
Nonuniform abstractions, refinement and
controller synthesis with novel BDD

encodings ?

Oscar Lindvall Bulancea ∗ Petter Nilsson ∗∗ Necmiye Ozay ∗∗∗

∗KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
(e-mail: oscarlb@kth.se)

∗∗ California Institute of Technology, Pasadena, CA 91125, USA
(e-mail: pettni@caltech.edu)

∗∗∗University of Michigan, Ann Arbor, MI 48109, USA
(e-mail: necmiye@umich.edu)

Abstract: This paper presents a control synthesis algorithm for dynamical systems to satisfy
specifications given in a fragment of linear temporal logic. It is based on an abstraction-
refinement scheme with nonuniform partitions of the state space. A novel encoding of the
resulting transition system is proposed that uses binary decision diagrams for efficiency. We
discuss several factors affecting scalability and present some benchmark results demonstrating
the effectiveness of the new encodings. These ideas are also being implemented on a publicly
available prototype tool, ARCS, that we briefly introduce in the paper.

Keywords: Control synthesis, abstraction-refinement

1. INTRODUCTION

Automatic synthesis of embedded control software that
meets its specifications by construction provides a rigorous
means for the design of cyber-physical control systems.
Abstraction-based techniques, where one creates a finite
transition system (FTS) corresponding to the continuous
or hybrid system to be controlled, and solves a discrete
control synthesis problem, has attracted considerable at-
tention in the past decade (Tabuada, 2009; Belta et al.,
2017).

Various software tools have been developed for correct-
by-construction control synthesis. These tools differ by
the class of systems (e.g., discrete-time vs. continuous-
time; linear, piecewise affine or nonlinear) or specifications
that they can handle (e.g., simple safety or reachability
(Mazo Jr et al., 2010; Rungger and Zamani, 2016); ex-
pressive fragments of linear temporal logic (Wongpirom-
sarn et al., 2011; Filippidis et al., 2016)), the abstrac-
tion techniques that are used (e.g., uniform grid-based
(Rungger and Zamani, 2016; Mazo Jr et al., 2010), multi-
scale (Mouelhi et al., 2013), or partition-based (Filippidis
et al., 2016)), the way they represent the FTSs internally
(symbolic or explicit) and the synthesis techniques imple-
mented.

The key challenge in control synthesis is scalability. Factors
affecting scalability include the number of discrete states in
the FTS, efficiency of computation of transitions between
the discrete states based on continuous dynamics, the rep-
resentation of the FTS, the complexity of the specification,

? This work is supported in part by DARPA grant N66001-14-1-
4045, and NSF grants CNS1446298 and ECCS-1553873. For the
extended version, see Lindvall Bulancea et al. (2018).

and the complexity of the resulting controller. For in-
stance, structural properties of dynamics such as linearity
or monotonicity (Coogan and Arcak, 2015) are shown to
make the computation of transitions easy. Sparsity of the
dynamics has recently been exploited together with bi-
nary decision diagrams (BDDs), a compact (i.e., memory-
efficient) representation of FTSs, to obtain abstractions
efficiently (Gruber et al., 2017). However, it is unclear how
optimizing different factors individually would affect the
efficiency of solving the end-to-end synthesis problem.

This paper builds on the abstraction-refinement based
incremental synthesis approach by Nilsson et al. (2017)
that handles a slightly more general class of specifications
than most of the earlier tools listed above. In particular,
the class includes safety, recurrence and persistence com-
ponents, while allowing augmented finite transition sys-
tems as the discrete model, thereby handling fairness-like
assumptions. To mitigate the state-explosion problem, a
nonuniform partition of the continuous state space is used.
The main contribution of the present paper is a novel BDD
encoding of the states that takes into account the topology
of the partition and that makes it convenient to add new
states in the refinement process while preserving structure.
The effectiveness of the new encoding is demonstrated with
examples. A prototype tool, ARCS, that implements some
of these ideas is also introduced.

2. OVERVIEW

In this section we formally state the control synthesis
problem and give an overview of the solution methodology.

