the GSHS in section 2, the IPS approach applies 
to the estimation of GSHS reach probability. 



 

 
 

 

3.2. Multi-level factorization of reach probability 

The underlying principle to factorization of the reach 
probability ( )P T    is to introduce a nested sequence of 
closed subsets kD of ,  such that 

1 1m mD D D D      . Let k be the first moment in 
time that { , }t tx   reaches kD , i.e. 

 inf{ 0;  ( , ) }k t t kt x D     (4) 
Next, we define {0,1}-valued random variables 
{ , 1,.., }k k m   as follows:  

 1,   if   or 0
    0,   else

k k T k   


 (5) 

By using this k  definition, the factorization becomes: 

 
1

m

k
k

 


           (6) 

with 1 1P( 1 1) P( )k k k k kT T          . 

3.3. Recursive estimation of the multi-level factors 

By using the strong Markov property of { , },t tx  we develop 
a recursive estimation of  using the factorization in (6). First 
we define ' ,   ,( , ),

k kk k x     (0 ) ,k kQ T D   for 

1 ,k … m    and the following conditional probability 
measure ( )k B for an arbitrary Borel set B of ' : 

( ) ( | )k k k kB P B Q            

Cerou et al. (2006) shows that k  is a solution of the 
following recursion of transformations: 

I. mutation III. selection
1

. conditioning

( ) ( ) ( )

    
k k k

II

k

p



      


 

where ( )kp B  is the conditional probability measure of 

k B   given 1 1k kQ    i.e.  

 
1 1( ) ( | )k k k kp B P B Q       

Because { , }t tx  is a strong Markov process, { }k  is a 
Markov sequence. Hence the mutation transformation (I) 
satisfies a Chapman-Kolmogorov equation prediction for k : 

1| 1( ) ( | ) ( ) for all ( ')
k kk kE

p B p B d B     
 

             (7) 

For the conditioning transformation (II) this means: 

 
1 { }

P( ) 1 ( )
k

k k k kQE
T T p d


    

       (8) 

Hence, selection transformation (III) satisfies: 

 
{ }

{ }
{ }

1 ( )
( ) [ 1 ( )] / .         (9)

1 ( )
k

k

k

kQB
k k kQB

kQE

p d
B p d

p d






  









 





 

With this, the k  terms in (6) are characterized as solutions of 
a recursive sequence of mutation equation (7), conditioning 
equation (8) and selection equation (9).  

3.4. IPS algorithmic steps for a GSHS 

Following Cérou et al. (2006), equations (6)-(9) yield the IPS 
algorithmic steps for the numerical estimation of :  

I. mutation III. selection IV. splitting
1

. conditioning

( ) ( ) ( ) ( )

    
k k k k

II

k

p



         




 

A set of PN  particles is used to form empirical density 
approximations k  kp  and k of k  kp  and k  

respectively. By increasing the number PN  of particles in a 
set, the errors in these approximations will decrease. When 
simulating particles from 1kQ   to kQ , a fraction k of the 
simulated particle trajectories only will reach kQ  within the 
time period [0, ]T  considered; these particles form .k  In 

order to start the next IPS cycle with PN  particles, randomly 
selected particles from k are copied (also called splitting) 
and added to .k The IPS cycle stops if k has zero particles. 
The resulting IPS algorithmic steps are given in Table 1. 

Table 1. Algorithm 0; IPS steps for GSHS 

0. Initiation: Generate PN particles 0 0 ,  1,.., ,i
Pi N    

     i.e. 
0

1
{ }10 ( ) ( ),p

i
p

N
Ni 



   with Dirac . Set 1.k   

I. Mutation: 1
1 { }

(.) ( )p

i
p k

k

N

Ni
p





  , where i

k  is obtained 

    through simulation of a GSHS execution starting at 1
i
k  . 

II. Conditioning: 1
1

1( )p

p

N i
k k kNi

Q 


  . 

III. Selection: 1
1 { }

( )(.) 1( ) /p

i
p k

N i
k k k kNi

Q


   


  . 

