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Abstract: This paper concerns an output-tracking technique based on a standalone integrator
with variable gain. The control algorithm, recently proposed by the authors, appears to have a
wide scope in linear and nonlinear systems while aiming at simple and efficient computations
in the loop. For a class of memoryless systems it resembles a Newton-Raphson flow for solving
the loop equation, but it is applicable to a broader class of dynamical systems. Furthermore,
the technique is suitable for tracking constant as well as time-dependent reference signals, and
its convergence performance is robust with respect to computational errors in the loop. The
objective of this paper is to test the technique on a control problem arising in multi-agent
systems. Specifically, we are motivated by regulating trajectories of follower agents by a lead
agent in a platoon or swarm of multi-agent networks connected by the graph Laplacian. We
study a particular example, which is challenging from the standpoint of control, with the aim
of identifying the limits of the technique and investigating their possible extensions.

1. INTRODUCTION

Integrator is a common part of a controller for tracking
applications of dynamical systems. Controllers rarely are
comprised of a standalone integrator since typically the
corresponding closed-loop system would either be unstable
or have narrow stability margins. For this reason, tracking
controllers often have proportional and derivative elements
thereby forming the PID control (Franklin et al. (2015)).
Nevertheless, authors of this paper recently considered a
standalone integral control for regulating hardware and
software processes in multicore processors, like power
and throughput (see Chen et al. (2018) and references
therein). Initially the inclusion of a proportional element
was thought to be impractical on technical grounds, and
the aforementioned stability issues were addressed by
endowing the integrator with a variable gain which is
computed in real-time according to the control law (Al-
moosa et al. (2012)). The tracking-control technique was
extended from computer-related applications to a general
class of times Discrete Event Dynamic Systems (DEDS),
and its convergence was derived in that abstract setting
(Wardi et al. (2016)).

Lately we made an initial attempt to extend the track-
ing controller from DEDS to continuous-time dynamical
systems, both linear and nonlinear (Wardi et al. (2017)).

The motivation came from problems of controlling and
regulating trajectories of platoons and swarms of multi-
agent mobile systems. Ref. Wardi et al. (2017) presents the
control technique that we developed, and tests it on several
second-order systems and an eight-agent platoon. The
results were deemed encouraging and stimulated a further
investigation including applications to general classes of
larger, more complicated systems. In particular, we wish
to explore the limitations of the technique in networked
mobile robots with coordinated motion (e.g., Desai et al.
(2001); Zhang and Leonard (2006)) in terms of size, com-
plexity, and manipulability as defined in Kawashima and
Egerstedt (2014). The material in this paper provides a
first step in this direction.

If the plant subsystem is nonlinear, the controller is non-
linear as well. Existing nonlinear regulation techniques,
such as the Byrnes- Isidori regulator (Isidori and Byrnes
(1990)) and Khalil’s high-gain observers for output regu-
lation (Khalil (1998)), are more general and perhaps more
powerful than the technique described in Wardi et al.
(2017). However, their effectiveness is due to significant
computational sophistication, like nonlinear inversions and
the appropriate nonlinear normal form. On the other
hand, one of the objectives stated in Wardi et al. (2017)
is to explore a computationally simple technique which
is based on a variable-gain integrator. Despite its low



computational requirements, the regulation technique in
Wardi et al. (2017) appears to work well for a number of
simple test problems, and the purpose of this paper is to
try it on more challenging control problems arising in the
navigation of multi-agent systems.

The regulation technique described below is based on a
lookahead simulation of the system which serves as both
a predictor and an observer. Its convergence performance
is robust to errors in the loop-computations, but sensi-
tive to prediction errors. The accuracy of the predictor
depends on how far in the future the simulator predicts
the system’s response, and therefore it appears to be
advantageous to choose a small prediction horizon. On the
other hand, analyses of two-dimensional systems, including
the example considered in Wardi et al. (2017), indicate
that the closed-loop systems are unstable if their predictor
horizons are too short. To get around this conundrum
we first choose a small prediction horizon without regard
to stability considerations, then stabilize the system by
speeding up the controller’s response. The latter part does
not increase the controller’s gain, which could destabilize
the closed-loop system, but increases its stiffness in a sense
defined below; this seems not only to stabilize the system
but also to improve its tracking when the target signal is
time-dependent rather than a constant. All of the will be
described in detail in the sequel.

