
t-Barrier Certificates:
A Continuous Analogy to k-Induction

Stanley Bak ∗

∗ Safe Sky Analytics
stanleybak@gmail.com

Abstract: Safety proofs of discrete and continuous systems often use related proof approaches,
and insight can be obtained by comparing reasoning methods across domains. For example,
proofs using inductive invariants in discrete systems are analogous to barrier certificate methods
in continuous systems. In this paper, we present and prove the soundness of continuous and
hybrid analogs to the k-induction proof rule, which we call t-barrier certificates.

The method combines symbolic reasoning and time-bounded reachability along the barrier in
order to prove system safety. Compared with traditional barrier certificates, a larger class of
functions can be shown to be t-barrier certificates, so we expect them to be easier to find.
Compared with traditional reachability analysis, t-barrier certificates can be computationally
tractable in nonlinear settings despite large initial sets, and they prove time-unbounded safety.
We demonstrate the feasibility of the approach with a nonlinear harmonic oscillator example,
using sympy and Z3 for symbolic reasoning and Flow* for reachability analysis.

1. INTRODUCTION

The k-induction principle has proven useful for the formal
analysis of discrete systems. The approach was used to
analyze finite state machines in Sheeran et al. (2000),
infinite state discrete systems in De Moura et al. (2003),
and software in Donaldson et al. (2011). Compared with
standard induction, k-induction has a stronger base case
and a strengthened antecedent during the inductive step,
which can make proving the consequent easier as there is
more information available. For example, with k = 2, we
can show a property P holds for all n if we can show:

Base case: P (0) ∧ P (1)
Inductive step: ∀n P (n) ∧ P (n+ 1) ⇒ P (n+ 2)

In general, k steps need to be shown in the base case,
and then k steps are assumed in the inductive hypoth-
esis in order to try to show P (n + k). The correctness
of k-induction follows from strong induction, although
automated reasoning methods often work better with k-
induction rather than with strong induction since it does
not use quantifiers in the antecedent of the inductive step.

Introduced in the context of verification of nonlinear sys-
tems in Prajna (2003, 2006), barrier certificates are a
continuous version of inductive invariants. A continuous
system with variables S, dynamics Ṡ = f(S) (Lipschitz
continuous to ensure existence and uniqueness of solu-
tions), initial set of states I, and unsafe set of states U
can be verified by using a smooth barrier function Ψ. The
system is safe if:

The work was performed while the author was working at the US
Air Force Research Lab (AFRL). DISTRIBUTION A. Approved for
public release; Distribution unlimited. AFRL PA # 88ABW-2018-
0226 cleared on 19 Jan 2018.

(i) S ∈ I ⇒ Ψ(S) < 0
(ii) S ∈ U ⇒ Ψ(S) > 0
(iii) Ψ(S) = 0 ⇒ LfΨ(S) < 0

Here, LfΨ is the Lie derivative, the directional derivative
of the function Ψ along the vector field f , computed
from each coordinate of the state vector S: Lf (S) =
Σs∈S(∂Ψ/∂s)f(s). Condition (iii) is similar to the induc-
tive step in the discrete case, ensuring that solutions on
the zero level set of the barrier function must flow inward.
The correctness of barrier certificates is justified by the
continuity of solutions. Solutions must start inside the
barrier due to condition (i), and cannot reach an unsafe
state which must be outside of the barrier due to condition
(ii), because they would have the pass through the barrier,
which is impossible due to condition (iii). More details are
available in (Alur, 2015, Theorem 6.6).

In this paper, we seek continuous and hybrid analogs to
k-induction. The main modification is to condition (iii),
where time-bounded reachability analysis of some duration
t is used as a replacement for the condition in k-induction
that P is true for k steps.

The theory and soundness of t-barrier certificates is dis-
cussed in Section 2. We then apply the approach in to
a harmonic oscillator example, which has nonlinear dy-
namics and trajectories that converge to a limit cycle in
Section 3. Section 4 then contains discussion of related
work, followed by a conclusion.

