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Abstract: This paper is concerned with a compositional approach for constructing finite
abstractions (a.k.a. finite Markov decision processes) of interconnected discrete-time stochastic
control systems. The proposed framework is based on a notion of so-called stochastic simulation
function enabling us to use an abstract system as a substitution of the original one in the
controller design process with guaranteed error bounds. In the first part of the paper, we
derive sufficient small-gain type conditions for the compositional quantification of the distance
in probability between the interconnection of stochastic control subsystems and that of their
(finite or infinite) abstractions. In the second part of the paper, we construct finite abstractions
together with their corresponding stochastic simulation functions for the class of linear stochastic
control systems. We apply our results to the temperature regulation in a circular building by
constructing compositionally a finite abstraction of a network containing 1000 rooms. We use the
constructed finite abstractions as substitutes to synthesize policies compositionally regulating
the temperature in each room for a bounded time horizon.
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1. INTRODUCTION

Despite being present in many application domains, large-
scale interconnected systems are inherently difficult to an-
alyze and control. Here, we will leverage decomposition and
abstraction as two key tools to tackle the aforementioned
difficulty, by either breaking the design and analysis object
into semi-independent parts or by aggregating states and
eliminating unnecessary details. Employing abstractions
of subsystems as a replacement is a promising approach
in the controller design process. These abstractions allow
us to design controllers for them, and then refine the
controllers to the ones for the concrete subsystems, while
providing quantified errors for the overall interconnected
system in this controller synthesis detour. In particular,
construction of finite abstractions was introduced in recent
years as a method to reduce the complexity of controller
synthesis problems particularly for enforcing complex log-
ical properties. Finite abstractions are approximate de-
scriptions of the continuous-space control systems in which
each discrete state corresponds to a collection of contin-
uous states of the original system. Since the abstractions
are finite, algorithmic machineries from computer science
are applicable to synthesize controllers enforcing complex
properties, e.g. expressed as temporal logic formulae, over
concrete systems.

In the past few years, there have been several results
on the construction of (in)finite abstractions for stochas-
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tic systems. Existing results for continuous-time stochas-
tic systems include infinite approximation techniques for
jump-diffusion systems (Julius and Pappas (2009)), finite
bisimilar abstractions for incrementally stable stochas-
tic switched systems (Zamani et al. (2015)), randomly
switched stochastic systems (Zamani and Abate (2014)),
and stochastic control systems without discrete dynam-
ics (Zamani et al. (2014)). Recently, compositional con-
struction of infinite abstractions (reduced order models)
is discussed in (Zamani et al. (2017)) for jump-diffusion
systems using small-gain type conditions.

For discrete-time stochastic models with continuous state
spaces, construction of finite abstractions is initially pro-
posed in (Abate et al. (2008)) for formal verification and
synthesis. The construction algorithms are improved in
terms of scalability in (Soudjani and Abate (2013)). Ex-
tension of such techniques to infinite horizon properties
is proposed in (Tkachev and Abate (2011)) and formal
abstraction-based policy synthesis is discussed in (Tkachev
et al. (2013)). Recently, compositional construction of fi-
nite abstractions is discussed in (Soudjani et al. (2015a))
using dynamic Bayesian networks, and infinite abstrac-
tions (reduced order models) in (Lavaei et al. (2017))
and (Lavaei et al. (2018a)) using small-gain type con-
ditions and dissipativity-type properties of subsystems
and their abstractions, respectively, both for discrete-
time stochastic control systems. Our proposed approach
extends the abstraction techniques in (Soudjani et al.
(2015a)) from verification to synthesis, by proposing a
different quantification of the abstraction error and lever-



aging small-gain type conditions. Although the results
in (Lavaei et al. (2017)) deal only with infinite abstrac-
tions which might not be amenable to the algorithmic
controller synthesis procedures, our proposed approach
here considers finite abstractions which are the main tools
for automated synthesis of controllers for complex logical
properties.

