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Abstract: The formal verification and controller synthesis for general Markov decision processes
(gMDPs) that evolve over uncountable state spaces are computationally hard and thus generally rely
on the use of approximate abstractions. In this paper, we contribute to the state of the art of control
synthesis for temporal logic properties by computing and quantifying a less conservative gridding of the
continuous state space of linear stochastic dynamic systems and by giving a new approach for control
synthesis and verification that is robust to the incurred approximation errors. The approximation errors
are expressed as both deviations in the outputs of the gMDPs and in the probabilistic transitions.

1. INTRODUCTION

With the ever more ubiquitous embedding of digital compo-
nents into physical systems, new computationally efficient ver-
ification and control synthesis methods for these cyber-physical
systems are needed. Quite importantly, stochastic models of
these cyber-physical systems are key to model how comput-
ers interact with physical systems such as biological pro-
cesses, power networks, and smart-grids. In this work, we are
interested in the verification and control synthesis for such
stochastic models with respect to probabilistic linear temporal
logic properties. Using tools such as PRISM (Kwiatkowska
et al., 2011), temporal logic properties defined over finite-state
Markov (decision) processes can be verified and policies can be
designed to control these Markov decision processes such that
the satisfaction of these properties is maximised. For discrete-
time stochastic models over uncountable state spaces, the char-
acterisation of properties can in general not be attained ana-
lytically (Abate et al., 2008). An alternative is to approximate
these models by simpler processes, such as finite-state MDP
(Soudjani and Abate, 2013) or continuous-space reduced order
models (Safonov and Chiang, 1989) that are prone to be math-
ematically analysed or algorithmically verified (Soudjani et al.,
2015). In (Haesaert et al., 2017a, 2016), we have proposed
(ε, δ)-approximate stochastic similarity relations to bound the
deviations between models in both the output signals (ε) and
in the transition probabilities (δ). For approximately similar
models a control policy synthesised on an abstract model can
be refined to an approximately similar model with quantified
precision. We have also studied application of this approach in
a smart building set-up in (Haesaert et al., 2017). Up to now,
this can only be practically applied to temporal logic properties
over bounded time, as it generally holds that the deviation in
transition probability (δ) induces a decrease in the satisfaction
probability that increases with the time horizon.
In this work, we develop a way to synthesise and verify con-
trol strategies for a larger set of probabilistic temporal logic
syntactically co-safe properties that can be unbounded in time.
The developed method yields a robust lower bound on the
satisfaction probability and uses Bellman mappings that are
robustified to the introduced deviations in output and transition

probability. Furthermore, we also give the dual, optimistic Bell-
man recursion that allows for computing an upper bound on the
satisfaction probability. Finally, for the specific case of linear
stochastic dynamical systems, we develop a discretisation of
the continuous state space that hinges on disturbance attenua-
tion. The extended version (Haesaert et al., 2017b) contains the
proofs that are omitted from this paper.

2. PROBLEM SET-UP: MODELS AND SPECIFICATIONS

In this work, we focus on Borel measurable spaces (X,B(X))
defined over Polish spaces X (Bogachev, 2007). Together with
the measurable space (X,B(X)), a probability measure P de-
fines the probability space, denoted by (X,B(X),P) and has
realisations x ∼ P. Let us further denote the set of all prob-
ability measures for a given measurable space (X,B(X)) as
P(X,B(X)). For a given set X, we denote a metric or distance
function on X as dX : X× X→ R≥0. For the Euclidean space
Rn, we define the weighted two-norm of a vector as ‖x‖M :=√
xTMx with positive definite matrix M , and ‖x‖ :=

√
xTx,

for any x ∈ Rn. For the sets A and B a relationR ⊂ A×B is
a subset of the Cartesian product A×B. The relationR relates
x ∈ A with y ∈ B if (x, y) ∈ R, denoted as xRy.

2.1 General Markov decision processes and control strategies

General Markov decision processes extend upon Markov deci-
sion processes (Bertsekas and Shreve, 1996) and are formalised
next.
Definition 1. (general Markov decision process (gMDP)).
A discrete-time gMDP is a tuple M= (X,π,T,U,h,Y) with X,
an (uncountable) Polish state space with states x ∈ X as its
elements; U, the set of controls, which is a Polish space; π,
the initial probability measure π : B(X)→ [0, 1]; T : X× U×
B(X)→ [0, 1], a conditional stochastic kernel assigning to each
state x ∈ X and control u ∈ U a probability measure T(· | x, u)
over (X,B(X)); Y, the output space decorated with metric dY;
and h : X→ Y, a measurable output map. 2