The rest of the paper is organized as follows. Section
2 recounts the description of the regulation technique
defined in Ref. Wardi et al. (2017). It also derives a
tracking result for systems whose plants are memoryless
nonlinearities, while deferring the general dynamic case,
which is more complicated, to a forthcoming publication.
Section 3, containing the main contribution of the paper,
presents simulation experiments and analyzes them in an
attempt to identify limitation of the technique. Finally,
Section 4 concludes the paper.

2. FRAMEWORK FOR TRACKING AND
REGULATION

Consider the system diagram shown in Figure 1, where t
denotes time, and for a given integer k ≥ 1, r(t) ∈ Rk is
the reference input-signal, u(t) ∈ Rk is the input to the
plant, y(t) ∈ Rk is the output, and e(t) := r(t) − y(t)
is the error signal. Note that the input and output have
the same dimension, k. The purpose of the controller is to
ensure output tracking of the reference signal. If r(t) ≡ r
for a constant r ∈ Rk, and the plant is a time-invariant
system, then ‘tracking’ means that

lim
t→∞

(r − y(t)) = 0. (1)

However, in the event that r(t) is a nonconstant function
of time or the plant subsystem is time varying, Eq. (1) may
be impossible to obtain and instead we seek an inequality
of the form

limsupt→∞||r(t)− y(t)|| < ε (2)

for a small ε > 0. This case will be discussed in the sequel,
and a technique for reducing ε by a parameter of the
controller will be pointed out.

According to the general setting of this paper, the plant
system is a dynamical system modelled by a differential

Fig. 1. Basic control system

equation, and r(t) is time-dependent. However, in order
to explain the salient features of the controller, we first
discuss the case where the plant is a memoryless non-
liunearity. This exposition serves in part as a survey of
background material presented in Wardi et al. (2017).

2.1 The plant as a Memoryless Nonlinearity

Consider the case where the reference input r(t) is a func-
tion of time, and the plant is a memoryless nonlinearity of
the form

y(t) = g(u(t)) (3)
for a continuously-differentiable function g : Rk → Rk.
Assume that the Jacobian ∂g

∂u (u(t)) is nonsingular for every
u(t) encountered in the following discussion. The material
described in the rest of this section appeared in Wardi
et al. (2017) and its expanded version in the arxiv.

We define the controller by the equation

u̇(t) =
(∂g
∂u

(u(t)
)−1(

r(t)− y(t)
)
, (4)

and notice that, in the event that r(t) ≡ r for a constant
r ∈ Rk, it represents the Newton-Raphson flow for solving
the equation r − g(u) = 0.

Ref. Wardi et al. (2017) proves the following result.

Proposition 1. Suppose that r(·) is continuously differen-
tiable in t, and let γ > ||ṙ(t)|| for every t ≥ 0. Then,

lim sup
t→∞

||r(t)− y(t)|| ≤ γ. (5)

Note that in the case where r(t) ≡ r (a constant), Eq. (1)
follows from Proposition 1 by taking γ = 0.

In order to reduce the Right-Hand Side (RHS) of Eq.
(5) we can speed up the action of the controller without
increasing its gain. This can be done by multiplying the
RHS of (4) by a constant α > 1, thereby modifying
the definition of the controller from (4) to the following
equation,

u̇(t) = α
(∂g
∂u

(u(t)
)−1(

r(t)− y(t)
)
. (6)

To see the effect of this on the e-to-u relation (see Figure
1), consider the example where that relation has the trans-
fer function 1

s+1 , i.e., U(s) = 1
s+1E(s). Then replacing (4)

by (6) results in the e-to-u transfer function of α
s+α , which

does not change the DC gain, but shifts the pole from
s = −1 to s = −α thereby reducing the settling time. For
this reason we say that this action increases the stiffness
of the controller, and label α as the stiffness parameter.
Proposition 1 is modified as follows.