IV. Splitting:  1
1 { }

(.) (.)p

i
p k

N

k Ni 
 


 , with (.)i

k k  . 

       If k m , then repeat IPS steps I-IV for : 1k k  .  

V.   
1

m

k
k

 


  

 

Remark: By using the Feynman-Kac framework of Del 
Moral (2004), Cérou et al. (2006) proofs that   forms an 
unbiased  estimate and also derives bounds for ( ).   

Next we address the details of Monte Carlo simulation from 
particle state 1

i
k  to particle state i

k  in mutation step I. 



 

 
 

 

4. GSHS SIMULATION OF THE IPS MUTATION STEP  

The IPS mutation step in Table 1 involves simulation from 
particle state 1

i
k   to particle state .i

k  This involves 
sampling of an in-homogeneous Poisson process and 
managing hittings of boundaries of   and .kQ First we 
address the simulation without taking boundary hittings into 
account. Subsequently we extend this for boundary hittings. 

4.1. Thinning of Poisson process points 

A well-known approach in Monte Carlo sampling of an in-
homogeneous Poisson process is based on thinning of time 
points sampled from a homogeneous Poisson process on 
[0, ] 0,T     , with 

( , )
sup ( , ).

x
x


  


 The resulting Poisson 

points happen at unit density on [0, ] 0, .T      The thinning 
consists of rejecting all points that lie above the graph of 

( , )t tx  . The remaining points, i.e. those at or below the 
graph of ( , )t tx  , are projected onto the time-axis [0, ].T  

The resulting execution of the GSHS, starting from 1
i
k  , on 

the interval 1[ , ]k T  is described in Table 2. 

Table 2. GSHS execution algorithm 1; inputs 1
i
k  and   

1. Set 1kt   . 
2. Generate  U 0,1u  . 

3. : (ln /)t u    . 
4. Execute GSHS for 0   from t  until tt   ; this 
yields ( , )

t tt tx     . 

5. Generate  U 0,1v  . 

6. If  , ,
t tt tx v       then generate 

( , ) (( , ),(.,.))
t t t tt t t tx R x       . 

7. If ,t T then set : tt t    and repeat from step 2.  

4.2. Bernoulli sampling 

An alternative to Monte Carlo sampling of an in-
homogeneous Poisson process is Bernoulli sampling at each 
small time step  (Glassermann, 2004, pp. 137-142). The 
probability that no Poisson point of rate  occurs on an 
interval ( , )t t   is 1   . To simulate the event of at least 
one transition event to happen, during the time step   a 
sample t  is generated from an exponential density with 
mean duration 1  . If t   then this sample is rejected. 
Otherwise at moment tt    a uniform sample v is taken 
from (0, ) . If ( , )

t tt tx v      then a transition applies at 

moment tt   . In using this approach of Bernoulli sampling, 

the execution of a GSHS, starting from 1
i
k  , on the interval 

1[ , ]k T  is described in Table 3. 

Table 3. GSHS execution algorithm 2; inputs 1
i
k  and   

1. Set 1kt    
2. Generate  U 0,1u  .  

3. : min{ , (ln ) / }t u    . 
4. Execute GSHS for 0   from t  to ;tt   this yields 
( , )

t tt tx     . 

5. If t   then set :t t  , and repeat from step 2. 
6. Generate  U 0,1v  . 

7. If  ,
t tt tx v      , then generate 

( , ) (( , ),(.,.))
t t t tt t t tx R x       . 

8. If ,t T  then set : tt t    and repeat from step 2.  

In contrast to algorithm 1, algorithm 2 uses small time steps 
only. As a consequence, algorithm 2 needs a much larger 
number of independent uniform samples than algorithm 1. 
Therefore algorithm 1 is often preferred. 