Our main contribution is to provide a compositional ap-
proach for the construction of finite abstractions of inter-
connected discrete-time stochastic control systems. The
proposed technique leverages sufficient small-gain type
conditions to establish the compositionality results. In par-
ticular, it relies on a relation between each subsystem and
its abstraction characterized by the existence of stochastic
simulation functions. These types of relations enable us
to quantify the error in probability between the intercon-
nection of concrete subsystems and that of their finite ab-
stractions. In addition, we show constructively how to syn-
thesize finite abstractions of stabilizable linear stochastic
control subsystems. We illustrate the effectiveness of our
results by regulating temperatures in a circular building
containing 1000 rooms. We leverage the constructed finite
abstractions as substitutes to synthesize policies compo-
sitionally regulating the temperature in each room for a
bounded time horizon. Proofs of statements are omitted
due to space limitations.

Related work. Compositional construction of finite ab-
stractions for interconnected discrete-time stochastic con-
trol systems is also proposed recently in (Lavaei et al.
(2018b)), but using a different compositionality scheme
based on dissipativity theory. In general, the proposed
compositional synthesis approach here is much less con-
servative than the one proposed in (Lavaei et al. (2018b))
(see case study at the end) since the overall approximation
error is computed based on the maximum of the errors of
subsystems instead of their linear combinations which is
the case in (Lavaei et al. (2018b)).

2. DISCRETE-TIME STOCHASTIC CONTROL
SYSTEMS

2.1 Notation

We denote the set of nonnegative integers by N :=
{0, 1, 2, . . .} and the set of positive integers by N≥1 :=
{1, 2, 3, . . .}. The symbols R, R>0, and R≥0 denote the
set of real, positive and nonnegative real numbers, re-
spectively. Given N vectors xi ∈ Rni , ni ∈ N≥1, and
i ∈ {1, . . . , N}, we use x = [x1; . . . ;xN ] to denote the
corresponding vector of dimension

∑
i ni. Given a vector

x ∈ Rn, ‖x‖ denotes the infinity norm of x. Symbols In
and 1n denote respectively the identity matrix in Rn×n
and the column vector in Rn×1 with all elements equal to
one. The identity function and composition of functions
are denoted by id and symbol ◦, respectively. We denote by
diag(a1, . . . , aN ) a diagonal matrix in RN×N with diagonal
matrix entries a1, . . . , aN starting from the upper left cor-
ner. Given functions fi : Xi → Yi, for any i ∈ {1, . . . , N},
their Cartesian product

∏N
i=1 fi :

∏N
i=1Xi →

∏N
i=1 Yi is

defined as (
∏N
i=1 fi)(x1, . . . , xN ) = [f1(x1); . . . ; fN (xN )].

For any set A we denote by AN the Cartesian product of
a countable number of copies of A, i.e., AN =

∏∞
k=0A. A

function γ : R≥0 → R≥0, is said to be a class K function if
it is continuous, strictly increasing, and γ(0) = 0. A class

K function γ(·) is said to be a class K∞ if γ(r) → ∞ as
r →∞.

2.2 Discrete-Time Stochastic Control Systems

We consider stochastic control systems in discrete time
(dt-SCS) defined by the tuple

Σ=(X,U,W, ς, f, Y, h), (1)

where X ⊂ Rn is a Borel space as the state space
of the system. We denote by (X,B(X)) the measurable
space with B(X) being the Borel sigma-algebra on the
state space. Sets U ⊂ Rm and W ⊂ Rp are Borel
spaces as the external and internal input spaces of the
system. Notation ς denotes a sequence of independent
and identically distributed (i.i.d.) random variables from
a sample space Ω to the set Vς ,

ς := {ς(k) : Ω→ Vς , k ∈ N}.
The map f : X×U×W×Vς → X is a measurable function
characterizing the state evolution of the system. Finally,
set Y ⊂ Rq is a Borel space as the output space of the
system. Map h : X → Y is a measurable function that
maps a state x ∈ X to its output y = h(x).

For given initial state x(0) ∈ X and input sequences
ν(·) : N → U and w(·) : N → W , evolution of the state of
dt-SCS Σ can be written as

Σ :

{
x(k + 1) = f(x(k), ν(k), w(k), ς(k))
y(k) = h(x(k))

k ∈ N. (2)

Given the dt-SCS in (1), we are interested in Markov
policies to control the system.