Proposition 2. Suppose that r(·) is continuously differen-
tiable in t, and let γ > ||ṙ(t)|| for every t ≥ 0. Suppose also
that the trajectory {u(t) : t ∈ [0,∞)} is contained in an

open set D ⊂ Rk where the Jacobian ∂g
∂u (u) is nonsingular.

Then,

lim sup
t→∞

||r(t)− y(t)|| ≤ γ

α
. (7)



The proof is similar to that of Proposition 1 as derived in
Wardi et al. (2017), hence relegated to the appendix.

2.2 The Plant as a Dynamical System

Suppose that the plant is a dynamical system with the
input u(t) ∈ Rk, state x(t) ∈ Rn, and output y(t) ∈ Rk,
for given positive integers k and n. The state equation has
the form

ẋ(t) = f(x(t), u(t)) (8)

for a function f : Rn × Rk → Rn, with the boundary
condition x(0) = x0 ∈ Rn. The output equation has the
form

y(t) = h(x(t)) (9)

for a function h : Rn → Rk. Note that, as in the last
subsection, the dimensions of u(t) and y(t) are identical.

The following assumption on the system is made:

Assumption 1. (i). The function f(x, u) is continuously
differentiable in x for every u ∈ Rk, and continuous in
u for every x ∈ Rn.
(ii). For every compact sets Γ1 ⊂ Rn and Γ2 ⊂ Rk, the

functions f(x, u) and ∂f
∂x (x, u) are Lipschitz continuous on

Γ1 × Γ2.
(iii). For every compact set Γ2 ⊂ Rk, there exists K > 0
such that, for every x ∈ Rn and u ∈ Γ2,

||f(x, u)|| ≤ K(||x||+ 1).

(iv). The function h(x) is continuously differentiable.

This assumption implies that the differential equation (8)
has a unique solution on t ∈ [0,∞) for every piecewise-
continuous function u(·).
A key question is how to define a function like g(u(t))
which was used to define the controller in the last sub-
section via Eq. (4). In the current setting of dynamic
plant-subsystems there is no natural way to express y(t)
as a function of u(t) since the system’s output at time
t depends on its state evolution during a past, positive-
length interval. One way to define g(u(t)) is to simulate
the system for a positive amount of time, say T seconds
for a given T > 0, from time t onwards. By “simulation”
we mean numerical simulation. Thus, assuming that x(t)
and u(t) can be observed at time t, we define g(u(t)) for a
given T > 0 as follows: Solve (numerically) the differential
equation

˙̃x(ξ) = f(x̃(ξ), u(t)), ξ ∈ [t, t+ T ] (10)

with the initial condition x̃(t) = x(t), then define g(u(t)) =
h(x̃(t + T )). Note that g(u(t)) also depends on t, T , and
x(t) via the initial condition of (10), hence ought to be
denoted by g(t, x(t), u(t), T ), but we use the shorthand
notation g(x(t), u(t)). Thus, formally, we set

g(x(t), u(t)) := h(x̃(t+ T )). (11)

We mention that the computations of g(x(t), u(t)) and

its derivative ∂g
∂u (x(t), u(t)) can be performed by any

computational technique, we have used the forward Euler
method. The controller equation is defined, in analogy with
Eq. (4), by the following equation,

u̇(t) =
(∂g
∂u

(x(t), u(t))
)−1(

r(t+ T )− g(x(t), u(t))
)
. (12)

Note the term r(t + T ), not r(t), in (12); the rationale is
that g(x(t), u(t)) attempts to estimate x(t+T ) and hence

it is compared to r(t + T ) in the controller’s definition.
Since g(x(t), u(t)) attempts to estimate y(t+T ) at time t,
we call it a predictor. Observe that in Eq. (10) we use the
input u(t) throughput the interval ξ ∈ [t, t+T ]; the reason
is that u(ξ) will change throughout that interval according
to (12), but we do not know, at time t, its values at ξ > t.
Thus, the predictor at time t is defined via (10) for a fixed
input u(t) throughout the interval ξ ∈ [t, t + T ], but the
actual input u(ξ), defined via (12), will not be a constant
in that interval.