The first ingredient of the synthesis problem is a dynamical
system model

x+ = f(x, u, d), (1)

where x ∈ X is the state, u ∈ U is the control input,
and d ∈ D is the disturbance. The notation x+ either
stands for the value of x in the next time step in the
discrete-time setting or the derivative in the continuous-
time setting. The second ingredient is the specification,
which in this paper is restricted to the following fragment
of linear temporal logic:

ϕ = �A ∧ ♦�B ∧

(∧
i∈I

�♦Gi

)
, (2)

where A, B, and Gi’s are propositions that indicate
the membership of the state in a certain subset of the
state space X . The specification ϕ roughly mandates that
the state trajectory of (1) should never leave the states
indicated by A; that it should eventually reach the states
indicated by B and remain there indefinitely; and that it
should visit the states indicated by each Gi infinitely often.
For details of the semantics of LTL, we refer the reader
to Baier and Katoen (2008). Given these ingredients, the
control synthesis problem can be stated as follows.

Problem 1. Given a system of the form (1) and a specifi-
cation of the form (2), find a control policy µ, possibly
dependent on the state history, and a set of initial con-
ditions X0 ⊂ X called the winning set, such that all
closed-loop trajectories starting in X0 satisfy ϕ.

Ideally, we want to solve for the largest winning set X0

but since this is in general hard, we opt for trying to
incrementally expand it until it is large enough, or a
certificate for its maximality is obtained.

Our solution methodology consists of the following steps:

(1) Construction of an abstraction in the form of a
(augmented) FTS: This step requires partitioning the
state space into cells based on propositions, finding
transitions among cells, and, in case of an augmented
FTS, finding transient cells for progress groups.

(2) Representing the abstraction using BDDs: This step
requires deciding on an encoding of the states and
representing transitions and progress groups as a
BDD as they are generated in step (1).

(3) Discrete synthesis on the abstraction via fixed-point
algorithms that generate a winning set.

(4) Refining the abstraction: If the winning set is not
satisfactory, additional cells are added to the partition
using the information from the fixed points in step
(3). The BDD representation of the abstraction is
updated accordingly with new states, transitions, and
possibly progress groups.

(5) Extracting a controller from the resulting fixed point.

For the first step, we follow the optimization-based proce-
dures in Nilsson et al. (2017). Our tool ARCS currently
supports polynomial f for the dynamics, a finite set U
for the inputs, and rectangular sets for X and D. It can
however be extended to any setting where computing or
over-approximating reachable sets (required for encoding
transitions in the FTS) and certifying transience proper-
ties (required for progress groups in an augmented FTS)
are possible. This paper is primarily concerned with steps
(2) through (5) above; in the rest of the paper we introduce
our novel ideas and demonstrate resulting computational
gains.

3. REPRESENTING THE ABSTRACT SYSTEM

As mentioned in earlier sections the continuous system
(1) is abstracted to an FTS. Formally, an FTS is a tuple
T = (Q,U ,→T ,L), where Q is a finite number of states,
U is a finite number of inputs, →T ⊂ Q × U × Q is a
transition relation, and L is a labeling function mapping
each state in Q to a subset of propositions appearing in
the formula (2). In order to find a control policy µT for
the FTS T , we need to represent it with a data structure
suitable for both storage (memory efficiency) and process-
ing (time efficiency). In what follows, we discuss different
representations available in ARCS, their advantages and
disadvantages, with a particular focus on a novel BDD
encoding.

3.1 List Representation

The perhaps most obvious way to represent an FTS is by
encoding states and actions as integers, and transitions as
an array

L =
[
(q0, u0, q

′
0), (q1, u1, q

′
1), . . . , (q|T |, u|T |, q

′
|T |)
]
. (3)

Evidently, this choice requires O(|T |) memory and stan-
dard array operations such as access, insertion, search, and
deletion can be done in at most O(|T |) time, where |T | is
the number of transitions in the system.

