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Abstract: We present a hybrid system model describing the behavior of multiple agents
cooperating to solve an optimal coverage problem under energy depletion and repletion
constraints. The model captures the controlled switching of agents between coverage (when
energy is depleted) and battery charging (when energy is replenished) modes. Our analysis
contains three parts. The first part shows how the model guarantees the feasibility of the coverage
problem by defining a guard function on each agent’s battery level to prevent it from dying on
its way to a charging station. The second part provides two scheduling algorithms to solve the
contention problem of agents competing for the only charging station in the mission space. The
third part shows the optimality of the motion plan adopted in the proposed model.
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1. INTRODUCTION

Systems consisting of cooperating mobile agents are often
used to perform tasks such as coverage (Zhong and Cas-
sandras (2011); Leonard and Olshevsky (2013)), surveil-
lance (Tang and Ozguner (2005)), monitoring and sweep-
ing (Smith et al. (2012)). A coverage task is one where
agents are deployed so as to cooperatively maximize the
coverage of a given mission space (Meguerdichian et al.
(2001)), where “coverage” is measured in a variety of ways,
e.g., through the joint detection probability of random
events cooperatively detected by the agents. Widely used
methods to solve the coverage problem include distributed
gradient-based algorithms (Zhong and Cassandras (2011))
and Voronoi-partition-based algorithms (Cortes et al.
(2004)). These approaches typically result in locally op-
timal solutions, hence possibly poor performance. To es-
cape such local optima, a boosting function approach is
proposed in Sun et al. (2014) where the performance is
ensured to be improved. Recently, the coverage problem
was also approached by exploring the submodularity prop-
erty (Zhang et al. (2016)) of the objective function, and
a greedy algorithm is used to guarantee a provable bound
relative to the optimal performance (Sun et al. (2017)).

In most existing frameworks, agents are assumed to have
unlimited on-board energy to perform the coverage task.
However, in practice, battery-powered agents can only
work for a limited time in the field. For example, most
commercial drones powered by a single battery can fly
for only about 15 minutes. Therefore, in this paper we
take into account such energy constraints and add another

* This work was supported in part by NSF under grants ECCS-
1509084, 1TP-1430145, and CNS-1645681, by AFOSR under grant
FA9550-12-1-0113, by DOE under grant DOE-46100, and by Bosch
and MathWorks.

dimension to the traditional coverage problem. The basic
setup is similar to that in Zhong and Cassandras (2011).
Agents interact with the mission space through their sens-
ing capabilities which are normally dependent upon their
physical distance from an event location. Outside its sens-
ing range, an agent has no ability to detect events. Unlike
other multi-agent energy-aware algorithms whose purpose
is to reduce energy cost, we assume that a charging station
is available for agents to visit according to some policy. The
objective is to maximize an overall environment coverage
measure by controlling the movement of all agents in a
cooperative manner while guaranteeing that no agent runs
out of energy while in the mission space.

We provide a solution to the above problem by modeling
the behavior of an agent through three different modes:
coverage (Mode 1), to-charging (Mode 2), and in-charging
(Mode 3). We assume that an agent has no prior knowl-
edge of the mission space except for the location of the
charging station and the positions of agents within its
communication range. While in Mode 1, each agent moves
along the gradient direction of the objective function at
the maximum velocity so as to cooperatively maximize the
coverage measure. As an agent’s energy is depleted, the
agent switches to Mode 2 according to a guard function
designed to guarantee that a minimum energy amount is
preserved to reach the charging station from its current
location while traveling at maximum speed. Note that an
agent shares its position and battery state information
with the charging station only when it is in the to-charging
mode (Mode 2). Since the charging station is shared by all
agents, there can only be at most a single agent at the sta-
tion at any time. Therefore, two scheduling algorithms are
proposed to resolve contention among low-energy agents:
(7) First-Request-First-Serve (FRFS), and (i) Shortest-
Distance-First (SDF). These two scheduling algorithms



are described in detail in Subsection 4.2. The charging
station is perceived as a centralized controller executing a
scheduling algorithm by dictating agent speeds so that a
queue is formed by agents while in Mode 2. In Mode 3,
an agent is located at the charging station and a model
is developed for the battery charging dynamics using the
dwell time of an agent at the station as a controllable
parameter to be optimized.