Due to its dependence on x(t), Eq. (12) provides u(t) in
a feedback form. Furthermore, Eqs. (8) and (12) taken
together define the closed-loop system in terms of the ag-
gregate state variable (x>, u>)> ∈ Rn+k via the following
equation

(
ẋ(t)
u̇(t)

)
=

(
f(x(t), u(t))(∂g

∂u
(x(t), u(t))

)−1(
r(t)− g(x(t), u(t))

) ) ,
(13)

and we have to be concerned with the stability of this
system. It was mentioned earlier that convergence of the
regulation algorithm can be sensitive to measurement er-
rors, meaning, in this case, prediction errors. One way to
limit these errors is to choose a small lookahead horizon
T . However, our analysis in Wardi et al. (2017) and subse-
quent experience with various examples have shown that
for a small-enough T the closed-loop system is unstable.
To get around this difficulty we increase the stiffness of
the controller by a factor α > 1 as in the last subsection;
the closed-loop system becomes(
ẋ(t)
u̇(t)

)
=

(
f(x(t), u(t))

α
(∂g
∂u

(x(t), u(t))
)−1(

r(t)− g(x(t), u(t))
) ) .
(14)

Therefore, a key theoretical question is whether the system
has the following property: For every T > 0 there exists
ᾱ > 0 such that, for every α > ᾱ, the closed-loop system,
defined by Eq. (14), is stable. It is easy to answer this
question in the case of linear, time-invariant systems. Let
f(x, u) = Ax + Bu, and y = Cx, for given matrices
A ∈ Rn×n, B ∈ Rn×k and C ∈ Rk×n, and suppose that A
is nonsingular. Then, for a given stiffness parameter α > 0,
the aggregate closed-loop system (14) is LTI as well, and
was shown in Wardi et al. (2017) to have the following
form:(

ẋ(t)
u̇(t)

)
= ΦT,α

(
x(t)
u(t)

)
+

(
0

ΨT,α

)
r(t+ T ), (15)

where the matrices ΦT,α ∈ R(n+k)×(n+k) and ΨT,α ∈ Rk×k
are defined by

ΦT,α :=

(
A B

−α
(
CA−1(eAT − In)B

)−1
CeAT −αIk

)
,

(16)
and

ΨT,α := α
(
CA−1(eAT − In)B

)−1
. (17)

Stability of the closed-loop system can be ascertained by
checking whether the matrix ΦT,α is Hurwitz. The next
section examines such a system in detail.



3. EXAMPLE

We consider a multi-agent system arranged in a tandem
configuration where the motion trajectories of the agents
are coordinated by the graph Laplacian. The first agent
is the leader and it is the only agent with an exogenous
input. It is tasked with regulating the trajectory of the last
agent to a given planar curve. Let N denote the number of
agents, and denote the trajectory of the ith agent by xi(t),
i = 1, . . . , N . Let Di denote the neighborhood of agent i
according to the Laplacian, then its motion is defined by
the equation

ẋi(t) =
∑
j∈Di

(xj(t)− xi(t)) + δi,1u(t), (18)

where δi,1 is the Kronecker delta, and u(t) is the exogenous
control which can be applied only to agent 1. The neigh-
borhoods reflect the tandem nature of the network. Thus,
for every i = 2, . . . , N−1, Di = {i−1, i+1}, D1 = {2}, and
DN = {N − 1}. The objective of the control is to have xN
track a given curve in R2, denoted by {r(t)}. The tandem
configuration of the network renders the control problem
challenging because of the indirect connection between the
lead agent and the last agent, especially for a large N . This
corresponds to a weak manipulability of the network, and
may require the application of large, fast-changing inputs
u(t) for effective trajectory control of the last agent. The
objective of this section is to explore and test the efficacy
and limitations of the proposed regulation technique.