2. THEORY

We first develop three versions of t-barrier certificates for
continuous systems and then describe a hybrid extension.



2.1 Continuous Systems

As in the introduction, assume we are working with an
n-dimensional continuous system with variables S ∈ Rn,
Lipschitz continuous dynamics Ṡ = f(S), initial set I, and
unsafe set U . Since the dynamics are Lipschitz, solutions
exist, are unique, and are continuous. Let ξ(S, t) be the
solution to the ODEs which starts at state S after t time
has elapsed. The system is said to be safe or verified as
safe if there are no solution from a state in the initial set
to a state in the unsafe set. That is, there is no S ∈ I and
t ∈ R≥0, such that ξ(S, t) ∈ U . Since solutions are unique,
we can consider them in reverse time, where if ξ(S, t) = S′

then we can write the backwards solution ξ−1(S′, t) = S.

The method of t-barrier certificates is similar to k-
induction except it uses continuous solutions rather than
incrementing a discrete index. Further, the contrapositive
condition is used in the inductive step, since this makes the
condition easier to check by using reachability analysis, as
will be shown later. For example, with k = 2, the inductive
step P (n)∧P (n+1)⇒ P (n+2) has a logically equivalent
contrapositive condition ¬P (n+ 2)⇒ ¬P (n+ 1)∨¬P (n).
The method can be used to prove safety of continuous
systems.

Theorem 1. (t-Barrier Certificates).
Given a smooth barrier function Ψ : Rn → R and
nonnegative time t, a continuous system is safe if:

(i) S ∈ I ∧ t′ ≤ t ⇒ Ψ(ξ(S, t′)) < 0
(ii) S ∈ U ⇒ Ψ(S) > 0
(iii) Ψ(S) = 0 ∧ LfΨ(S) ≥ 0 ⇒ ∃t′≤tΨ(ξ−1(S, t′)) > 0

Proof. Assume by contradiction that a t-barrier certifi-
cate exists but the system is not safe. Since solutions are
continuous, and the initial states are inside the barrier
while the unsafe states are outside, the barrier must be
crossed. Further, there must be a first time this occurs.
Call the state where this happens S, which is reached at
time tc and comes from some initial state I ∈ I, so that
ξ(I, tc) = S and Ψ(S) = 0. Since this is the first time
the barrier is crossed, for all times before tc the solution
is inside the barrier, ∀tb<tcΨ(ξ(I, tb)) < 0. Since S is on
the barrier, Ψ(S) = 0, and further since the barrier is
crossed, LfΨ(S) ≥ 0, the antecedent from condition (iii)
is true, and so ∃t′≤tΨ(ξ−1(S, t′)) > 0. We can combine the
solution times in the forwards and backwards directions
so ξ−1(S, t′) = ξ(I, tc − t′). Notice that tc − t′ > 0
because t′ ≤ t and for condition (i) to be true, it must
be that tc > t. However, if we let tb = tc − t′, we get
that both Ψ(ξ(I, tb)) < 0 and Ψ(ξ(I, tb)) > 0, which is a
contradiction. Thus, the existence of a t-barrier certificate
proves system safety.

A modified version of t-barrier certificates is also possi-
ble, where rather than checking condition (i) for some
time bound, the backwards solutions in condition (iii)
are checked to ensure that they do not contain initial
states. This makes the first two conditions identical to the
traditional barrier certificate case.

Theorem 2. (Modified t-Barrier Certificates).
Given barrier function Ψ and nonnegative time t, a con-
tinuous system is safe if:

(i) S ∈ I ⇒ Ψ(S) < 0
(ii) S ∈ U ⇒ Ψ(S) > 0
(iii) Ψ(S) = 0 ∧ LfΨ(S) ≥ 0 ⇒ ∃t′≤tΨ(ξ−1(S, t′)) > 0