Remark 1. Eq. (3) can be viewed as a representation of
a sparse matrix in coordinate (COO) format, that has
non-zero entries q′k at positions (qk, uk). There are several
other methods for sparse matrix representations that have
different benefits. For instance, the compressed sparse row
(CSR) format allows for efficient matrix-vector product
computation. �

This representation is very simple and thus easy to imple-
ment, and scales linearly in both space and time. Although
this might seem like an acceptable complexity, the size of a
grid-based abstraction T scales at least exponentially with
the dimension of the concrete system. To illustrate the po-
tential for improvement consider an n-dimensional linear
system ẋ = Ax: it requires n2 numbers (the entries of A)
to represent in its canonical ODE form, whereas the size
of a finite abstraction based on a list scales exponentially
with n. This results from the fact that the semantics of an
ODE encodes more side information than the semantics of
a transition system, thus allowing the former to be more
succinct. The idea of this paper is to explore whether
information such as geometrical relationships embedded
in an ODE can be stored as part of the encoding of T by
working with more sophisticated representations.

3.2 Binary Decision Diagrams

In this section, we present an alternative representation
of transition systems based on Binary Decision Diagrams
(BDDs). We briefly overview how certain operations on
transition systems can be performed with BDDs. A key
design choice for this type of representations is how to
encode the state and action sets as binary variables. As the
main contribution of the paper, we present a novel choice
for the encodings that attempts to capture underlying
geometrical relationships.

A BDD is a data structure for representing boolean func-
tions

B : {0, 1}n → {0, 1}, (4)

taking binary variables, z1, . . . , zn, defined with an order
of evaluation z1 < · · · < zn. To represent a finite set C
with a BDD, one needs an encoding E : C → {0, 1}n, an
injective map from elements of C to truth assignments of
the variables {zi}, following the order of evaluation. The
boolean function BC is said to represent the set C if such
an encoding E is defined on all possible elements c and

C = {c : BC(E(c)) = 1}, (5)

i.e. the BDD forms the characteristic function of the set
(Bryant, 1992). For a given encoding such a function can
easily be obtained for singletons: if the encoding of qk is
the binary array E(qk) = (bk,1, bk,2, . . . , bk,n), the boolean
function for that element can be constructed as

Bqk(z1, z2, . . . , zn) =

n∧
i=1

{
zi bk,i = 1

zi bk,i = 0

}
, (6)

where zi denotes negation of the variable zi. Then a
boolean function for the whole set C can be formed as
BC =

∨n
k=1Bqk .

To construct BDDs for the elements of a transition map-
ping →T , an encoding has to be chosen to represent
elements (qk, uk, q

′
k) ∈ Q × U × Q. To construct single-

ton BDDs according to (6), one needs to separate the
logical variables for the different parts of the elements,
while also separating those used for the initial and final
transition states qk and q′k. Therefore 2n+m variables are
defined: zq,1, . . . , zq,n to represent the set initial states Q,
zu,1, . . . , zu,m for the action set, and zq′,1, . . . , zq′,n for the
final state set Q′. Having defined encodings EQ and EU
for the set of states Q and set of actions U , an encoding
for the transition can be chosen as

ET (qk, uk, q
′
k) = (EQ(qk), EU (uk), EQ(q′k)). (7)

With such an encoding, the BDD for one transition t =
(qk, uk, q

′
k) can be constructed as in (6):

Bt = Bqk ∧Buk
∧Bq′

k
. (8)

A disjunction among such transitions gives the BDD
representing the entire set →T .

Using BDDs is analogous to working with the sets them-
selves, as the basic set operations {∪, ∩, \} have as coun-
terparts logical operations on the corresponding BDDs.
It follows from (5) that for sets C and D represented
by BDDs BC and BD, we have BC∪D = BC ∨ BD,
BC∩D = BC ∧ BD, and BC\D = BC ∧ ¬BD. Similar to
logical operators, set descriptions involving existential and
universal quantifiers can be represented with BDDs as:

∃z1B(z1, z2) = B(0, z2) ∨B(1, z2), (9)

∀z1B(z1, z2) = B(0, z2) ∧B(1, z2). (10)

The BDD equivalent of quantification over elements of a
set is to use logical quantification over all variables used
in describing the corresponding set BDD. We therefore
define the quantifiers ∃C = ∃z1∃z2 . . . ∃zn , and ∀C =
∀z1∀z2 . . . ∀zn , where the variables z = (z1, . . . , zn) are
used to describe the elements in a set C.