Definition 1. A Markov policy for the dt-SCS Σ in (1) is
a sequence ρ = (ρ0, ρ1, ρ2, . . .) of universally measurable
stochastic kernels ρn (Bertsekas and Shreve (1996)), each
defined on the input space U given X ×W and such that
for all (xn, wn) ∈ X ×W , ρn(U |(xn, wn)) = 1. The class
of all such Markov policies is denoted by ΠM .

We associate respectively to U and W the sets U and W
to be collections of sequences {ν(k) : Ω → U, k ∈ N}
and {w(k) : Ω → W, k ∈ N}, in which ν(k) and w(k)
are independent of ς(t) for any k, t ∈ N and t ≥ k. For
any initial state a ∈ X, ν(·) ∈ U , and w(·) ∈ W, the
random sequences xaνw : Ω × N → X, yaνw : Ω × N → Y
satisfying (2) are called respectively the solution process
and output trajectory of Σ under external input ν, internal
input w and initial state a.

In this paper we are interested in studying interconnected
discrete-time stochastic control systems without internal
input that result from the interconnection of dt-SCS
having both internal and external inputs. In this case, the
interconnected dt-SCS without internal input is indicated
by the simplified tuple (X,U, ς, f, Y, h) with f : X × U ×
Vς → X.

System Σ is called finite if X,U,W are finite sets and
infinite otherwise. We discuss construction of finite dt-SCS
as abstractions of infinite ones in the following subsection.

2.3 Finite Abstractions of dt-SCS

A dt-SCS defined in (1) can be equivalently represented as
a general Markov decision process (gMDP). This alterna-
tive representation is utilized in (Soudjani et al. (2015a);
Haesaert et al. (2017)) to abstract a dt-SCS Σ to a finite



dt-SCS Σ̂. The abstraction algorithm is based on finite
partitions of sets X = ∪iXi, U = ∪iUi, and W = ∪iWi,
and selection of representative points x̄i ∈ Xi, ν̄i ∈ Ui, and
w̄i ∈Wi as abstract states and inputs.

Given a dt-SCS Σ=(X,U,W, ς, f, Y, h), its finite abstract

dt-SCS Σ̂ can be represented as

Σ̂ = (X̂, Û , Ŵ , ς, f̂ , Ŷ , ĥ), (3)

where X̂ = {x̄i, i = 1, . . . , nx}, Û = {ūi, i = 1, . . . , nu},
Ŵ = {w̄i, i = 1, . . . , nw} are the sets of selected represen-

tative points. Function f̂ : X̂× Û×Ŵ ×Vς → X̂ is defined
as

f̂(x̂, ν̂, ŵ, ς) = Πx(f(x̂, ν̂, ŵ, ς)), (4)

where Πx : X → X̂ is the map that assigns to any x ∈ X,
the representative point x̂ ∈ X̂ of the corresponding

partition set containing x. The output map ĥ is the same
as h with its domain restricted to finite state set X̂ and the
output set Ŷ is just the image of X̂ under h. The initial

state of Σ̂ is also selected according to x̂0 := Πx(x0) with
x0 being the initial state of Σ.

Remark 2. Abstraction map Πx used in (4) satisfies the
inequality

‖Πx(x)− x‖≤ δ, ∀x ∈ X, (5)
where δ is the state discretization parameter defined as
δ := sup{‖x − x′‖, x, x′ ∈ Xi, i = 1, 2, . . . , nx}. This
inequality will be used in Section 5 for compositional
construction of finite dt-SCSs. Let us similarly define the
abstraction map Πw : W → Ŵ on W that assigns to any
w ∈ W representative point ŵ ∈ Ŵ of the corresponding
partition set containing w. This map also satisfies

‖Πw(w)− w‖≤ µ, ∀w ∈W, (6)

where µ is the internal input discretization parameter
defined similar to δ. We use inequality (6) in Section 4
(with µ indexed as µji for the pair of subsystems Σj and
Σi) for the compositional abstractions of interconnected
systems.