∧ ∀t′′≤t′ξ−1(S, t′′) /∈ I

Proof. Assume by contradiction that a modified t-barrier
certificate exists but the system is not safe. Since solutions
are continuous, the barrier must be crossed a first time.
Call the state where this happens S, which is reached
at time tc and comes from some initial state I ∈ I,
so that ξ(I, tc) = S and Ψ(S) = 0. Since this is the
first time the barrier is crossed, for all times before tc
the solution is inside the barrier, ∀tb<tcΨ(ξ(I, tb)) < 0.
Since the barrier is crossed at time tc, LfΨ(S) ≥ 0,
and so the first part of the consequent of condition (iii)
gives ∃t′≤tΨ(ξ−1(S, t′)) > 0. Now, the value tc − t′ is
either nonpositive or positive. In the nonpositive case,
tc ≤ t′, and so by the second part from condition (iii),
ξ−1(S, tc) /∈ I. However, ξ−1(S, tc) = I, and I ∈ I,
which is a contradiction. Thus, tc − t′ is positive, and
we can combine the solution times in the forwards and
backwards directions so ξ−1(S, t′) = ξ(I, tc−t′). As before,
if we take tb = tc − t′, we get that both Ψ(ξ(I, tb)) < 0
and Ψ(ξ(I, tb)) > 0, which is a contradiction. Thus, the
existence of a modified t-barrier certificate also verifies the
system as safe.

To check condition (iii) in either case, time-bounded reach-
ability analysis can be used. In particular, we need to
first find all the states where the left-hand side is true,
Ψ(S) = 0∧LfΨ(S) ≥ 0. This can be done using symbolic
reasoning and a satisfiability modulo theory (SMT) solver.
Next, using this set of states as an initial set, a reachability
tool can perform a backwards reachability computation,
checking that t time cannot elapse without leaving the bar-
rier. This consists of setting the dynamics to Ṡ = −f(S)
(to get backwards reachability), adding a clock variable
c initialized to zero, and setting the mode’s invariant to
be the barrier condition Ψ(S) ≤ 0. If there are no states
where c = t is reachable, then condition (iii) is true. For
the modified t-barrier certificate condition, an additional
check is added to see if a state S ∈ I is reachable.

Rather than looking at states backwards reachable from
the barrier and making sure they originated from outside,
an alternative formulation would be to look at forward
reachable states from the boundary, and ensure they
always go back inside the barrier. In this case, we must
check that while outside the barrier, no unsafe states are
reached. This replaces the check in condition (iii) that no
initial states are backwards reachable.

Theorem 3. (Forward t-Barrier Certificates).
Given barrier function Ψ and nonnegative time t, a con-
tinuous system is safe if:

(i) S ∈ I ⇒ Ψ(S) < 0
(ii) S ∈ U ⇒ Ψ(S) > 0
(iii) Ψ(S) = 0 ∧ LfΨ(S) ≥ 0 ⇒ ∃t′≤tΨ(ξ(S, t′)) < 0

∧ ∀t′′≤t′ξ(S, t′′) /∈ U

Proof. Once more, assume by contradiction that a for-
ward t-barrier certificate exists but the system is not safe.
There must exist some initial state I and time tu such that
ξ(I, tu) ∈ U . Since solutions are continuous, the barrier



must be crossed before an unsafe state is reached. Call the
state where the barrier is touched for the last time along
the unsafe solution S, and the time when this happens tc
which is less than tu, so that ξ(S, tu − tc) ∈ U . Since S is
on the barrier, Ψ(S) = 0, and the solution after S must
be on the outside of the barrier, LfΨ(S) ≥ 0, and so the
antecedent of condition (iii) is true. From the first part
of the consequent of condition (iii), ∃t′≤tΨ(ξ(S, t′)) < 0.
Either tf−tc ≤ t′ or tf−tc > t′. In the first case where tf−
tc ≤ t′, the second part from the consequent of condition
(iii) can be applied, replacing t′′ with tf − tc. This gives
ξ(S, tf − tc) /∈ U , which contradicts the earlier information
that ξ(S, tu− tc) ∈ U . In the other case, tf − tc > t′. Since
Ψ(ξ(S, t′)) < 0, the solution must be inside the barrier
at time t′ before tf − tc. Due to continuity of solutions,
the barrier must be crossed again after t′ in order to get
to an unsafe state. This contracts the assumption that tc
is the last time the barrier is touched before reaching an
unsafe state. Since both cases lead to a contradiction, it is
impossible for a forward t-barrier to exist and the system
to be unsafe.