For the operations above, the complexity as functions of
the size of BDDs involved is as follows: Conjunction/dis-
junction of two BDDs B1 and B2 requires O(|B1||B2|)

time, producing a BDD with the same bound in size
(Bryant, 1986). Negation and assignment of a number of
variables in a BDD B requires O(|B|) time. Negation does
not change the BDD size, but the size after variable assign-
ment is bounded by the original BDD size |B| (Bryant,
1992). Regarding (9) and (10), quantification of a single
variable on a BDD B, can be achieved in O(|B|2) and
results in a size bounded by O(|B|2).

Each operation only takes time, and produces a BDD of
size, that is polynomial in the input sizes, but successive
applications of these operations are required in BDD
manipulation. For instance, the quantifications ∃C and
∀C have a worst-case complexity that is exponential in
the input size. However, these worst-case complexities are
seldom encountered in practice.

The BDD data structure is based on a reduced binary
tree whose size, i.e. number of nodes, varies not only
with the number of elements it represents but also with
the encodings and the evaluation order defined for the
variables. Choices of evaluation order and encodings are
vital, as time and memory used by the logical operations
are dependent on the size of the BDD structures involved
(Bryant, 1986).

As for the choice of variable ordering, an optimal choice
can result in a BDD of size linear in the number of binary
variables, and a bad choice can give a size exponential
in the number of variables (Bryant, 1986). Finding the
optimal variable ordering is a computationally hard prob-
lem (Bollig and Wegener, 1996) and cannot be solved
exactly for any large number of variables in reasonable
time, although several heuristics exist (e.g. Bollig et al.
(1995)).

The choice of element encoding E involves two aspects:
The number of variables used in the encoding, and how
each element is mapped. We investigate two kinds of
encodings for the states in the abstracted system. One
memory-efficient encoding that minimizes the number of
variables used, and one encoding that attempts to capture
the structure of the partition after iterated refinement.

State Encodings: The first type of encoding, which we
refer to as the log encoding, assumes a numbering of the
states from 1 to some number |Q| and uses these to define
the mapping in the form

Elog :

{
Q → {0, 1}n,
q 7→ Bin(q − 1),

(11)

where Bin(q) is the binary representation of the number q.
When the state space Q is expanded at refinement, a state
with number k is split into two new states. One of these is
numbered by k and the other by |Q|+ 1, after which they
are encoded according to (11). The number of variables
is also incremented if |Q| = 2n before refinement, i.e. all
encodings for n variables are used by the present states.
With this encoding, the absolute minimum of dlog2(|Q|)e
variables are used to encode the states. As it simply uses
the least amount of variables, it is the encoding to prefer
when nothing obvious can be stated about the structure of
the problem. This is the standard encoding used in some
tools (Filippidis et al., 2016; Gruber et al., 2017).

The novel encoding we propose in this paper—denoted the
split encoding—is based on the splitting procedure dur-
ing refinement. As the partition grows increasingly non-
uniform, with a possibly small area becoming increasingly
fine in contrast to others, we believe that an encoding that
reflects this structure can lead to computational gains.

Eq1 = 00 Eq2 = 01

Eq3 = 10 Eq4 = 11

Eq1 = 000 Eq2 = 010

Eq3 = 100
Eq′

4
= 110

Eq′′
4

= 111

Eq2 = 010

Eq3 = 100
Eq′

4
= 110

Eq′′
4

= 111

Eq′
1

= 000

Eq′′
1

= 001

Initial partition q4 refined q1 refined

Fig. 1. Example of change in split encoding after refinement of initial
partition using k = 2 variables. Refinement of q4 also reaches
new largest refinement depth. Bits appended during expansion,
but not later assigned, are shown in red.