4.3.  Execution of GSHS for 0    

In step 4 of algorithms 1 and 2, GSHS is executed on interval 
( , )tt t    for 0  . If no boundary hitting event occurs, 
then this can be accomplished by applying Euler-Maruyama 
integration of eq. (1) along small time steps  ,  i.e. using: 

 

( , ) ( , )( )
= 

t t t t

t

t t

t

tx f x g x W W
 

 


   


 
 (10) 

However, if during any time step   one of the boundaries of 
  or kQ is passed, then additional MC simulation steps are 
needed. First of all it is needed to simulate a hitting time 

' of the applicable boundary by the simulated { , }t tx . For 
this, Glasserman (2004, p. 367) proposes an interpolation of 
the solution of equation (1) on the   interval considered, by 
simulating a Brownian bridge between the already simulated 
Brownian motion points tW and .tW  This yields moment '  
and hybrid state ' '( , )x  at which this Brownian bridge hits 
  or kQ for the first time.  
In case of hitting  , then also a jump in { , }t tx has to be 
simulated according to transition measure R , i.e. 

' ' ' '( , ) (( , ), (.,.)).x R x       Subsequently, the Euler-
Maruyama integration has to be completed on the remaining 
part of the  interval, i.e. on ( ', ).t   
In case of hitting kQ , then both algorithms 1 and 2 should 

stop. The new particle i
k  should include the latest state: 

' '( , , ) ( ', , )
k k

i i
k x x                 (11) 

and the period i
k   

( ')i
k tt               (12) 

during which GSHS execution remains to be simulated. This 
means that step 1 in algorithms 1 and 2 has to be replaced by: 
1. Set 1,kt    1;

i
t k   goto step 4 iff 0.t   



 

 
 

 

5. RARE EVENT SIMULATION OF GSHS EXAMPLE 

5.1. Hypothetical car example 

Our example does not involve Brownian motion. A car driver 
in dense fog is heading to a wall at position walld . If the car is 
at distance fogd  from the wall, then the driver sees the wall 
for the first time. Then it takes the driver a random reaction 
delay to start braking; with a density ( ).delayp s During the 
reaction delay the velocity of the car does not change; after 
the reaction delay the car decelerates at constant value 

min .a We apply IPS to estimate the probability hitp   that 
the car hits the wall. Table 4 gives analytically obtained 

hitp results for various mean reaction delay values ,  
1 /( ,) t

delayp t e   5400 ,fogd m  0 216 60 ,km m
h sv     

2min 1 .m
sa    

Table 4 Analytical hitp  results for different values of   

  
hitp  

10 2.47875×10-3 
 5 6.144212×10-6 
 3.33 1.522998×10-8 
 2.5 3.775135×10-11 
 2 9.3576×10-14 

5.2. GSHS model 

For this example, the discrete set of the GSHS is: 

 { 1,0,1, , }delay hit    (13) 

with -1 decelerating mode, 0 uniform mode, 1 accelerating 
mode, delay  a reaction delay mode, and hit if the wall has 
been hit. A transition diagram representing the switchings 
between these four modes is given in Figure 1.  

The continuous state components are ( , , )t t t tx Col s y v , 
where  ts  is the amount of delay passed since the driver 
could see the wall for the first time, ty  is the position of the 
car at time t , and tv  is the velocity at time t , Hence, the 
dimension of the continuous state space is (.) 3d  . The 
subsets X   are defined as follows: 

 0

1
max

1

3

( , )

( , ) (0, )

( , ) (0, )

( , )

wall fog

wall fog

wall
delay

wall

hit

X d d

X d d v

X d

X d
X



    

    

    

   



 


 



 

 

(14) 

Between switching moment of { }t , tx  evolves as follows: 

 

min max( 1) / 2 ( 1) / 2

t

t t

t t t t t

ds dt
dy v dt
dv a a   




   
 (15) 

where mina  is the deceleration value and maxa  is the 
acceleration value. The initial measure Init  generates 

0 0 0 0 max0,  s 0,  y ,  0<vwall fogd d v      . 

 

Figure 1. State transition diagram for the car example. 