Given a string of inputs {u(t)}t≤N := u(0), u(1), . . . , u(N)
over a finite time horizon [0, N ], and an initial condition x0



sampled from π, the state at the (t+1)-st time instant, x(t+1),
is obtained as a realisation of the controlled Borel-measurable
stochastic kernel T (· | x(t), u(t)) – these semantics induce
paths (or executions) of the gMDP. Further, output traces of a
gMDP is obtained by applying the output map h(·) to the paths
of the gMDP, namely {y(t)}t≤N := y(0), y(1), . . . , y(N) with
y(t) = h

(
x(t)

)
for all t ∈ [0, N ]. Denote the class of all

gMDPs with the same metric output space Y asMY.

When the control inputs are selected based only on the current
states, this is referred to as a Markov policy. A Markov policy
µ is a sequence µ = (µ0, µ1, µ2, . . .) of universally measurable
maps µt = X → P(U,B(U)), t ∈ N := {0, 1, 2, . . .}, from
the state space X to the set of controls. A Markov policy µ is
stationary or time homogeneous if µ = (µs, µs, µs, . . .) for
some µs. For control inputs chosen according to a probability
measure µu : B(U) → [0, 1], denote the transition kernel as
T(·|x, µu) =

∫
U T(·|x, u)µu(du) ∈ P(X,B(X)).

A more general set of control policies are those that depend on
the past history of states and controls. For this we introduce the
notion of a control strategy, and define it as a broader, memory-
dependent version of the above Markov policy.
Definition 2. (Control strategy). A control strategy

C = (XC, xC0,X,TC, hC)

for a gMDP M = (X, π,T,U, h,Y) is a gMDP with state space
XC; initial state xC0; input space X; universally measurable
kernel TC : XC × X × B(XC) → [0, 1]; and universally
measurable output map hC : XC → P(U,B(U)). 2

The control strategy is formulated as a gMDP that takes as its
input the state of the to-be-controlled gMDP.

xC0

πM

C

. . .
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Fig. 1. Execution semantics of controlled gMDP C×M.

As in Figure 1, the execution {(x(t), xC(t))}t≤N of a gMDP
M controlled with strategy C (denoted by C ×M) is defined
on the canonical sample space Ω := (X × XC)N+1 endowed
with its product topology B(Ω) and with a unique probability
measure PC×M.

2.2 Probabilistic path properties of controlled gMDPs

Consider a set of atomic propositions AP that defines the
alphabet Σ := 2AP for which each letter of the alphabet
evaluates a subset of the atomic propositions as true. Infi-
nite words are strings composed of letters from Σ, ω =
ω(0), ω(1), ω(2), . . . ∈ ΣN. Of interest are atomic propositions
that are connected to the gMDP via a measurable labelling
function L : Y → Σ from the output space to the alphabet
Σ. Via a trivial extension, output traces {y(t)}t≥0 ∈ YN are
mapped to the set of infinite words ΣN, as ω = L({y(t)}t≥0) :=
{L(y(t))}t≥0. It is over the atomic propositions of these words
that we define the desired temporal behaviour. Consider prop-
erties defined in a fragment of linear-time temporal logic (LTL)
known as syntactically co-safe temporal logic (scLTL) (Kupfer-
man and Vardi, 2001).

Definition 3. An scLTL formula over a set of atomic proposi-
tions AP has syntax
ψ ::= true | p | ¬p |ψ1∧ψ2 |ψ1∨ψ2 |©ψ |ψ1Uψ2 |♦ψ2 (1)

with p ∈ AP .

Let ωt = ω(t), ω(t + 1), ω(t + 2), . . . be a postfix of the word
ω, then the satisfaction relation between ω and a property ψ is
denoted by ω � ψ (or equivalently ω0 � ψ).
The semantics of the satisfaction relation are defined recur-
sively over ωt as follows. An atomic proposition p ∈ AP is
satisfied by ωt, i.e., ωt � p, iff p ∈ ω(t). Furthermore, ωt � ¬p
if ωt 2 p, and we say that ωt � ψ1 ∧ ψ2 if ωt � ψ1 and
if ωt � ψ2. Similarly ωt � ψ1 ∨ ψ2 holds if ωt � ψ1 or if
ωt � ψ2. The next operator ωt � ©ψ holds if the property
holds at the next time instance ωt+1 � ψ. The temporal until
operator ωt � ψ1 U ψ2 holds if ∃i ∈ N : ωt+i � ψ2, and
∀j ∈ N : 0 ≤ j < i, ωt+j � ψ1. Furthermore, the satisfac-
tion of eventually ψ2, i.e., 3ψ2 follows from its rewriting to
trueUψ. We often denote the time-bounded reachability of ψ
as ♦Nψ2.