Starting with a coarse initial abstraction and an encoding
E for the states using k variables, new states created
from the splitting procedure have their encoding chosen
based on that of its predecessor and refinement depth. The
refinement depth is a measure of how many refinements
have been performed on the domain the state contains.
Every cell resulting from splitting a cell with depth d has
a depth of d+1, and cells in the initial partition are defined
to have depth zero. When a state q with depth d is split
into two others, q′, q′′, the new states keep the encoding of
their predecessor, with a modified bit at position k+d+1.
This bit is set to 0 for q′ and to 1 for q′′. In the event
that the partition reaches a new largest splitting depth,
a new variable first has to be created to describe the
new states, effectively expanding all encodings by one bit.
The default value of the appended bit is chosen as 0. An
example of both cases is shown in Fig. 1. If the states
of the initial partition are given unique initial encodings
before refinement, this procedure also results in a unique
assignment of state encodings.

To summarize, having a partition with an encoding E and
largest refinement depth D; the state q with a refinement
depth d and encoding E(q) = (bq,1, . . . , bq,k, . . . , bq,k+D),
is split into two states labeled q′ and q′′. The encodings of
the new states are chosen as

E(q′) = E(q)
∣∣
bk+d+1=0

, (12)

E(q′′) = E(q)
∣∣
bk+d+1=1

. (13)

But if d = D, then all encodings are first expanded by a 0
bit, i.e.

E(q) = (E(q), 0) ∀q ∈ Q, (14)

before applying (12) and (13) with the newly expanded
encodings.

With this choice of encoding, neighboring cells have sim-
ilar encodings and our hypothesis is that such similarity
admits a compact BDD representation by capturing the
geometry of the underlying vector fields. Smaller BDDs
typically result in computational gains in the synthesis
step, an effect we see in simulations. However, the num-
ber of binary variables is generally larger than with the
log encoding so the theoretical worst-case complexity is
higher.

4. SOLVING SYNTHESIS PROBLEMS

The general way of solving a finite LTL synthesis problem
involves translating the LTL specification to a Rabin
automaton and computing fixed points on the product of
the transition system and the Rabin automaton. Certain
LTL fragments do however admit winning sets defined as
fixed points on the transition system, which avoids the
potentially expensive construction of the product system.
This is the case for the GR(1) fragment, as well as the
fragment (2) considered in this paper. In the following,
we present the fixed-point mappings associated with (2)
and how they can be evaluated symbolically when sets are
represented as BDDs.

The fundamental component of the fixed-point mappings
is the backwards controlled reachability operator Pre]1,]2
defined as follows:

Pre]1,]2(X)={q : (]1u∈ U), (]2(q, u, q′) ∈→T), q′∈X} .
(15)

Here,]1 and]2 is either ∃ or ∀ and reflects the con-
trollability assumptions: Pre∃,∀ corresponds to u being
controllable and nondeterminism uncontrollable, whereas
Pre∀,∃ corresponds to uncontrollable u but controllable
nondeterminism.

Computing Pre with list representation: For synthesis
algorithms the fundamental operator is the Pre∃,∀(X)
operator, which can be computed as follows:

(1) Find the set C = Pre∃,∃(X) of all q such that there
exists (q, u, q′) ∈→T for q′ ∈ X.

(2) For each q ∈ C, for each action u, find the set
Cq,u = {q′ : ∃(q, u, q′) ∈→T }.

(3) Now for all q, q ∈ Pre∃,∀(X) if and only if q ∈ C and
for some u, Cq,u 6= ∅ and Cq,u ⊂ X.

The procedure can be slightly modified to account for
other combinations of quantifiers (i.e. ∀,∀). The first step
can be done via one traversal of L, and the second via
|C||U| traversals. Thus the complexity for computing Pre is
upper bounded by O (|Pre∃,∃(X)||U||T |). However, since
the same sets Cq,u are typically computed many times
when evaluating a fixed point, step 2 can be boosted by
storing the sets Cq,u, which improves the time complexity
of a single Pre computation towards O(|T |) at the expense
of a larger memory footprint.