The t part of the t-barrier certificates is really only used
to provide a bound on t′, and is not really necessary for
the formal proofs of soundness. Practically, though, having
a time bound is useful to ensure reachability analysis
will eventually terminate and an answer will be obtained.
Similarly, k-induction could be soundly used by saying
there exists some k where the base and inductive cases
hold, but in practice, a concrete value is used which may
be incremented if the system proof does not succeed.

Notice that in the case where t = 0, the check for
the various versions of t-barrier certificates is identical
to traditional barrier certificates. This is because the
consequent of condition (iii) is always false when t′ = 0,
and so the check has to ensure that antecedent LfΨ(S) ≥
0 can never be true, which is the traditional barrier
certificate condition. This also means that a larger class
of functions can be used for t-barrier certificates, because
every traditional barrier certificate is also a t-barrier
certificate.

2.2 Hybrid Systems

A hybrid system is defined by

(1) Modes: a finite set of discrete elements, each of which
we call a mode;

(2) Var = (x1, . . . , xn): a list of real-valued variables;
(3) Init(`) ⊆ Rn: a bounded set of initial values for Var

for each mode ` ∈ Modes;
(4) Unsafe(`) ⊆ Rn: a bounded set of unsafe values for

Var for each mode ` ∈ Modes;
(5) for each ` ∈ Modes, dynamics are defined of the form

ẋ = f`(x), where f` is Lipschitz continuous;
(6) Trans: a set of discrete transitions, each of which is

a 4-tuple (`, γ, υ, `′), where ` and `′ are the source
and the target modes, γ ⊆ Rn is the guard, and
υ : Rn → Rn is the state update function for the
transition;

(7) Inv(`) ⊆ Rn: an invariant for each mode ` ∈ Modes.

In a hybrid system, a state σ is a tuple (`, x). A state
(`′,x′) is a continuous successor of another state (`,x) if

`′ = ` and there exists a positive time t such that ξ`(x, t) =
x′ and for all δ ∈ [0, t): ξ`(x, δ) ∈ Inv(`). Here, ξ` is
the ODE solution to f`, the dynamics in mode `. A state
(`,x′) is a discrete successor of another state (`,x) if there
exists a transition (`, γ, υ, `′) ∈ Trans such that x ∈ γ and
υ(x) = x′. A time-bounded execution of a hybrid system
is defined by a finite sequence of states (s0, s1, . . . , sm).
Each si+1 is either a continuous or discrete successor of
si. We assume executions combine consecutive continuous
successors into a single step, so that the sequence does not
arise from two repeated continuous successor actions with
no discrete successor in between. We further assume the
hybrid system does not contain Zeno behaviors, where the
number of discrete successors can be unbounded in a finite-
time execution. A hybrid system is safe if no execution
starts at an initial state and ends at an unsafe state.

Safety can be proven using hybrid t-barrier certificates.
We present the forward version, since forward reachability
is easier to compute for a hybrid automaton due to the
possibility of non-invertible discrete transitions.

Theorem 4. (Hybrid Forward t-Barrier Certificates).
Given a set of barrier functions indexed by the hybrid
system’s mode Ψ` and nonnegative time t, a hybrid system
is safe if:

(i) x ∈ Init(`) ⇒ Ψ`(x) < 0
(ii) x ∈ Unsafe(`) ⇒ Ψ`(x) > 0
(iii) Ψ`(x) = 0 ∧ Lf`Ψ`(x) ≥ 0 ⇒ ∃t′≤tΨ`(ξ`(x, t

′)) < 0
∧ ∀t′′≤t′ξ`(x, t′′) /∈ Unsafe(`)