With respect to an scLTL property ψ, we say that a gMDP M
satisfies ψ for a given control strategy C with probability at
least p iff PC×M(L({y(t)}t≥0) |= ψ) ≥ p, or equivalently,
iff PC×M(ω |= ψ) ≥ p. This allows us to define the control
synthesis problem tackled in this paper as follows.
Problem 1. (Temporal logic control). Given a gMDP M, an
scLTL property ψ and a labelling function L, compute a control
strategy C that maximises the probability that the controlled
Markov process C×M satisfies ψ, i.e.,

maxC PC×M(L({y(t)}t≥0) |= ψ). (2)

The verification of scLTL properties is formulated using de-
terministic finite-state automata (DFAs)(Kupferman and Vardi,
2001), as defined next.
Definition 4. (DFA). A DFA is a tuple A = (Q, q0,Σ, F, t),
whereQ is a finite set of locations, q0 ∈ Q is the initial location,
Σ is a finite set, F ⊆ Q is a set of accepting locations, and
t : Q× Σ→ Q is a transition function.

A word ω is accepted by a DFA A if there exists a finite run
q = (q(0), . . . , q(n)) ∈ Qn+1 such that q(0) = q0, q(i +
1) = t(q(i), ω(i)) for all 0 ≤ i < n and q(n) ∈ F . The
accepted language of A, denoted by L(A), is the set of all
words accepted by A. For every scLTL property ψ as in Def. 3,
there exists a DFA Aψ such that ω � ψ ⇔ ω ∈ L(Aψ).
As a result, the satisfaction of the property ψ now becomes
equivalent to the reachability of the accepting states in the DFA.
Thus in Eq. (2), the probability that the controlled Markov
process C×M satisfies an scLTL property ψ, is equal to

PC×M(ω � ψ) = PC×M(L({y(t)}t≥0) ∈ L(Aψ)).

We can reduce the computation of PC×M(ω ∈ L(Aψ)) over
the traces ω of M to a reachability problem over another gMDP
M⊗Aψ , which is a product of the gMDP M and the automaton
Aψ . This was originally derived in (Tkachev et al., 2013) for
gMDPs. We give a similar definition of the product construction
as follows.
Definition 5. (Product between gMDP and DFA). For a gMDP
M = (X, π,T,U, h,Y), a DFA Aψ = (Q, q0,Σ, F, t), and a
labelling function L : Y → Σ, we define the product between
M and Aψ to be another gMDP denoted as

M⊗Aψ = (X̄, π̄, T̄,U, h̄,Y), (3)



with X̄ = X×Q, h̄(x, q) = h(x) for any (x, q) ∈ X̄, and

T̄(A×{q′}|x, q, u) =

∫
x̃∈A

1(q′ = t(q, L(h(x̃))))·T(dx̃|x, u),

and initialised with π̄(dx, q) = 1(q′ = t(q0, L(h(x)))) · π(dx).

The quantity PC×M(ω ∈ L(Aψ)) can be related to the reach-
ability probability over the gMDP M ⊗ A with goal states F
(Tkachev et al., 2013). Moreover, given a Markov policy µ on
the product space ofAψ⊗M, a control strategy for M, denoted
by C(µ, ψ), can be computed such that

PC(µ,ψ)×M(ω ∈ L(Aψ)) = Pµ×(Aψ⊗M)(3F ). (4)

2.3 Problem statement and approach

Since the temporal logic control in Problem 1 is computation-
ally hard to solve, we split it up into two subproblems:
1. For a given concrete model M find an abstract model M̂ with
quantified deviations (Sec. 3).
2. Find a robust solution method for Problem 1, such that a
robust control strategy of Problem 1 computed for M̂ automat-
ically yields a controller for M (Sec. 4).

3. SIMULATION RELATIONS AND ABSTRACTIONS

3.1 Approximate simulation relations for gMDPs

Consider two gMDPs Mi = (Xi, πi,Ti,Ui, hi,Y), i = 1, 2,
that share an output space Y with metric dY. Given state-
action pairs x1 ∈ X1, u1 ∈ U1 and x2 ∈ X2, u2 ∈ U2,
we want to relate the corresponding transition kernels, namely
the probability measures T1(· | x1, u1) ∈ P(X1,B(X1)) and
T2(· | x2, u2) ∈ P(X2,B(X2)). As in (Haesaert et al., 2017a),
we introduce the concept of δ-lifting as follows.
Definition 6. (δ-lifting for general state spaces). Let X1, X2 be
two sets with associated measurable spaces (X1,B(X1)),
(X2,B(X2)), and let R ⊆ X1 × X2 be a relation for which
R ∈ B(X1 × X2). We denote by