Computing Pre with BDD representation: When the set
of final states X is represented as a BDD BX using an
encoding E, the set Pre]1,]2(X) can be represented as the
binary mapping

BPre]1,]2
(X) =

{
]1U∃Q′(BT ∧BX),]2 = ∃
]1U∀Q′(¬BT ∨BX),]2 = ∀ , (16)

which can be computed symbolically from BX via quan-
tifier elimination. 1 The run time of this operation ulti-
mately depends on the sizes of intermediate results, but
considering the complexity and worst-case size result of

1 The domain of possible assignments could be larger than the
domain of elements. As such, one would need to modify (16), to
BQ ∧]U (∀Q′ (¬BT ∨ BX)) if]2 = ∀, further replace ∃U (. . .) with
∃U (BU ∧ . . .) if also]1 = ∃, and if (]1,]2) = (∀,∃) replace ∀U (. . .)
with ∀U (¬BU ∨ . . .), to not include assignments corresponding to
non-existent states.

each operation involved, an upper bound can be obtained

as O((|BX ||BT |)2
nu+nq

), when using nu action variables
and nq end state variables.

Equipped with the Pre operator, we give fixed-point char-
acterizations for the winning set of (2). We borrow nota-
tion from µ-calculus for succinct expression of fixed points.
Let κ : 2Q → 2Q be a mapping that is monotone with
respect to set inclusion, i.e., V ⊂ W =⇒ κ(V) ⊂ κ(W).
Then the greatest fixed point of κ, written νV κ(V),
is the value after convergence of the set sequence

V0 = Q, Vk+1 = κ(Vk). (17)

Correspondingly, the smallest fixed point of κ, written
µV κ(V), is the value after convergence of

V0 = ∅, Vk+1 = κ(Vk). (18)

Due to monotonicity and finiteness of Q, both these
sequences converge in a finite number of steps. With this
notation, the winning set of (2) is as follows:

Win∃,∀ (ϕ) = µV2 νV1
⋂
i∈I

µV0 Pre∃,∀(V2)

∪
(
B ∩Gi ∩ Pre∃,∀(V1)

)
∪ (B ∩ Pre∃,∀(V0)) .

(19)

Specification-Guided Abstraction Refinement: In the
event that the winning set Win∃,∀(ϕ) computed via (19) is
empty, or otherwise not satisfactory (e.g., it does not cover
an expected initial condition), the abstraction can be re-
fined in an attempt to extract more information about the
underlying concrete system. Instead of doing this blindly,
we select refinement regions guided by the internals of
the fixed point computation (19). Loosely speaking, for
a greatest fixed point (17) we perform refinement in the
set Pre∃,∃(V∞) \ V∞ just outside the fixed point V∞, with
the hope that the greatest fixed point will be enlarged in
the refined system. For a smallest fixed point, refinement
is instead done in V1 \V∞, where Vk is the k’th iteration of
(18). For multi-level fixed points such as (19) we select the
refinement regions as the union of the refinement regions
corresponding to lower-level fixed points. For more details
see (Nilsson et al., 2017).

Controller Extraction: In addition to computing the
winning set, in practice also a controller that enforces the
specification inside the winning set is required. Fundamen-
tally, such a controller can be extracted by saving the set
of u’s satisfying the quantification in low-level calls to Pre
in (15), and storing these u’s in a memory hierarchy whose
structure depends on the type of fixed point.

5. RESULTS AND COMPARISONS

In this section, we present results comparing different
representations of transition systems. Our toolbox ARCS,
available at https://github.com/pettni/abstr-refinement,
implements the examples in this section. ARCS has a
MATLAB front-end for handling continuous dynamics,
computation of transitions, and list representations, and
a C back-end for BDD operations using the CUDD library
(Somenzi, 2015).

As benchmarks we consider hydronic radiant systems for
buildings, in which chilled water is run through concrete
slabs to regulate the temperature of the rooms to which
they are connected. The systems are controlled by turning

on/off flow to any one slab, thus changing the temperature
of zone i according to the heating dynamics

ciṪi =
∑
j 6=i

1

Rij
(Ti − Tj) + ki, (20)

where the sum is taken over all temperature zones in
the system, including other rooms, slabs, supply water
sources, and the outside (the last two are assumed to have
constant temperature). Thermal capacitances ci, thermal
resistances Rij = Rji and nominal heat gains ki are
determined by sets of parameters that together define
room types. In this article we use parameters for the
outside and water temperature and two room types as
defined in Nilsson et al. (2017), slightly extending the
framework to take into account adjacency with multiple
rooms of different types, and multiple slabs in different
configurations. A setup with nr rooms and ns slabs results
in a dynamical system with nr + ns continuous states
(room and slab temperatures), and 2ns discrete control
inputs (water flow through each slab turned on or off).