The closed-loop system defined by Eq. (15) is linear, time
invariant, and has dimension 2N + 2. Its forward loop
is described by the equations ẋ(t) = Ax(t) + Bu(t) and
y(t) = Cx(t), and the feedback law is defined by (12).
Consequently the system is described by Eqs. (15) with
(16) and (17). The system matrices A, B, and C are

A =


−I2 I2 02 02 . . .
I2 −2I2 I2 02 . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . 02 02 I2 −I2

 ∈ R2N×2N ,

where I2 and 02 are the 2 × 2 identity matrix and zero
matrix, respectively;

B =


I2
02
. . .
. . .
02

 ∈ R2N×2;

and
C = ( 02 . . . 02 I2 ) ∈ R2×2N .

We chose N = 10 and experiment with two targets: a point
(constant), and a circle around a given point. The results
are described in the following paragraphs.

In all of the experiments we solved the differential equa-
tions by the forward Euler method. For the agents’ tra-
jectories and feedback law (Eq. (17)) we use the stepsize
of dt = 0.001, and for the lookahead simulations (Eq.
(10)) we chose the stepsize to be ∆t := 0.01T . The final
time is tf = 20 seconds, and the stiffness parameter is
set to α = 40. In all cases we show the graph of the
first coordinate of agent 10, {x10,1(t)}, but not of the
second coordinate since it displays a comparable behavior
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Fig. 2. x10,1(t). Target signal: r(t) ≡ (3, 1)>; T = 1.0

regarding convergence to the target curve. We also show
the graph of the first coordinate of the control, {u1(t)},
for some of the experiments.

Experiment 1. The target is the point, r(t) ≡ (3,−1)> ∈
R2. We first set T = 0.1, but despite the large value of α,
the closed-loop system is unstable and x10,1(t) oscillates
unboundedly. We then increased T to 1.0, but the system
is still unstable. Next, we increased the stiffness of the
Laplacian. 1 In accordance with the linear structure of
the network we define the stiffness parameter of agent
i, denoted by βi, as an affine function of i; we chose
βi = 2i + 3. Consequently the graph-Laplacian equation
becomes

ẋi(t) = βi
∑
j∈Di

(xj(t)− xi(t)) + δi,1u(t). (19)

The corresponding change in the system-matrix A is that
its ith 2 × 2-block row is multiplied by βi, while the
matrices B and C remain unchanged. The simulation
results are shown in Figure 2 and Figure 3 for x10,1(t)
and u1(t), respectively, and they clearly indicate a tracking
convergence.

We note in Figure 3 that the control variable u(t) can have
large values at the initial stage of the algorithm. How to
keep its magnitude within given upper bounds will be seen
in the later discussion.

Experiment 2. The target signal is a circle, r(t) = (10 +
cos(t), 10 + sin(t))>. To counter the delay’s effects due to
the fact that r(t) is time dependent we chose T = 0.5
instead of T = 1.0, but kept the rest of the simulation
parameters, including βi, the same as for Experiment 1.
The simulation results are depicted in Figure 4 and Figure
5. In Figure 4, the trajectory x10,1(t) is marked in blue,
and the target value r1(t) is marked in red. The figure
indicates convergence of x10,1(t) to r1(t) in about 5 secs.
However, Figure 5 exhibits a considerable magnitude and
large variations of the control signal u(t) at the start of

1 Strictly speaking, we described the application of the stiffness
parameter to the controller equation (14) but not to the plant. The
Laplacian is considered here as a part of the plant, but also can
be viewed as a part of the controller and there is no reason not to
increase its stiffness in the indicated manner.
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Fig. 3. u1(t). Target signal: r(t) ≡ (3, 1)>; T = 1.0
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Fig. 4. x10,1(t). Target signal: r(t) = (10 + cos(t), 10 + sin(t))>;

T = 0.5
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Fig. 5. u1(t). Target signal: r(t) = (10+cos(t), 10+sin(t))>; T = 0.5

the algorithm. This is not surprising in light of the fact
that the controller essentially is a standalone integrator,
but it can be problematic in applications.