In the next sections, we provide an approach for the
compositional synthesis of abstractions for interconnected
dt-SCS. We first define the notions of stochastic pseudo-
simulation and simulation functions for quantifying the
error between two dt-SCS (with both internal and external
signals) and two interconnected dt-SCS (without internal
signals), respectively. Then we employ dynamical represen-

tation of finite Σ̂ in (4) to compare interconnections of dt-
SCS and those of their finite abstract counterparts based
on these new notions. Finally, in the case study section,
we synthesize policies for abstract dt-SCSs composition-
ally and refine them back to the original dt-SCSs while
providing quantitative guarantees on the quality of the
synthesized policies with respect to the satisfaction of lo-
cal specifications. The provided guarantee is benchmarked
against the approach in (Lavaei et al. (2018b)) in the case
study section.

3. STOCHASTIC PSEUDO-SIMULATION AND
SIMULATION FUNCTIONS

In this section, we first introduce the notion of stochastic
pseudo-simulation function (SPSF) for dt-SCS with both
internal and external signals. We then define, as a special
case of this definition, the notion of stochastic simulation
function (SSF) for dt-SCS without internal signals. Both

definitions are used to quantify closeness of two dt-SCS,
while the latter is specifically employed for interconnected
dt-SCS.

Definition 3. Consider dt-SCS Σ=(X,U,W, ς, f, Y, h) and

Σ̂ = (X̂, Û , Ŵ , ς, f̂ , Ŷ , ĥ), where Ŵ ⊆ W and Ŷ ⊆ Y . A

function V : X × X̂ → R≥0 is called a stochastic pseudo-

simulation function (SPSF) from Σ̂ to Σ if there exist
α ∈ K∞, κ ∈ K with κ < id, ρint, ρext ∈ K∞ ∪ {0}, and
constant ψ ∈ R≥0, such that

α(‖h(x)− ĥ(x̂)‖) ≤ V (x, x̂), ∀x ∈ X, x̂ ∈ X̂, (7)

and it holds that for all ν̂ ∈ Û there exists ν ∈ U such
that ∀ŵ ∈ Ŵ ∀w ∈W ,

E
[
V (f(x, ν, w, ς), f̂(x̂, ν̂, ŵ, ς)) |x, x̂, ν, ν̂, w, ŵ

]
≤max

{
κ(V (x, x̂)), ρint(‖w − ŵ‖), ρext(‖ν̂‖), ψ

}
. (8)

We write Σ̂ �PS Σ if there exists an SPSF V from Σ̂ to Σ,

and call the control system Σ̂ an abstraction of concrete

(original) system Σ. Note that Σ̂ may be finite or infinite

depending on cardinalities of sets X̂, Û , Ŵ .

Remark 4. Note that the notion of SPSF in Definition 3
is equivalent to the one defined in (Lavaei et al., 2017,
Definition 3.1) in the sense that the existence of one implies
that of the other one. Although the upper bound in (8) is
in the max form, the one in (Lavaei et al., 2017, inequality
(4)) is in the additive form.

Remark 5. Second condition in Definition 3 implicitly
implies existence of a function ν = νν̂(x, x̂, ν̂) fulfilling
inequality (8). This function is called an interface function

and can be used to refine a synthesized policy ν̂ for Σ̂ to
a policy ν for Σ.

In the following definition we adapt the notion of SPSF
to dt-SCS without internal signals that comprise intercon-
nected dt-SCS.

Definition 6. Consider two dt-SCS Σ = (X,U, ς, f, Y, h)

and Σ̂ = (X̂, Û , ς, f̂ , Ŷ , ĥ) without internal signals, where

Ŷ ⊆ Y . A function V : X×X̂ → R≥0 is called a stochastic

simulation function (SSF) from Σ̂ to Σ if there exists
α ∈ K∞ such that

α(‖h(x)− ĥ(x̂)‖) ≤ V (x, x̂), ∀x ∈ X, x̂ ∈ X̂, (9)

and it holds that for all x ∈ X, x̂ ∈ X̂, ν̂ ∈ Û , there exists
ν ∈ U such that

E
[
V (f(x, ν, ς), f̂(x̂, ν̂, ς)) |x, x̂, ν, ν̂

]
≤max

{
κ(V (x, x̂)), ρext(‖ν̂‖), ψ

}
, (10)

for some κ ∈ K with κ < id, ρext ∈ K∞∪{0}, and ψ ∈ R≥0.