R̄δ ⊆ P(X1,B(X1))× P(X2,B(X2))

the corresponding lifted relation so that ∆R̄δΘ holds if there
exists a probability space (X1 × X2,B(X1 × X2),W) (equiva-
lently, a lifting W) satisfying
L1. for all X1 ∈ B(X1): W(X1 × X2) = ∆(X1);
L2. for all X2 ∈ B(X2): W(X1 ×X2) = Θ(X2);
L3. for the probability space (X1×X2,B(X1×X2),W) it holds

that x1Rx2 with probability at least 1−δ, or equivalently that
W (R) ≥ 1− δ.

We will use a notion of approximate stochastic simulation re-
lations that naturally leads to the refinement of control actions.
For this, we require the notion of an interface function (Girard
and Pappas, 2009) that refines control actions as follows

Uv : U1 × X1 × X2 → P(U2,B(U2)).

Intuitively, an interface function implements (or refines) any
control action synthesised over the abstract model to an action
for the concrete model.
Definition 7. ((ε, δ)-stochastic simulation relation). Let Mi =
(Xi, πi,Ti,Ui, hi,Y), i = 1, 2, be two gMDPs that share an
output space Y with metric dY. We say that M1 is (ε, δ)-
stochastically simulated by M2 if there exists a Borel mea-
surable interface function Uv and a relation R ⊆ X1 × X2,
for which there exists a Borel measurable stochastic kernel
WT( · |u1, x1, x2) on X1 ×X2 given U1 ×X1 ×X2, such that:

APS1. ∀(x1, x2) ∈ R, dY (h1(x1), h2(x2)) ≤ ε;
APS2. ∀(x1, x2) ∈ R, ∀u1 ∈ U1:

T1(·|x1, u1) R̄δ T2(·|x2,Uv(u1, x1, x2)),

with lifted probability measure WT( · |u1, x1, x2);
APS3. π1R̄δπ2.

The simulation relation is denoted as M1 �δε M2.

We can leverage this approximate simulation relation to refine
computations performed on an abstract model back to the origi-
nal model. In this work, we extend the set of properties that can
be verified beyond the bounded safety and reachability prop-
erties. For these simple properties, this builds on the following
proposition of Haesaert et al. (2017a).
Proposition 8. If M1 �δε M2, then for all control strategies C1

there exists a control strategy C2 such that, for all measurable
events A ⊂ YN+1

PC1×M1

(
{y1(t)}

t≤N∈A−ε
)
− γ ≤ PC2×M2

(
{y2(t)}

t≤N∈A
)

≤ PC1×M1

(
{y1(t)}

t≤N∈Aε
)

+ γ,

with constant 1 − γ := (1 − δ)N+1, and with the ε-expansion
of A defined as

Aε :=
{
{yε(t)}t≤N |∃{y(t)}t≤N ∈ A :

max
0≤t≤N

dY(yε(t), y(t)) ≤ ε
}
,

and similarly the ε-contraction of A defined as
A−ε := {{y(t)}t≤N |{{y(t)}t≤N}ε ⊂ A},

where {{y(t)}t≤N}ε is the point-wise ε-expansion of the dis-
crete set {y(t)}t≤N .

For small values of δ, the probability deviation can be approxi-
mated linearly as γ ≈ (N + 1)δ. Clearly, γ is composed of the
probabilistic deviation incurred in N -transitions, together with
the deviation in the initial probability measures.

3.2 Abstraction of linear gMDPs

Existing results on formal controller synthesis for linear
stochastic models either rely on model-order reduction (Lavaei
et al., 2017) or use abstraction techniques based on finite-
state MDPs (Soudjani and Abate, 2013). In this section, we
present an approach that combines model-order reduction with
an abstraction to a finite-state model. In contrast to the standard
abstraction accuracy, we quantify the gridding error via the
disturbance it induces in the state trajectory.
Concrete model. Consider the following linear gMDP M2:
x2(t+ 1) = A2x2(t) +B2u2(t) +Bw2w(t), t = 0, 1, 2, . . .

y2(t) = C2x2(t), x2(0) = x20 ∈ X2, (5)
where x2(·) ∈ X2 ⊂ Rn, u2(·) ∈ U2 ⊂ Rm, and y2(·) ∈ Y ⊂
Rp. MatricesA2,B2,Bw2, andC2 have appropriate dimensions
and w(·) are iid with standard Gaussian distributions.
Construction of the abstract model. For the concrete model
M2, we compute a lower order model with state space Xs ⊂
Rns , where ns < n. The construction of the abstract model
relies on partitioning this new space Xs, as