The contributions of this paper are summarized as follows.
First, a hybrid system model is developed so that the opti-
mal coverage problem can be transformed into a paramet-
ric optimization problem which can be subsequently solved
using Infinitesimal Perturbation Analysis (IPA) techniques
(Cassandras et al.[2010]Cassandras (Wardi)). Second, we
formulate the transition of an agent from the coverage
mode (Mode 1) to the in-charging mode (Mode 3) as a
shortest time optimization problem so as to ensure that
agents minimize the time spent in the to-charging mode
(Mode 2). Finally, two scheduling policies, FRFS and SDF,
are proposed to allow agents to share the charging station
effectively while also guaranteeing that no agent runs out
of energy during the entire process.

2. PROBLEM FORMULATION

Consider a bounded mission space Q € R?, which is
modeled as a non-self-intersecting polygon. We deploy NV
agents in the mission space to detect possible events that
may occur in it. By viewing the position of agent 4 in R?,
its coordinates s; = [z;, yi]T obey the following dynamics:

Z; (1) = v (t) cosw; (1), (1)

Yi (t) = v; () sinw; (¢) (2)
with v; (t) denoting the speed, and wj; (t) the heading
direction of agent i. We assume that v; (t) € [0,v], and
w; (t) € [0,27), where v is the maximum speed of an
agent. The mission space does not contain obstacles. If it

does, the problem can be modified appropriately as done
in Zhong and Cassandras (2011).

In contrast to traditional multi-agent coverage problems,
agents are assumed to have a limited on-board energy
supply, which is modeled by the state-of-charge ¢;(t) of its
battery (i.e., the fraction of the battery available at time
t). The dissipation of energy is proportional to a quadratic
function of the velocity, yielding the following dynamics:
g (t) = —av (1), 3)
where « is a scaling constant to ensure that 0 < ¢;(¢) < 1.
When ¢; (t) is negative, this implies that agent ¢ is “dead”
in the mission space.
Remark 1. The energy depletion model (3) is a simplified
version of ¢; () = —v? (t) — au? (t) used in Setter and
Egerstedt (2016), where wu; (t) is the acceleration. There
are also more sophisticated state-of-charge dynamics in
the literature, e.g., Manwell and McGowan (1994), Moura
et al. (2010).

To prevent agents from dying in the mission space, a
charging station is available to all agents to replenish their
energy supply during the mission time. Without loss of
generality, we assume that the charging station is located
at the origin with coordinates (0,0). At the charging
station, the charging process has the following dynamics:

(b) Two agents at (0.5,0)

(a) A single agent at (0,0)

Fig. 1. Sensing probability of an area when agents present

Gi (t) = B, (4)
where 5 > 0 is the charging rate. We assume that only one
agent can be served at the charging station at any time.

Our objective is to maximize the coverage of the mission
space 2 € R? over a time interval [0,7], and at the
same time keep all agents alive, that is, ¢; (t) > 0 for
all t € [0,T]. The case ¢; () = 0 can occur only at
the charging station (0,0). Therefore, we consider the
following optimization problem for each agent i:

max

T
amax [ H (s (1) di

st aq(t) =0,

q; (t) > 0 when s; (t) # 0,

(1), (2)

0< vilt) <o, 5)
(4) if charging, (3) otherwise
if Si (t) = 0,
then s;(t) # 0 for all j # ¢
i=1,...,N,
where s = [sT,...,sT]T is a column vector that contains
all agent positions, T is the time horizon, and H (s (t))
is the coverage metric. We adopt the coverage objective
function used in Zhong and Cassandras (2011) by first
defining a reward function R (z,y) with (z,y) € Q to
capture the “value” of a point (x,y) in the mission space,
and assume [ [, R (z,y)dxdy < co. Thus, R(z,y) may
have larger values for points whose coverage may carry
more significance. Clearly, if all points in € are treated
indistinguishably, then R (x,y) = 1 for all (x,y) € Q.

Each agent has an isotropic sensing system with range §;,
that is, an agent is able to cover the area

i (i) = {(29) | (@ = 2)* + (y = ) < 7.
The sensing probability of an agent at a point (z,y)
within its sensing range ; (z;,y;) is characterized by the
sensing function p; (z,y,z;,y;) € [0,1] and depends on
the distance between the agent location (z;,y;) and the
point (z,y). In particular, it is monotonically decreasing
in the distance between (x;,y;) and (z,y) and if a point
(z,y) is out of the sensing range of agent 4, that is,
(x,y) ¢ Qi(2i,9:), then p; (z,y,25,y;) = 0. For any
given point (z,y) in the sensing range of multiple agents,
assuming independence among agent sensing capabilities,
the joint event detection probability is given by (Zhong
and Cassandras (2011))

N
P(I,y,S) = 171_[

i=1 [1 — Pi (Iayamia yl)] . (6)

Finally, the coverage metric H (s) is defined as



H(s)://QR(;U,y)P(a:,y,s)dxdy.