We write Σ̂ � Σ if there exists an SSF V from Σ̂ to Σ, and

call Σ̂ an abstraction of Σ.

The next theorem shows how SSF can be used to com-
pare output trajectories of two dt-SCS (without internal
signals) in a probabilistic sense. This theorem is borrowed
from (Lavaei et al., 2017, Theorem 3.3), and holds for the
setting here since our max form of SSF implies the additive
form of SSF used there.

Theorem 7. Let Σ = (X,U, ς, f, Y, h) and Σ̂ = (X̂, Û , ς, f̂ ,

, Ŷ , ĥ) be two dt-SCS without internal signals, where Ŷ ⊆



Y . Suppose V is an SSF from Σ̂ to Σ, and there exists a
constant 0 < κ̂ < 1 such that the function κ ∈ K in (10)
satisfies κ(r) ≥ κ̂r, ∀r ∈ R≥0. For any external input

trajectory ν̂(·) ∈ Û that preserves Markov property for

the closed-loop Σ̂, and for any random variables a and â as
the initial states of the two dt-SCS, there exists an input
trajectory ν(·) ∈ U of Σ through the interface function
associated with V such that the following inequality holds

P
{

sup
0≤k≤Td

‖yaν(k)− ŷâν̂(k)‖≥ ε | [a; â]

}
(11)

≤


1−(1− V (a, â)

α (ε)
)(1− ψ̂

α (ε)
)Td if α (ε)≥ψ̂

κ̂
,

(
V (a, â)

α (ε)
)(1−κ̂)Td+(

ψ̂

κ̂α (ε)
)(1−(1−κ̂)Td) if α (ε)<

ψ̂

κ̂
,

where the constant ψ̂ ≥ 0 satisfies ψ̂ ≥ ρext(‖ν̂‖∞) + ψ.

4. COMPOSITIONAL ABSTRACTIONS FOR
INTERCONNECTED SYSTEMS

In this section we analyze networks of stochastic control
subsystems and show how to construct their abstractions
together with a simulation function based on abstractions
and SPSF functions of their subsystems.

4.1 Concrete Interconnected Stochastic Control Systems

Let us consider a collection of concrete stochastic control
subsystems

Σi = (Xi, Ui,Wi, ςi, fi, Yi, hi), i ∈ {1, . . . , N}, (12)

where their internal inputs and outputs are partitioned as

wi = [wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN ],

yi = [yi1; . . . ; yiN ], (13)

and their output spaces and functions are of the form

Yi =

N∏
j=1

Yij , hi(xi) = [hi1(xi); . . . ;hiN (xi)]. (14)

We interpret the outputs yii as external ones, whereas
the outputs yij with i 6= j are internal ones which are
used to interconnect these stochastic control subsystems.
For the interconnection, we assume that wij is equal to
yji if there is a connection from Σj to Σi, otherwise
we put the connecting output function identically zero,
i.e. hji ≡ 0. Now we are ready to define the concrete
interconnected stochastic control systems and that of their
abstract interconnection.

Definition 8. Consider N ∈ N≥1 concrete stochastic
control subsystems Σi = (Xi, Ui,Wi, ςi, fi, Yi, hi), i ∈
{1, . . . , N}, with the input-output configuration as in (13)
and (14). The interconnection of Σi for any i ∈ {1, . . . , N},
is the concrete interconnected stochastic control system
Σ = (X,U, ς, f, Y, h), denoted by I(Σ1, . . . ,ΣN ), such that

X :=
∏N
i=1Xi, U :=

∏N
i=1 Ui, function f :=

∏N
i=1 fi,

Y :=
∏N
i=1 Yii, and function h =

∏N
i=1 hii, subject to the

following constraint:

∀i, j ∈ {1, . . . , N}, i 6= j : wji = yij , Yij ⊆Wji.