⋃
i Ai = Xs. Over

this partition, we select representative points {zi ∈ Ai, i =
1, 2, . . . , l}, and we call this set X1, which becomes the state
space of the abstract model M1. Introduce the operator Π :
Xs → X1 that assigns to any x1 ∈ Ai, i ∈ {1, . . . , l} the
representative point of Ai, zi = Π(x1).
Next, we provide a dynamical characterisation of M1. The state
evolution of M1 is written as



x1(t+ 1) = Π (A1x1(t) +B1u1(t) +Bw1w(t)) ,

y1(t) = C1x1(t), x1(0) = x10 ∈ X1, t = 0, 1, 2, . . . (6)
with state x1(·) ∈ X1, input u1(·) ∈ U1, and output y1(·) ∈ Y,
and matrices A1, B1, Bw1, C1 of appropriate dimensions. Note
that the noise term w(t) in M1 is the same as the one in M2,
thereby allowing to define a lifting WT as in Def. 7.
Computation of the (ε, δ)-simulation relation. Consider the
linear interface function

u2 = Ru1 +Qx1 +K(x2 − Px1), (7)
for some matrices P,Q,R,K such that PA1 = A2P + B2Q.
Define the relation (x1, x2) ∈ Rεδ to hold iff ‖x2−Px1‖M ≤ ε.
We check conditions of Def. 7 under which M1 �δε M2.
It is guaranteed that dY(y1, y2) = ‖y1 − y2‖ ≤ ε for any
(x1, x2) ∈ Rεδ (cf. APS1 in Def. 7) if C1 = C2P , and
CT2 C2 ≤ M . Condition APS2 in Def. 7 holds if cw is selected
such that P(‖w‖ ≤ cw) ≥ 1− δ and the following inequality

‖Āx̄+ B̄u1 + B̄ww + Pβ‖M ≤ ε (8)
is satisfied for any x̄, u1, w, β such that ‖w‖ ≤ cw, ‖u1‖ ≤ cu,
‖x̄‖M ≤ ε, |β| ≤ δ. The matrices in (8) are defined as Ā :=
A2+B2K, B̄ := B2R−PB1, B̄w := Bw2−PBw1. Vector δ is
the diameter of the partition {Ai, i = 1, . . . , l}, which satisfies
|xs − x′s| ≤ δ component-wise for any xs, x′s ∈ Ai and any
i ∈ {1, 2, . . . , l}. Notice that the output deviation ε depends on
the attenuation of the disturbance inputs B̄u1 + B̄ww + Pβ.
When B̄w = 0, for instance if there is no order reduction,
the resulting approximate simulation relation does not have a
deviation in probability δ = 0. Condition (8) can be checked
using LMIs and S-procedure (Boyd and Vandenberghe, 2004).
Theorem 9. M1 in (6) is (ε, δ)-stochastically simulated by M2

in (5), M1 �δε M2, with interface function (7) if CT2 C2 ≤ M ,
condition (8) is satisfied, and for a given initial state x20,

‖(In−PP̂ )x20‖M +‖Pδ‖M ≤ε with P̂ :=(PTMP )−1PTM.

4. ROBUST TEMPORAL LOGIC CONTROL FOR
(ε, δ)-DEVIATIONS

4.1 Computing satisfaction probability of scLTL properties

The probability of satisfying an scLTL property can be quan-
tified as the probability that the set of accepting states F is
reached over the product gMDP M ⊗ Aψ as in Eq. (4). For
a given time horizon N and Markov policy µ, define time-
dependent value functions V µN−l, l ∈ [0, N ], as the probability
that the set of accepting states F are reached within l time steps,
i.e.,

V µN−l(x, q) = E
[

l∑
i=0

1F (qi)
i−1∏
j=0

1Q\F (qj)

∣∣∣∣(x0, q0) = (x, q)

]
,

with the expectation defined over the state transitions (x, q) of
the process controlled with the Markov policy µ, denoted as
µ× (Aψ ⊗M). These value functions can be computed via
backward recursions, initialised with VN = 0, and iterated for
k = N − 1, . . . , 0 as

V µk (x, q) = Tµ(V µk+1)(x, q), with (9)

Tµk(V )(x, q)=

∫
X×Q
max (1F (q̄), V (x̄, q̄)) T̄(dx̄, q̄|x, q, µk(x, q)).