To get around this problem we saturate the norm of u(t),
||u(t)||, by projecting u(t), at each time t ∈ [0, tf ], into a
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Fig. 6. x10,1(t). Target signal: r(t) = (10 + cos(t), 10 + sin(t))>;

T = 0.5; R = 20

circle in R2 with center at 0 and a given radius R, denoted
by B(0, R). Formally, denote by ΠR(u) the projection
function from R2 into B(0, R). Moreover, denote the RHS
of (12) by ζ(x(t), u(t)) so that (12) is of the form

u̇(t) = ζ(x(t), u(t)).

Now we replace (12) by the following one-sided differential
equation,

u(t+ dt) = ΠR

(
u(t) + ζ(x(t), u(t))dt

)
.

We note that if ||u(t)|| < R or ||u(t)|| = R and
〈ζ(t), u(t)〉 < 0 then Eq. (12) is unchanged, whereas if
||u(t)|| = R and 〈ζ(t), u(t)〉 ≥ 0 then ||u(t + dt)|| = R as
well. Assuming that at ||u(0)|| ≤ R by choice, this implies
that ||u(t)|| ≤ R for every t ≥ 0.

The practical effect of this is not only to limit ||u(t)|| to R
but also often to dampen its variation. However, this can
come at the expense of longer settling times. We chose
R = 20, and the results are depicted in Figure 6 and
Figure 7. Comparing these to the unsaturated case shown
in Figures 4 and 5, respectively, we obtain convergence
of x10,1(t) to r1(t) in about 7 seconds as compared to 5
seconds for the unsaturated system. However, ||u(t)|| ≤ 20
for all t, as compared to the unsaturated system where
||u(t)|| reached magnitudes over 1,300.

Finally, we tried to lower the input saturation bound to
R = 5. The results for x10,1(t) are depicted in Figure 8
while u1(t) is not shown. Figure 8 indicates that tracking
is not obtained. The reason is that the control u(t) does
not have enough power to track the target-signal r(t)
because its frequency is too high. In fact, according to
the simulation results (not shown) ||u(t)|| = 5 for every t ∈
[0, tf ], namely the control variable is saturated throughout
the algorithm’s run, and its bound of 5 is insufficient to
achieve the output tracking.

4. CONCLUSIONS

This paper concerns a technique for output regulation
and tracking in continuous-time dynamical systems. The
technique is based on an integral control with a variable
gain, and a lookahead simulation to predict future outputs
of the plant. Both stability and tracking performance
are enhanced by adding stiffness to the controller. We



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t (ms) 104

-20

-15

-10

-5

0

5

10

15

20

u1
(t

)

Fig. 7. u1(t). Target signal: r(t) = (10 + cos(t), 10 + sin(t))>;

T = 0.5; R = 20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t (ms) 104

4

5

6

7

8

9

10

11

12

x1
0,

1(
t)
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T = 0.5; R = 5

tested the technique on a control problem arising in a
multi-agent network where the motion trajectories of its
agents are coordinated by the graph Laplacian. The results
indicate that the regulation technique may have merit in
applications to swarms of autonomous agents, and future
research will test this hypothesis theoretically and in a
laboratory setting.

5. APPENDIX

Proof of Proposition 2: Define the function V (u, t) by

V (u, t) =
1

2
||r(t)− y(t)||2. (20)

Since y(t) = g(u(t)), and by Eq. (6), we have that

V̇ (u(t), t) =
(
r(t)− y(t)

)>(
ṙ(t)− α(r(t)− y(t))

)
. (21)

By the fact that ||ṙ(t)|| ≤ γ, it follows from (21) that

V̇ (u(t), t) ≤ −||r(t)− y(t)||
(
α||r(t)− y(t)|| − γ

)
. (22)

Fix ε > 0. If

||r(t)− y(t)|| > (1 + ε)
γ

α
, (23)

then, by (22),

V̇ (u(t), t) ≤ −||r(t)− y(t)||εγ. (24)

Applying (23) to (24), we obtain that

V̇ (u(t), t) ≤ −(1 + ε)εγ2/α. (25)

By Lyapunov’s direct method, this implies that

lim sup
t→∞

||r(t)− y(t)|| ≤ (1 + ε)
γ

α
.

Since ε can be arbitrarily small, this implies Eq. (7)
thereby completing the proof.
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