4.2 Compositional Abstractions of Interconnected Systems

Suppose we are givenN concrete stochastic control subsys-
tems (12) together with their corresponding abstractions

Σ̂i = (X̂i, Ûi, Ŵi, ςi, f̂i, Ŷi, ĥi)

where Ŵi ⊆Wi and Ŷi ⊆ Yi, with SPSF Vi from Σ̂i to Σi
with the associated comparison functions and constants
denoted by αi, κi, ρinti, ρexti, and ψi. In order to provide
one of the main results of the paper, we define a notion of
interconnection for abstract stochastic control subsystems.

Definition 9. Consider N ∈ N≥1 abstract stochastic

control subsystems Σ̂i = (X̂i, Ûi, Ŵi, ςi, f̂i, Ŷi, ĥi), i ∈
{1, . . . , N}, with the input-output configuration similar

to (13) and (14). The interconnection of Σ̂i for any
i ∈ {1, . . . , N}, is the abstract interconnected stochas-

tic control system Σ̂ = (X̂, Û , ς, f̂ , Ŷ , ĥ), denoted by

Î(Σ̂1, . . . , Σ̂N ), such that X̂ :=
∏N
i=1 X̂i, Û :=

∏N
i=1 Ûi,

function f̂ :=
∏N
i=1 f̂i, Ŷ :=

∏N
i=1 Ŷii, and function

ĥ =
∏N
i=1 ĥii, subject to the following constraint:

∀i, j∈{1, . . . , N}, i 6= j : ŵji = Πwji
(ŷij),Πwji

(Ŷij) ⊆ Ŵji.

Now we raise the following small-gain assumption that is
essential for the main compositionality result of the paper.

Assumption 1. Assume that K∞ functions κij defined as

κij(r) :=

{
κi(r) if i = j

2ρinti(2(α−1j (r))) if i 6= j,

satisfy

κi1i2 ◦ κi2i3 ◦ . . . ◦ κir−1ir ◦ κiri1 < id (15)

for all sequences (i1, . . . , ir) ∈ {1, . . . , N}r and r ∈
{1, . . . , N}. Note that small-gain condition (15) implies
(Rüffer, 2010, Theorem 5.5) the existence of K∞ functions
σi > 0, satisfying

max
i,j

{
σ−1i ◦ κij ◦ σj

}
< id, i, j = {1, . . . , N}. (16)

In the next theorem, we leverage small-gain Assumption
1 to quantify the error between the interconnection of
stochastic control subsystems and that of their abstrac-
tions in a compositional way.

Theorem 10. Consider the interconnected dt-SCS Σ =
I(Σ1, . . . ,ΣN ) induced by N ∈ N≥1 stochastic control
subsystems Σi. Suppose that each Σi and its abstraction

Σ̂i admit a SPSF Vi. If Assumption 1 holds, then function
V (x, x̂) defined as

V (x, x̂) := max
i
{σ−1i (Vi(xi, x̂i))}, (17)

for σi as in (16), is an SSF function from Σ̂ =

Î(Σ̂1, . . . , Σ̂N ) to Σ provided that maxi σ
−1
i is concave.

5. CONSTRUCTION OF FINITE ABSTRACTIONS

In this section, we consider Σ as an infinite dt-SCS and Σ̂
as its finite abstraction constructed as in Section 2.3. We
impose conditions on the infinite dt-SCS Σ enabling us to

find SPSF from its finite abstraction Σ̂ to Σ.

Here, we focus on the class of linear dt-SCS and of
stochastic pseudo-simulation functions that are square
root of quadratic functions. First, we formally define
a linear dt-SCS Σ. Afterwards, we construct its finite

abstraction Σ̂ as in (3), and then provide conditions under

which a candidate V is an SPSF from Σ̂ to Σ.