(iv) x ∈ γ ⇒ Ψ`(x) < 0 ∧
Ψ`′(υ(x)) < 0

Proof. The proof is by contradiction. If the system is
unsafe, there is an execution that goes from an initial
state to an unsafe state. We can proceed by induction on
the sequence of successors in the execution to show it is
actually impossible to reach an unsafe state, by showing
that for each state in the sequence Ψ`(x) < 0. In the
first state in the unsafe execution, an initial state of the
hybrid system, this is true because of condition (i). In the
inductive case, first consider the continuous successor case,
where (`,x′) is a continuous successor of (`,x). Either
this is the last pair in the sequence, or the next pair
corresponds to a discrete successor because continuous
successors must be combined into a single action. If the
next pair is a discrete successor, then x′ ∈ γ, and so
condition (iv) results in what is needed Ψ`(x

′) < 0. If
this is the last pair in the sequence, then the situation is
similar to in the continuous forward t-barrier certificates
proof (the system can not go from inside the barrier to
outside due to continuity of the solution). Finally, in the
discrete successor case, (`′,x′) is a discrete successor of
(`,x). Here x ∈ γ, which means from condition (iv) we get
Ψ′`(x

′) < 0 as needed. Thus, every state in the sequence
has Ψ`(x) < 0, which contradicts the assumption that the
execution ends in an unsafe state, and so the hybrid system
is proved as safe.

Condition (iv) ensures that discrete successor actions
must both start and end in states inside the barrier.
Although sound, this is probably a bit more restrictive
than necessary, as we could imagine situations where
guards and updates could be outside the barrier and the



system is still safe. A different check could be used for
this case, where executions must eventually go back into
the barrier region without reaching the unsafe states in
the intermediate time, similar to what is done in the
continuous case.

3. EXAMPLE AND IMPLEMENTATION

Although theoretically interesting by itself, safety proofs
using t-barrier certificates can also be practically per-
formed. Consider a 2-d Van der Pol oscillator system,
with ẋ = y and ẏ = (1.0 − x2)y − x. Solutions to this
system approach a limit cycle but do not converge to the
origin. Let the initial states be x ∈ [−1, 1], y ∈ [−1, 1],
and the unsafe states be y ≥ 3.1. We use a t-barrier
function which is a circle of radius 3, Ψ(x, y) = x2+y2−9,
with t = 5. Along the barrier when Ψ(x, y) = 0, the Lie
derivative takes both positive and negative values, and so
a traditional barrier certificate would not work. A plot of
the situation is shown in Figure 1.

Our implementation takes as input the system dynamics
and the proposed t-barrier certificate data. Using sympy,
a Python library for symbolic mathematics described by
Meurer et al. (2017), the Lie derivative is computed as
LfΨ(x, y) = y2(2 − 2x2). Then, a series of SMT calls is
used to identify the regions where the Lie derivative is
nonnegative along the barrier. The z3py Python-language
interface to the Z3 tool, from De Moura and Bjørner
(2008), was used for this process.

Multiple calls to Z3 can be used to quickly maximize
(or minimize) a bounded continuous function subject to
constraints up to some tolerance. This is done by first
finding a satisfiable value of the function, then adding
a constraint that the function takes a slightly larger
value, and increasing this value exponentially until the
constraints can no longer be met. Then, a second phase
does a binary search between the largest function value
where the constraints were found satisfiable and the larger
value where the constraints are not satisfiable, up to the
desired tolerance.