We construct a collection of benchmark systems and
perform different types of run time tests.For these tests
a persistence specification ϕ = ♦�B is considered, with
B being the proposition corresponding to all rooms and
slabs having temperatures in [22, 25]◦C and [21, 27]◦C
respectively, in a total domain of ([20, 28]◦C)nr+ns .

In the first test, different configurations of adjacent rooms
and connecting slabs, as shown in Fig. 3, are used. Af-
ter refining the abstraction of each system 2000 times,
resulting in roughly 2000 states in each abstraction, a final
synthesis is performed and timed. The final synthesis is
done using the BDD representation with the suggested log
and split encoding, both as is and after reordering of the
BDD variables using the simulated annealing algorithm
implemented in CUDD. Table 1 shows the resulting run
times for each system and representation scenario. It is
worth noting that for all systems except 3, which is special
in the sense that one room lacks a controller, the order
from slowest to fastest run times is consistently measured
as log, reordered log, split and reordered split encodings.

System Log (Reordered) Split (Reordered) List

1 1.15 (0.515) 0.107 (0.0982) 31.4
2 0.413 (0.200) 0.159 (0.0622) 21.0
3 0.000 530 (0.000 620) 0.000 690 (0.000 340) 0.453
4 6.54 (2.24) 0.854 (0.439) 34.1
5 10.0 (2.78) 0.741 (0.664) 34.0
6 1.39 (0.456) 0.0518 (0.0350) 4.91
7 1.57 (0.361) 0.113 (0.0464) 4.78

Table 1. Comparison of stand-alone synthesis run
times (in seconds) using the different versions of BDD

encoding, with and without reordering.

In the second test, System 2 in Fig. 3 is used in mea-
suring the synthesis time at different levels of refinement.
An abstraction is obtained after a number of synthesis-
refinement iterations between 500 and 4000, and the run
time of synthesis on that abstraction is measured. In Fig.
2 (Left) the run time of synthesis is plotted against the
number of transitions present in the abstraction. Just as
in the first test, the split encoding is seen to have lower
run time than the log encoding for both the ordered and
unordered case. It is also interesting to note how for this

103 104

10−2

100

102

Number of transitions

R
u

n
ti

m
e

[s
]

Log

Log

Reord.

Split

Split

Reord.

List

0 1000 2000 3000

0

1000

2000

3000

Iterations performed

R
u

n
ti

m
e

[s
]

Log

Split

List

0 1000 2000 3000

5

10

15

20

Iterations performed

M
em

o
ry

/
v
a
ri

a
b

le
[M

B
]

Log

Split

Fig. 2. Left: Comparison of stand-alone synthesis run times for System 2 (Fig. 3) using the different representations and BDD encodings,
with and without reordering, for variable level of refinement. Middle: End-to-end synthesis-refinement performance test for System 2
(figure 3), letting the synthesis-refinement algorithm run for one hour, using the different representations and BDD encodings. Right:
Memory used per binary variable as a function of refinement steps for System 2.

a

System 1

a b

System 2 a b

a

System 3

a b

System 4

a b

b

System 5

a b

b

System 6

a b

ba

System 7

Fig. 3. Test configurations based on different building layouts.
Rooms of different types (a or b) having different heating
dynamics, controlled by cooling slabs (red).

test, the slope of the reordered split encoding graph in this
loglog-plot is close to linear and less than that of the list
encoding toward the larger number of transitions.