Dynamics of a linear dt-SCS are given by

Σ:

{
x(k + 1)=Ax(k)+Bν(k)+Dw(k)+N̄ς(k),
y(k) = Cx(k),

(18)



where the additive noise ς(k) is a sequence of independent
random vectors with multivariate standard normal distri-
butions. We use the tuple

Σ = (A,B,C,D, N̄),

to refer to a linear dt-SCS of the form (18). Consider the
following function

V (x, x̂) = ((x− x̂)T M̃(x− x̂))
1
2 , (19)

where M̃ is a positive-definite matrix of appropriate di-
mension. In order to show that V in (19) is an SPSF from

Σ̂ to Σ, we require the following assumption on Σ.

Assumption 11. Let Σ = (A,B,C,D, N̄). Assume that

there exist matrices M̃ � 0, and K of appropriate di-
mensions such that the matrix inequality

(1 + 2π)(A+BK)T M̃(A+BK) � κ̂M̃ , (20)

holds for some constant 0 < κ̂ < 1 and π > 0.

Note that condition (20) is nothing more than pair (A,B)
being stabilizable. Now, we have the main result of this
section.

Theorem 12. Assume system Σ = (A,B,C,D, N̄) satisfies

Assumption 11. Let Σ̂ be its finite abstraction as in
Subsection 2.3 with state discretization parameter δ. Then

function V defined in (19) is an SPSF from Σ̂ to Σ.

6. CASE STUDY

To demonstrate the effectiveness of our approach, we apply
it to the temperature regulation in a circular building
by constructing compositionally a finite abstraction of a
network containing 1000 rooms.

Consider a network of n ≥ 3 rooms each equipped with
a heater and connected circularly. The model of this case
study is adapted from (Meyer et al. (2017)) by including
stochasticity in the model as additive noise. The evolution
of temperatures T can be described by the interconnected
linear dt-SCS

Σ :

{
T (k + 1) = ĀT (k) + γThν(k) + βTE + ς(k),
y(k) = T (k),

where Ā is a matrix with diagonal elements āii = (1 −
2η − β − γνi(k)), i ∈ {1, . . . , n}, off-diagonal elements
āi,i+1 = āi+1,i = ā1,n = ān,1 = η, i ∈ {1, . . . , n − 1},
and all other elements are identically zero. Parameters
η, β, and γ are conduction factors respectively between
the rooms i ± 1 and the room i, between the external
environment and the room i, and between the heater
and the room i. Moreover, T (k) = [T1(k); . . . ;Tn(k)],
ν(k) = [ν1(k); . . . ; νn(k)], ς(k) = [ς1(k); . . . ; ςn(k)], TE =
[Te1; . . . ;Ten], where Ti(k) and νi(k) are taking values in
sets [19, 21] and [0, 0.6], respectively, for all i ∈ {1, . . . , n}.
Outside temperatures are the same for all rooms: Tei =
−1 ◦C, for all i ∈ {1, . . . , n}, and the heater temperature
Th = 50 ◦C. Let us consider the individual rooms as Σi
described as

Σi :

{
Ti(k+1)=AiTi(k)+γThνi(k)+Diwi(k)+βTei+ςi(k),
yi(k) = Ti(k),

where Ai = āii, i ∈ {1, . . . , n}. One can readily verify
that Σ = I(Σ1, . . . ,ΣN ) where Di = [η; η]T , and wi(k) =
[yi−1(k); yi+1(k)] (with y0 = yn and yn+1 = y1). One can

also verify that condition (20) is satisfied with M̃i = 1,
Ki = 0, πi = 1, κ̂i = 0.48 ∀i ∈ {1, . . . , n}, and η =
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Fig. 1. Closed loop state trajectories of a representative
room with different noise realizations in a network of
1000 rooms.

0.1, β = 0.4, γ = 0.5. For the sake of comparison with
(Lavaei et al. (2018b)), we fix here SPSF as Vi(xi, x̂i) =

(xi − x̂i)T M̃i(xi − x̂i). Then function Vi(Ti, T̂i) = (Ti −
T̂i)

2 is an SPSF from Σ̂i to Σi satisfying condition (7)
with αi(s) = s2 and condition (8) with κi(s) = 0.99s,
ρinti(s) = 0.91s2, ρexti(s) = 0, ∀s ∈ R≥0, and ψi = 7.6 δ2.