This process was used to first maximize the value of the
Lie derivative constrained with the condition that a point
is along the barrier, Ψ(x, y) = 0. If the maximum is non-
negative, further calls to Z3 are used to create a rectangle
that covers the region of space where the Lie derivative
is nonnegative. Rectangles are used because they can be
accepted as initial states for reachability analysis tools.
The rectangles are computed by using the minimization
process described above, finding the minimum radius such
that a circle centered at the maximum Lie derivative point
intersects the barrier only at points with negative Lie
derivative. A rectangle is then constructed to cover the
intersection of the interior of the circle and zero level set
of the barrier function by maximizing and minimizing in
each dimension, subject to the constraints imposed by
the intersection conditions between the barrier and circle
interior. In the next iteration of the loop, a condition is
added so that maximum Lie derivative point must exclude
the region inside the rectangle. The process then repeats,
maximizing the Lie derivative again to obtain the next
rectangle. When the maximum Lie derivative found is neg-

Fig. 1. The Van der Pol system contains derivatives along
the barrier that are both inward oriented (negative Lie
derivative, large green circles) and outward oriented
(nonnegative Lie derivative, small red circles).

ative, the process terminates and all covering rectangles
have been found.

For the Van der Pol system, this process automatically
identifies four rectangles that cover the regions where the
Lie derivative is nonnegative within a few seconds. The
implementation outputs the following information:

max Lie der is 18.0 at [0.0, -3.0]
circle radius: 1.01466115109
Rect: [(-1.0001, 1.0001), (-3.0001, -2.8283)]

max Lie der is 18.0 at [0.0, 3.0]
circle radius: 1.01466115109
Rect: [(-1.0001, 1.0001), (2.8283, 3.0001)]

max Lie der is 0.0 at [-3.0, 0.0]
circle radius: 0.01
Rect: [(-3.0001, -2.9999), (-0.0100, 0.0100)]

max Lie der is 0.0 at [3.0, 0.0]
circle radius: 0.01
Rect: [(2.9999, 3.0001), (-0.0100, 0.0100)]

max Lie der is -0.0016 at [-2.9999, -0.0101]
Found all rectangles to remove (count: 4)

The check in step (iii) can now be performed using
reachability analysis. We use the hypy library from Bak
et al. (2016) which allows Python code to interface with
a reachability tool by using the Hyst tool from Bak
et al. (2015). We construct a model with the reverse
dynamics (for backward reachability), an initial set of
states equal to one of the rectangles that was found, an
invariant that Ψ(x, y) ≤ 0, and an extra clock variable
to check that the invariant cannot remain true for t time.
Since the system and invariants are nonlinear, we use the
nonlinear reachability tool Flow* from Chen et al. (2013).
Unfortunately, for large initial states the tool experiences
overapproximation error explosion rather than proving
the property. This is different than in the discrete case,



Fig. 2. The backward reachable states (blue) from the
nonnegative Lie derivative barrier states (red) even-
tually leave the interior of the barrier without touch-
ing initial states, demonstrating condition (iii) of the
modified t-barrier certificate method.

where the successors in an inductive proof could always be
computed exactly. To resolve this, we split the rectangle
along the biggest dimension and recursively try Flow* with
the smaller initial states until the property is provable.

The backreachable states computed by Flow* are shown in
Figure 2. Since the backreachable states always leave the
barrier without intersecting the initial states, condition
(iii) of the modified t-barrier certificate method is true,
and the system is proven as safe. The computation time
was about six minutes, with the majority spent performing
reachability computation.

We also could try to prove the system safe using forward
t-barrier certificates. The plots of the forward reachable
states are shown in Figure 3. In this case, significantly
less splitting was needed, and the whole process took
about 30 seconds. Forward reachable states do eventually
re-enter the barrier, as needed in the first part of the
consequent of condition (iii). However, they do so while
entering an unsafe state (y ≥ 3.1), making second part of
the consequent of condition (iii) false, and so the forward
t-barrier certificate method does not prove safety of the
system. If the unsafe states were different, for example
x ≥ 3.1 instead of y ≥ 3.1, either method would work.

This illustrates a difference between how the approaches
prove safety. Informally, the backreach version constructs
an invariant region by starting with the barrier and sub-
tracting states from inside the barrier that must have orig-
inated from the outside. In contrast the forward version
starts with the barrier and adds states that are outside
but eventually must go back inside.

The proposed t-barrier certificate function, a circle, is
significantly simpler than would be necessary for the tra-
ditional barrier certificate method. This is similar to what
is observed empirically in discrete systems when using k-
induction compared with direct inductive invariants.