As a final test, the synthesis-refinement procedure is ran
on System 2 for one hour using the list representation, log
and split encoding, and cumulative time together with run
time of each synthesis-refinement iteration is measured. In
Fig. 2 (Middle), the cumulative time is plotted against the
total number of iterations achieved, which shows that the
split encoding manages a few hundred more iterations in
total than the log encoding, especially during the time
the abstraction is more refined and transition relations
are more complex. Finally, we also note that in terms
of memory requirements, the number of nodes allocated
by CUDD to represent the BDDs for split encoding is
approximately twice as much as that for the log encoding,
with 2% to 10% extra memory usage at iteration steps
2000 and 3000, respectively. This extra memory usage is
not surprising given that the number of binary variables in
split encoding is more than the minimum number achieved
by the log encoding. On the other hand, split encoding
achieves a better compression in terms of memory used
per number of binary variables as shown in Fig. 2 (Right).
Moreover, this redundancy in representation seems to
improve computation times significantly.

6. CONCLUSIONS

In this paper, we presented an abstraction-refinement
based controller synthesis framework and, specifically, dis-
cussed several ways of representing the transition systems
resulting from abstractions. We proposed a novel BDD-

based encoding, namely split encoding, of the states of the
transition system that takes into account the geometry
of the underlying continuous states and how they evolve
with refinement. A comparative study of various repre-
sentations shows the effectiveness of the new encoding.
The presented ideas are implemented in a toolbox, ARCS,
which is made publicly available.

REFERENCES

Baier, C. and Katoen, J.P. (2008). Principles of model checking.
MIT press.

Belta, C., Yordanov, B., and Gol, E.A. (2017). Formal Methods for
Discrete-Time Dynamical Systems. Springer.

Bollig, B. and Wegener, I. (1996). Improving the variable ordering
of obdds is np-complete. IEEE Trans. Comp., 45(9), 993–1002.

Bollig, B., Lbbing, M., and Wegener, I. (1995). Simulated annealing
to improve variable orderings for obdds. In Int’l IWLS, 5–5.

Bryant, R.E. (1986). Graph-based algorithms for boolean function
manipulation. IEEE Trans. Comp., (8), 677–691.

Bryant, R.E. (1992). Symbolic boolean manipulation with ordered
binary-decision diagrams. ACM Comput. Surv., 24(3), 293–318.

Coogan, S. and Arcak, M. (2015). Efficient finite abstraction of mixed
monotone systems. In Proc. of the 18th HSCC, 58–67. ACM.

Filippidis, I., Dathathri, S., Livingston, S.C., Ozay, N., and Murray,
R.M. (2016). Control design for hybrid systems with tulip: The
temporal logic planning toolbox. In Proc. MSC, 1030–1041. URL
tulip-control.org.

Gruber, F., Kim, E.S., and Arcak, M. (2017). Sparsity-sensitive finite
abstraction. arXiv preprint arXiv:1704.03951.

Lindvall Bulancea, O., Nilsson, P., and Ozay, N. (2018). Nonuniform
abstractions, refinement and controller synthesis with novel bdd
encodings. arXiv preprint arXiv:1804.04280.

Mazo Jr, M., Davitian, A., and Tabuada, P. (2010). Pessoa: A tool for
embedded controller synthesis. In Computer Aided Verification,
566–569. Springer.

Mouelhi, S., Girard, A., and Gössler, G. (2013). Cosyma: a tool for
controller synthesis using multi-scale abstractions. In Proc. of the
16th HSCC, 83–88.

Nilsson, P., Ozay, N., and Liu, J. (2017). Augmented finite transition
systems as abstractions for control synthesis. Discrete Event
Dynamic Systems, 27(2), 301–340.

Rungger, M. and Zamani, M. (2016). Scots: A tool for the synthesis
of symbolic controllers. In Proc. of the 19th HSCC, HSCC ’16,
99–104. ACM, New York, NY, USA.

Somenzi, F. (2015). Cudd: Cu decision diagram package release 3.0.0.
URL http://vlsi.colorado.edu/∼fabio/CUDD.

Tabuada, P. (2009). Verification and control of hybrid systems: a
symbolic approach. Springer Science & Business Media.

Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., and Murray, R.M.
(2011). TuLiP: a software toolbox for receding horizon temporal
logic planning. In HSCC, 313–314. URL http://www.tulip.org.