Now we check small-gain condition (15) that is required
for the compositionality result. By taking σi(s) = s,
∀i ∈ {1, . . . , n}, condition (15) and as a result condition
(16) are always satisfied without any restriction on the

number of rooms. Hence, V (T, T̂ ) = maxi(Ti − T̂i)2 is an

SSF from Σ̂ to Σ satisfying conditions (9) and (10) with
α(s) = s2, κ(s) = 0.99 s, ρext(s) = 0, and ψ = 7.6 δ2.

For the simulations, we fix n = 1000 and set the state
discretization parameter δ = 0.005. The initial states of

the interconnected systems Σ and Σ̂ are 2011000. Using
Theorem 7, we guarantee that the distance between out-

puts of Σ and Σ̂ will not exceed ε = 0.5 during the time
horizon Td = 100 with probability at least 98%, i.e.

P(‖yaν(k)− ŷâν̂(k)‖≤ 0.5, ∀k ∈ [0, 100]) ≥ 0.98 . (21)

Note that for the construction of finite abstractions,
we have selected the center of partition sets as repre-
sentative points. This choice has further tightened the
above inequality. Moreover, to have a fair comparison
with the compositional technique proposed in (Lavaei

et al. (2018b)), we assume Ŷij = Ŵji, i.e. µji=0 ∀i, j ∈
{1, . . . , N}, i 6= j.

Let us now synthesize a controller for Σ via the abstraction

Σ̂ such that the controller maintains the temperature of
any room in the comfort zone [19, 21]. We design a local

controller for the abstract subsystem Σ̂i, and then refine
it to subsystem Σi using interface function. We employ
the tool FAUST2 (Soudjani et al. (2015b)) to synthesize
controllers for Σi by taking the external input discretiza-
tion parameter as 0.04 and standard deviation of noise as
0.21, ∀i ∈ {1, . . . , n}. Closed-loop state trajectories of a
representative room with different noise realizations are
illustrated in Figure 1 with only 10 trajectories. Our sim-
ulations show that two out of 100 trajectories violates the
specification, which is in accordance with the theoretical
guarantee (21).

We now compare the guarantee provided in this paper by
that of (Lavaei et al. (2018b)). Our result is based on a
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Fig. 2. Temperature control: Comparison of error bound
in (11) provided by our approach based on small-gain
condition with that of (Lavaei et al. (2018b)) based
on dissipativity property. Plots are in logarithmic scale
for a fixed δ = 0.005, and Td = 100.

small-gain approach while the one proposed in (Lavaei
et al. (2018b)) uses dissipativity-type conditions on subsys-
tems in the network. The comparison is shown in Figure 2
in logarithmic scale, in which we have fixed δ = 0.005 and
plotted the error (the upper bound of the probability in
(11)) as a function of the number of subsystems N and
confidence bound ε (cf. (11)). As seen, our new approach
outperforms dramatically the one proposed in (Lavaei
et al. (2018b)) since ψ in (11) is independent of the size
of the network, and is computed based on the maximum
of ψi of subsystems instead of being a linear combination
of them. Hence, by increasing the number of subsystems,
our error does not change whereas the error computed by
the dissipativity approach in (Lavaei et al. (2018b)) will
increase.

7. DISCUSSION

In this paper, we provided a compositional approach for
the construction of finite Markov decision processes of
interconnected discrete-time stochastic control systems.
First, we introduced new notions of stochastic pseudo-
simulation and simulation functions in order to quan-
tify the distance in a probability setting between original
stochastic control subsystems and their finite abstractions
and their interconnections, respectively. Furthermore, we
provided a compositional scheme on the construction of
finite Markov decision processes of interconnected discrete-
time stochastic control systems using small-gain type rea-
soning. Then, we proposed an approach to construct finite
Markov decision processes together with their correspond-
ing stochastic pseudo-simulation functions for a class of
discrete-time linear stochastic control systems. Finally, we
demonstrated the effectiveness of our proposed results in
comparison with the existing ones in (Lavaei et al. (2018b))
based on dissipativity theory.
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