Based on the final value function after N iterations, we have
that the N -horizon reachability probability is given as

Pµ×(Aψ⊗M)(3
NF )=

∫
X×Q

max (1F (q), V µ0 (x, q)) π̄(dx, q).

Furthermore, the optimal value functions V ∗k (x, q), k ∈ [0, N ]
are computed as

V ∗k (x, q) = T∗(V ∗k+1)(x, q), (10)
with the optimal Bellman operator T∗(·) := supµk T

µk(·), and
they give the optimal N-horizon reachability probability

max
µ

Pµ×(Aψ⊗M)(♦
NF ) =

∫
X×Q
max (1F (q), V ∗0 (x, q)) π̄(dx, q).

Using V ∗k (x, q), the elements µ∗k of the optimal Markov policy
µ∗ are computed as

µ∗k(x)∈arg supµk T
µk(V ∗k+1)(x, q). (11)

Based on Eq. (4), the satisfaction probability is computed as the
unbounded optimal reachability probability, i.e., with N →∞
PC(µ,ψ)×M(ω ∈ L(Aψ)) = lim

N→∞
Pµ×(Aψ⊗M)(3

NF ). (12)

More specifically, the optimal value functions are strictly in-
creasing with the time horizon and converge to the fixed point
solution V ∗(x, q)=T∗(V ∗)(x, q) with

V ∗(x, q) = lim
N→∞

(T∗)N (VN )(x, q), VN = 0. (13)

For a given policy µ, the unbounded reachability probability
and the satisfaction probability are computed similarly. The
computation of backward recursions (9) and (10) is generally
only tractable for finite state-space models (Abate et al., 2008).
Thus, we define and formulate robust satisfaction of scLTL
properties.
Definition 10. ((ε, δ)-Robust satisfaction). Consider a gMDP
M1 ∈ MY. We say that a control strategy C1 for M1 (ε, δ)-
robustly satisfies ψ with probability p if for every M2 ∈ MY
with M1 �δε M2 a control strategy C2 can be constructed for
M2 such that PC2×M2

(ω � ψ) ≥ p. 2

We first consider in the next subsection the case where the
output deviation is zero, i.e., ε = 0. This prepares us to tackle
the full (ε, δ)-robust satisfaction in Subsection 4.3.

4.2 δ-Robust satisfaction of scLTL properties

In this subsection, we provide a method to compute the (0, δ)-
robust satisfaction for scLTL specifications with respect to
(0, δ)-errors. Let a gMDPs M2 and its abstraction M1 be
given for which M1 �δ0 M2. We show that (0, δ)-stochastic
simulation relation is preserved under a product with a DFA.
Theorem 11. Let Mi, i = 1, 2, Mi = (Xi, πi,Ti,Ui, hi,Y),
be two gMDPs such that M1 �δ0 M2 and A = (Q, q0,Σ, F, t)
be a DFA. For any labelling function L : Y → Σ we have
M1 ⊗A �δ0 M2 ⊗A.

We want to quantify the satisfaction probability δ-robustly
with respect to M1 ⊗ Aψ . For a universally measurable map
ν : X1 × Q → P(U1,B(U1)) and a constant δ, define the
operator Tν

δ : F → F acting on the set of functions F :=
{f : X1 ×Q→ [0, 1]} as

Tν
δ (V )(x1, q) = L

(
Tν(V )(x1, q)− δ

)
, (14)

with L : R → [0, 1] being the truncation function L(·) :=
min(1,max(0, ·)). Similarly, we define the operator T∗δ(V ) on
F as T∗δ(V )(x) := supν T

ν
δ (V )(x). Notice that for δ = 0 the

operators are the same: Tν
δ = Tν and T∗δ = T∗.

Lemma 12. The gMDP M1 ⊗ Aψ with Markov policy µ
reaches the set of accepting states F within N time steps with
(0, δ)-robust probability denoted as Rµ×(Aψ⊗M1)(♦NF ),



Rµ×(Aψ⊗M1)(♦
NF )

:= L

(∫
X1×Q

max
(
1F (q), V δ,µ0 (x, q)

)
π1(dx, q)− δ

)
, (15)

where V δ,µ0 (x, q) is computed recursively according to V δ,µk :=

Tµk
δ (V δ,µk+1) with V δ,µN = 0.

The proof of Lemma 12 requires the existence of a refined
control strategy as given in Prop. 8. Unlike the result in Prop. 8,
for the δ-robust computation, the probabilistic deviation is now
relative to the effective length of satisfying traces.