Other reasonable sensing quality metrics are also possible,
as in Stipanovic et al. (2013) and Panagou et al. (2015).
Note that H (s) is a function mapping a vector s € R*¥
into R.

For simplicity, in what follows we assume that all
points in the mission space are indistinguishable and set
R (z,y) = 1. Even though the precise form of the function
pi (2,9, 2;,y;) does not affect our subsequent analysis, for
ease of calculation in the sequel we take it to be

2 2
T—x) + (Y — Y

for all (z,y) € ;. Figure 1 depicts the sensing probability
for two cases: a single agent (Fig. 1(a)) and two agents
with overlapping sensing ranges (Fig. 1(b)), respectively.
Here the sensing range of agents is set to §; = 1.

Returning to problem (5), there are two challenges we
face. First, recall that an agent has no prior knowledge
of either the mission space or the battery levels of other
agents; it only knows the location of the charging station
and of its neighbors, where the neighborhood set of agent
i is defined as N; = {j|;NQ; # 0}. In addition, the
charging station is only provided the location and battery
state information of agents when they are in the to-
charging mode. Under this information structure, it is
clearly impossible to tackle the coverage problem in a
centralized way. The second challenge stems from the fact
that, unlike the traditional coverage problem in Zhong and
Cassandras (2011) where the goal is to find the optimal
equilibrium locations of agents, (5) is a dynamic multi-
agent coverage problem: due to the energy dynamics and
constraints in (5), such an equilibrium may never exist, as
agents move back and forth between coverage and battery
charging modes. Thus, in general, finding the optimal
speed v} (t) and the optimal heading w] (¢) in problem
(5) for all ¢ = 1,...,N and all ¢ is a challenging task
since its solution amounts to a notoriously hard two-point-
boundary-value problem similar to other dynamic multi-
agent optimization problems, e.g., see Lin and Cassandras
(2015). In the following, we will show how to solve this
problem by modeling the combined cooperative coverage-
recharging processes as a hybrid system. Nevertheless, the
proposed solution may not be an optimal solution to the
problem (5) due to the aforementioned challenges.

3. HYBRID SYSTEM MODEL

Our first step is to construct a hybrid system model to
guarantee that the constraints in (5) are satisfied for all .
To ensure that the problem is well-posed, we assume that

B> Naw?. (8)

This assumption is sufficient to guarantee the feasibility of
the hybrid system model to be constructed. In particular,
by treating the charging station as a server, the charging
rate is B if it is occupied at all times, and referring to
(3), the worst-case energy depletion rate over all agents is
Naw?. Thus, the condition (8) is sufficient to prevent any
agent from running out of energy (dying) anywhere in the
mission space. However, this assumption is not necessary

Fig. 2. A hybrid system model

in the sense that the problem may be feasible even when
(8) is not satisfied.

For any agent, we define three different modes: coverage
(Mode 1), to-charging (Mode 2) and in-charging (Mode
3). This hybrid system consists of a single cycle for each
agent: Mode 1—+Mode 2—+Mode 3—Mode 1 as shown in
Fig. 2 and detailed next. Due to the simplicity of the
hybrid model, it is unnecessary to invoke a formal hybrid
automaton modeling framework.

At Mode 1, v; (t) = v, and

AH (1)
cosw; (t) = 10 ) (9)
oH()\? | (oH®)\>
(amt)) + (aym)
AH(4)
sinw; (t) = LG ; (10)
(8H(t))2+ (8H(t))2
Oz (t) 0y (t)
where the calculations of detailed expressions for gf%g

and 258 are given in Appendix A. To ease notation, we

rewrite the dynamics in (1), (2) and (3) as
g (1) = [ (), () = £ (1)

i (t) = —av?,

Here f7(t) = vcosw;(t) and f} (t) = vsinw;(t), where
the expressions of cosw;(t) and sinw;(t) are given by (9),
and (10), respectively. Moreover, f;(s) in Fig. 2 is given
by fi(s) = [f¥, f/]7. In other words, agent i travels at
the maximum speed, and the heading direction follows
the gradient direction of the coverage metric with respect
to agent i’s location. The state-of-charge of the battery
monotonically decreases with rate cv? and when it drops
to a certain value, the agent switches to Mode 2.