Fig. 3. The forward reachable states (blue) from the
nonnegative Lie derivative barrier states (red) contain
unsafe states, so condition (iii) of the forward t-barrier
certificate method is not met, and safety is not proven.

We used manually tuned parameters when running Flow*,
in this case a time step of 0.025, Taylor model order 4,
and remainder estimate 0.01. The accuracy and runtime
depends strongly on these parameters, and so automated
tuning approaches for parameters, as in Bak et al. (2016),
are needed to further automate the process. The success
of the approach depends on having a sufficiently powerful
reachability analysis method, which depends on factors
such as the number and size of the region where the
Lie derivative is nonnegative and the complexity of the
dynamics.

4. RELATED WORK

An outline of various proposed versions of barrier certifi-
cates, and discussion of their soundness and completeness
is provided in Taly and Tiwari (2009). The methods we
presented are similar to some of the incomplete methods
described there, as we do not look at higher order Lie
derivatives when the first Lie derivative is zero. However,
we can still verify the system in these cases by leveraging
reachability analysis.

Extensions to barrier certificates have been proposed to
handle hybrid systems in Prajna and Jadbabaie (2004),
stochastic systems in Prajna et al. (2007), compositional
analysis in Sloth et al. (2012), and versions which take
into account numerical error and use multiple barrier
functions in Dai et al. (2017). Although this paper focused
on deterministic dynamics, we imagine similar extensions
for t-barrier certificates are also possible.

The forward t-barrier certificate method is similar to an
approach used to create sandboxes for continuous con-
trollers so that they avoid unsafe states in Bak et al.
(2014). There, offline analysis was used to create essen-
tially a barrier function, and the system was allowed to
leave this region only if, online, one could prove that
the system would eventually re-enter the barrier without
reaching an unsafe state.



The difficulty with barrier certificates is often discovering
the barrier function Ψ, which we did not focus on in this
paper. For linear systems, sum-of-squares approaches can
be used, similar to methods for generating Lyapunov func-
tions as in Parrilo (2000). For polynomial systems, sum-of-
squares decomposition can be combined with semidefinite
programming as in Vandenberghe and Boyd (1996) to
create barrier certificates that are polynomial with respect
to the state dimension. Nonpolynomial dynamics may
be handled using iterating polynomial approximations as
in Papachristodoulou and Prajna (2002). As these ap-
proaches are iterative, it is worth investigating if t-barrier
certificates could use the same methods with a smaller
number of iterations than what is needed for traditional
barrier certificates, using reachability analysis to fill in
areas where the strict barrier condition is violated. Alter-
native approaches for finding candidate barrier functions
run simulations and use machine learning classification, as
described in Kozarev et al. (2016).

5. CONCLUSION

We have proposed four versions of t-barrier certificates
and proven they can be used to show the safety of
continuous and hybrid systems. Safety can be proven using
either forwards or backwards reachability analysis, and we
applied both to a nonlinear Van der Pol system.

The t-barrier certificate approach makes use of both sym-
bolic methods and computational reachability analysis
techniques, with the trade-off being controlled by the
choice of the barrier function Ψ. With a Ψ that works as a
traditional barrier certificate, the difficulty is pushed en-
tirely onto the symbolic computation and no reachability
analysis is needed. On the other extreme, using a barrier
function where the zero level set is equal to the unsafe
states (in the backreach version) would place maximal
burden on the reachability analysis approach to show that
no initial states can get there. For the forward version,
the equivalent extreme setup is to have the zero level set
of Ψ equal to the initial states, and then ensuring that
no unsafe states can be reached would depend entirely on
reachability methods. In this sense, t-barrier certificates
can be seen as an elegant bridge between symbolic and
computational methods for system verification.

REFERENCES

Alur, R. (2015). Principles of cyber-physical systems. MIT
Press.