Before tackling unbounded reachability properties, we first
analyse the behaviour of Tν

δ and T∗δ . Suppose that W1(x, q) ≥
W2(x, q) for all (x, q), then for a given map ν : X1 × Q →
P(U1,B(U1)), we have

Tν
δ (W1)(x, q) ≥ Tν

δ (W2)(x, q),

hence T∗δ(W1)(x, q) ≥ T∗δ(W2)(x, q). Therefore, for a
given stationary Markov policy µ the series of functions
{(Tµ

δ )l(V )}l≥0 initialised with V = 0 is point-wise converg-
ing, since it is monotonically increasing and upper bounded.
Additionally, the same holds for functions {(T∗δ)l(V )}l≥0. For
a given stationary Markov policy µ, we can now extend Eq. (12)
to the (0, δ)-robust computation as follows:
Rµ×(Aψ⊗M1)(♦F )

:= L

(∫
X1×Q

max
(
1F (q), V δ,µ(x, q)

)
π1(dx, q)− δ

)
, (16)

with V δ,µ : X1 → [0, 1], the solution of V δ,µ = Tµ
δ (V δ,µ),

computed as the limit of the sequence {(Tµ
δ )l(V )}l≥0 that is

initialised with V = 0. If V δ,∗ is computed similarly as the
solution of V δ,∗ = T∗δ(V

δ,∗) and µ∗ ∈ arg supTµ
δ (V δ,∗) then

we call µ∗ the optimal (0, δ)-robust policy. As in Eq. (4), for
every stationary Markov policy µ for Aψ ⊗M1 there exists a
control strategy C1(µ, ψ) that preserves the (0, δ)-robustness,
i.e.,

Rµ×(Aψ⊗M1)(♦F ) = RC1×M1(ψ). (17)
We formalise this next.
Theorem 13. Given a gMDP M1 and an scLTL specification
ψ, a control strategy C1(µ, ψ) computed as (16) satisfies the
specification (0, δ)-robustly with RC1×M1(ψ). Moreover we
can refine C1(µ, ψ) to C2(µ, ψ) such that ψ is satisfied by
C2(µ, ψ)×M2 with a probability p ≥ RC1×M1(ψ).

4.3 (ε, δ)-Robust satisfaction of scLTL properties

We now integrate the error ε in the output space into the robust
satisfaction problem. Define the ε-expansion of elements of
the output space as {y}ε := {yε ∈ Y : dY(y, yε) ≤ ε}. A
robustified version of the labelling, can now be defined as

Lε(y) := {α ∈ Σ | ∃yε ∈ {y}ε : α = L(yε)}.
Consider M1 �δε M2 with Rε, then for all (x1, x2) ∈ Rε,
it holds that L(h2(x2)) ∈ Lε(h1(x1)). Instead of integrating
this set-valued labelling into the product construction of a given
gMDP, we will immediately adapt the δ-robust reachability
computations in Eq. (14). Consider the (ε, δ)-robust operator
Tν
ε,δ(V )(x1, q) defined as

Tν
ε,δ(V )(x1, q) :=L

(∫
X1

min
q′∈t̄x(q,x′1)

max (1F (q′), Vk+1(x′1, q
′))

× T(dx′1|x1, ν(x1, q))− δ
)
,

with t̄x(q, x1) := {t(q, α) with α ∈ Lε(h1(x1))}. For a sta-
tionary Markov policy µ and V (x1, q) satisfying V (x1, q) =
Tµ
ε,δ(V )(x1, q), the δ-robust reachability probability is defined

as

L
(∫

X1

min
q′∈t̄x(q0,x1)

max (1F (q′), V (x1, q
′))π(dx1)− δ

)
.

Consider an scLTL property ψ and the corresponding Aψ with
goal states F . If F is δ-robustly reachable with probability
r, then we can refine µ to C2(µ, ψ) such that ψ is satisfied
by C2(µ, ψ) ×M2 with a probability p ≥ r. Of course the
apparent non-determinism – due to the relaxed labelling – will
be resolved in the refined control strategy by selecting the labels
of the concrete model.

We can also maximise the (ε, δ)-robust probability using T∗ε,δ ,
defined as

T∗ε,δ(V )(x1, q) := supµT
µ
ε,δ(V )(x1, q),

which yields an optimised robust stationary Markov policy as
µ∗(x1, q) ∈ arg supµT

µ
ε,δ(V

∗)(x1, q)

for T∗ε,δ(V
∗)(x1, q) = V ∗(x1, q) if δ > 0. In conclusion, we

have shown that we can leverage approximate stochastic sim-
ulation relations to use approximate models for the controller
synthesis and the verification of scLTL properties.