The instantaneous transition rate  ( , ( , , ))t t t ts y v   satisfies: 

 ( ,( , , )) ( ) ( ) / ( ') 'delay delays
s y v delay p s p s ds   


    (16) 

The transition measure (( ,( , , )),(.,.))R s y v satisfies: 

((1,( , , )),{0} {0, , }) 1R s y v y v   iff maxv v  

(( 1, ( , , )),{0} {0, , }) 1R s y v y v    iff 0v   

((0, ( , , )),{ } {0, , }) 1R s y v delay y v   iff wall fogy d d   

((1,( , , )),{ } {0, , }) 1R s y v delay y v   iff wall fogy d d   

(( , ( , , )),{ 1} {0, , }) 1,R delay s y v y v   iff  generates a point, 

(( , ( , , )),{ } {0, ,0}) 1,  iff  wallR delay s y v hit y y d    

(( 1,( , , )),{ } {0, ,0}) 1,  iff wallR s y v hit y y d    . 

5.3. IPS results 

For the application of IPS we adopt m  equidistant levels for 
car passing levels between wall fogd d and ,walld  i.e. 

( , ( ) ) .m k
k wall fogmD d d       Running IPS with 

10000pN   yields the estimated probability hitp   results 
in Table 5 and Table 6 for exponential sampling and 
Bernoulli sampling respectively.  

Table 5 shows that IPS using exponential sampling is not 
able to estimate hitp  for  values  of  5 s or smaller. 

Table 5.  IPS simulation results under exponential sampling for 
different values of  , and 0.01s , 10m   and 10000pN   

  hitp  | |hit hitp p  Simulation 
time (s) 

10 2.1×10-3 3.79×10-4 5 
 5 / / / 
 3.33 / / / 
 2.5 / / / 
 2 / / / 

 



 

 
 

 

Table 6 shows that under Bernoulli sampling the results are 
far better. For a  value of 10s the estimation error is more 
than a factor 10 smaller than under exponential sampling, at 
the cost of a relative small increase of simulation time. 
Moreover, in contrast to exponential sampling, for lower   
values Bernoulli sampling based IPS continues to work well. 
This demonstrates that the factorization of eq. (6) keeps on 
working well with Bernoulli sampling over a wide range. 

Table 6. IPS simulation results under Bernoulli sampling for 
different values of  , and 0.01s  , 10m   and 10000pN   

  
hitp  | |hit hitp p  Simulation 

time (s) 
10 2.5×10-3 2.13×10-5 6.10 
 5 6.07×10-6 7.40×10-8 5.01 
 3.33 1.46×10-8 5.89×10-10 4.13 
 2.5 3.30×10-11 4.80×10-12 3.47 
 2 9.48×10-14 1.21×10-15 2.96 

 

                       6. CONCLUSION 

The simulation results obtained show that for the hypothetical 
car example the use of Bernoulli sampling in IPS, instead of 
exponential sampling, leads to a dramatic improvement in 
reach probability estimation. As there was no Brownian 
motion, during the length t  of GSHS execution in 

algorithms 1 and 2, the prediction from ( , )t tx to 

( , )
ttt tx   is deterministic. This also means that during the 

interval ( ), tt t    one or more of the equidistant levels may 
be passed. Each time this happens, the practical effectiveness 
of the factorization in (6) is reduced. Moreover, such particle 
also has a larger chance to be copied in replacement of a 
particle that does not reach one of these passing levels. The 
latter reduces the variability in the set of particles to be used 
in the next IPS iteration. The chance of both effects can be 
reduced by shortening the length of .t  The latter is 
accomplished by the Bernoulli sampling in algorithm 2, but 
not by the Poisson thinning of algorithm 1.  

Taken into account the generality of the above explanation, it 
is reasonable to expect that the use of Bernoulli sampling, 
instead of Poisson thinning, in IPS based reach probability 
estimation will lead to similar dramatic improvements for 
other GSHS applications that involve random delays but no 
or insufficient Brownian motion.  
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