Bak, S., Bogomolov, S., and Johnson, T.T. (2015). HyST:
A source transformation and translation tool for hybrid
automaton models. In 18th International Conference
on Hybrid Systems: Computation and Control (HSCC
2015). ACM, Seattle, Washington.

Bak, S., Bogomolov, S., and Schiling, C. (2016). High-level
hybrid systems analysis with hypy. In 3rd International
Workshop on Applied Verification of Continuous and
Hybrid Systems, EPiC Series in Computing. EasyChair.

Bak, S., Johnson, T.T., Caccamo, M., and Sha, L. (2014).
Real-time reachability for verified Simplex design. In
35th IEEE Real-Time Systems Symposium. IEEE Com-
puter Society, Rome, Italy.

Chen, X., Abraham, E., and Sankaranarayanan, S. (2013).
Flow*: An analyzer for non-linear hybrid systems. In In-
ternational Conference on Computer Aided Verification
(CAV).

Dai, L., Gan, T., Xia, B., and Zhan, N. (2017). Barrier
certificates revisited. Journal of Symbolic Computation,
80(P1), 62–86.

De Moura, L. and Bjørner, N. (2008). Z3: An efficient smt
solver. Tools and Algorithms for the Construction and
Analysis of Systems, 337–340.

De Moura, L., Rueß, H., and Sorea, M. (2003). Bounded
model checking and induction: From refutation to veri-
fication. Lecture notes in computer science, 14–26.

Donaldson, A.F., Haller, L., Kroening, D., and Rümmer,
P. (2011). Software verification using k-induction. In
SAS, volume 11, 351–368. Springer.

Kozarev, A., Quindlen, J., How, J., and Topcu, U. (2016).
Case studies in data-driven verification of dynamical
systems. In Proceedings of the 19th International Con-
ference on Hybrid Systems: Computation and Control,
81–86. ACM.

Meurer, A., Smith, C.P., Paprocki, M., Čert́ık, O., Kir-
pichev, S.B., Rocklin, M., Kumar, A., Ivanov, S., Moore,
J.K., Singh, S., et al. (2017). Sympy: symbolic comput-
ing in python. PeerJ Computer Science, 3, e103.

Papachristodoulou, A. and Prajna, S. (2002). On the
construction of lyapunov functions using the sum of
squares decomposition. In Decision and Control, 2002,
Proceedings of the 41st IEEE Conference on, volume 3,
3482–3487. IEEE.

Parrilo, P.A. (2000). Structured semidefinite programs
and semialgebraic geometry methods in robustness and
optimization. Ph.D. thesis, California Institute of Tech-
nology.

Prajna, S. (2003). Barrier certificates for nonlinear model
validation. In Decision and Control, 2003. Proceedings.
42nd IEEE Conference on, volume 3, 2884–2889. IEEE.

Prajna, S. (2006). Barrier certificates for nonlinear model
validation. Automatica, 42(1), 117–126.

Prajna, S. and Jadbabaie, A. (2004). Safety verification
of hybrid systems using barrier certificates. In HSCC,
volume 2993, 477–492. Springer.

Prajna, S., Jadbabaie, A., and Pappas, G.J. (2007). A
framework for worst-case and stochastic safety verifica-
tion using barrier certificates. IEEE Transactions on
Automatic Control, 52(8), 1415–1428.

Sheeran, M., Singh, S., and St̊almarck, G. (2000). Check-
ing safety properties using induction and a sat-solver.
In International conference on formal methods in
computer-aided design, 127–144. Springer.

Sloth, C., Pappas, G.J., and Wisniewski, R. (2012). Com-
positional safety analysis using barrier certificates. In
Proceedings of the 15th ACM international conference
on Hybrid Systems: Computation and Control, 15–24.
ACM.

Taly, A. and Tiwari, A. (2009). Deductive verification of
continuous dynamical systems. In LIPIcs-Leibniz Inter-
national Proceedings in Informatics, volume 4. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

Vandenberghe, L. and Boyd, S. (1996). Semidefinite
programming. SIAM review, 38(1), 49–95.