4.4 (ε, δ)-Optimistic satisfaction of scLTL properties

We now quantify an upper bound on the satisfaction probability
of an scLTL property using the approximate model M1.
Consider the (ε, δ)-optimistic operator Tν

−ε,−δ(V )(x1, q) de-
fined as

T∗−ε,−δ(V )(x1, q) := sup
µ

L
(∫

X1

max
q′∈t̄x(q,x′1)

max (1F (q′),

Vk+1(x′1, q
′))T(dx′1|x1, µ(x1, q)) + δ

)
,

with t̄x(q, x1) := {t(q, α) with α ∈ Lε(h1(x1))}.
Definition 14. ((ε, δ)-Optimistic satisfaction). Consider a gMDP
M1 ∈ MY. We say that a control strategy C1 for M1 (ε, δ)-
optimistically satisfies ψ with probability p if for all M2 ∈MY
with M1 �δε M2 and for all controllers C2 for M2 it holds that

PC2×M2
(ω � ψ) ≤ p.

Theorem 15. Given a gMDP M1 and an scLTL specification ψ,
a control strategy C1 computed based on the (ε, δ)-optimistic
operator T∗−ε,−δ satisfies ψ (ε, δ)-optimistically.

5. CASE STUDIES

Toy example. We consider the specification ψ = 32≤n2K
which encodes reach and stay over bounded time intervals. The
associated DFA is given in Figure 2, together with an illustra-
tion of a potential application in police pursuits and car chases.
Consider the original model M2, which is a 3-dimensional

Fig. 2. Game of tag: 32≤n2{xa ∈ K} with the DFA (right).

model with output y1(t) = xa and
xa(t+ 1) = xa(t)− a1(xb(t)− xc(t))− a2u(t) + a3w(t)

xb(t+ 1) = bxb(t) + u(t)
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Fig. 3. On the left: (ε, δ)-robust satisfaction probability of
32≤n2{y ∈ [−2, 2]} with ε = 1.2266 and δ = 0.03.
On the right: simulation runs for the original model and
the abstract model with the composed robust controller.
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Fig. 4. Left: Environment of the robot with obstacles (•), a
package (•), and a client collection point (•). Closed-loop
executions of robot fulfil the specification ψ in (19). Right:
Robust probabilities computed for the abstract model.

xc(t+ 1) = c1xc(t) + c2w(t), (18)
with a1 = 0.3, a2 = 0.03, a3 = 0.006, b = c1 = 0.8 and c2 =
0.1. For the game we select n2 = 3. According to Section 3.2
we compute a lower dimensional model with state x1 via
balanced truncation of the original controlled model, under a
suitable feedback gain K = [−0.7738, 0.9369,−0.6829]. In
Figure 3, we provide an example of such a robust temporal logic
computation. On the right side of the figure, 10 simulation runs
are given that are initialised at [xa, xb, xc] = [2.45, 2.5, 1.3].
Crosses and lines are respectively the outputs of M1 and M2.

Robot example. As a second example, we consider the model{
x(t+ 1) = x(t) + u(t) + w(t), w(·) ∼ N (0, 0.1I2)

y(t) = x(t), x(·) ∈ [−10, 10]2, u(·) ∈ [−1, 1]2.

As a specification we select
ψ := ((¬obs ∧ ¬col) U pac) ∧ (¬obs U col), (19)

for which the atomic propositions obs, pac, col refer respec-
tively to obstacles, a package, and a client collection point, and
are depicted in Figure 4 in blue, orange (middle), and green
(bottom right) regions. We want to evaluate the probability that
the robot can pick up the package, and bring it to the collection
point for the client, without running into any obstacle.
We abstract the model without order reduction (P = I2) and
with space discretisation δ = [0.41576, 0.4326]T . For bisimu-
lation relation we choose precisions ε = 0.6, δ = 0. The input
space is partitioned into 49 squares. The control refinement
u = ũ + (x̃ − x) fully compensates for the incurred errors in
the previous step. Closed-loop executions of the robot with the
synthesised robust controller is simulated thrice for initial states
x0 = [−5,−7.5]T and x0 = [−7.5, 5]T . In all cases, the robot
fulfils the task expressed via ψ in (19). The robust probability
of satisfying the specification is computed based on the abstract
model and plotted on the right in Figure 4 as a function of initial
state of the robot. The robot starting from right-side passage
has smaller probabilities of satisfying ψ because it needs to

move in the upper passage that is narrower, which increases
the probability of hitting the obstacles.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a new robust synthesis of
control strategies and the verification of probabilistic temporal
logic properties. Beyond this theoretical contribution, future
work will focus on the computational aspects of this approach,
towards applications on realistic-sized problems.
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