(11)

A transition from Mode 1 to Mode 2 occurs when the
guard function

9i (si,ai) = ¢; (t) — v [|si(t)] (12)
is zero, where ||s;(¢)|| = /2% (t) + y? (). At Mode 2, the

speed v; (t) is determined by the scheduling algorithm used
to assign an agent to the charging station and the heading
direction is constant and determined by the location of
agent i at the time of switching from Mode 1 to Mode 2,
say To. Then, the motion dynamics and the state-of-charge
dynamics are:
yi (2)

—v; (t) ———

O fsiml

) = o (1) TiT2)
£ 0) == O T

G (t) = —av? (t).

gi (t) = (13)

(14)



The speed v;(t) in Mode 2 is piecewise constant or
constant depending on which scheduling algorithm is used
to resolve conflicts when multiple agents request to use
the charging station at the same time, as discussed in
Section 4.2 (note that we assume no energy loss at points
where the speed may experience a jump). The function
h;(t) in Fig. 2 is a column vector containing the right-hand
side of (13).

A transition from Mode 2 to Mode 3 occurs when the guard
function g; (s;) = ||s:(¢)|| is zero, that is, agent 4 arrives at
the charging station. At Mode 3, an agent remains at rest
at the charging station, therefore, it satisfies the dynamics
z; (t) = 0 and g; (¢) = 0. While the agent is in charging
mode, the state-of-charge dynamics are given by ¢; (t) = 3,
where 8 > Noawv? is the charging rate.

Finally, a transition from Mode 3 to Mode 1 occurs when
the guard function g¢; (¢;) = 6; — q; (t) is zero, where
0; € (0,1] is a controllable threshold parameter indicating
the desired state-of-charge at which the agent may stop its
recharging process.

4. MAIN RESULTS
4.1 Feasibility

In the following, we will show that the constraints in
(5) are satisfied for all ¢ > 0, that is to say, the hybrid
system model constructed guarantees the feasibility of the
problem in (5).

Lemma 1. For agents in Mode 2 satisfying (13) and (14)
with v;(t) = wv, the travel time and energy cost from
(@i(72),5i(72)) to (0,0) are [|si(72)]| /v and av||si(r2)],
respectively. Moreover, the speed v is proportional to the
energy cost and it is inversely proportional to the travel
time.

Proof. Let 75 denote the time when agent ¢ switches from
Mode 1 to Mode 2. At the initial time 7o, agent ¢ at the
location (z; (2) , y; (72)) heads to the charging station with
a constant speed v. Therefore, the arrival time 73 at the
charging station is 73 = 7o+ ||sl(7'2)|| /v. According to (14),
the energy cost of traveling with speed v is

T2

() = ai(m) = [ e (0)dt = av ().
T3

The proof is completed by observing the above expressions

of travel time and energy cost in terms of v. (|

Remark 2. In the above proof, we assume that v;(t) is a
constant for the whole interval [ro, 73]. It is easy to show
that the above result still holds when v;(¢) is piecewise
constant during the interval 7o, 73].

Now we are ready to show the main result in this subsec-
tion.

Theorem 1. The hybrid system model guarantees the fea-
sibility of the optimization problem (5).

Proof. Suppose that the problem (5) is feasible initially.
First, we know the problem (5) is always feasible in Mode 1
since if ¢;(t) < valls;(t)|| for (z; (t),y; (t)) # 0, the mode
switches to Mode 2. From Lemma 1, we know that the
energy that an agent spends on the trip to the charging

station is proportional to its speed. The energy when an
agent switches to Mode 2 is adequate for it to reach the
charging station at the maximum speed. Lemma 1 also
tells us that an agent will spend less energy if it heads to
the charging station using a piecewise constant speed less
than the maximum speed. Therefore, ¢;(t) > 0 in Mode 2
It is trivial to verify that the constraints are satisfied at
Mode 3. Therefore, for all three modes, all agents have
non-negative battery levels. O

4.2 Schedulability

Since the charging station can only serve one agent at
a time, a scheduling algorithm is needed to resolve con-
flicts among agents competing over access to it. Here, we
consider two scheduling policies: First-Request-First-Serve
(FRFS) and Shortest-Distance-First (SDF).

First Request First Serve  Suppose that when agent i
sends a charging request at 7, the charging station is not
reserved. Then, agent ¢ will use the maximum speed v
to reach the charging station If another agent j sends
a charging request at TJ > 7., the arrival time of agent
j will be scheduled at max{rf,Tg} where 7} is the time

when agent i finishes charging, and 77 is the arrival time
if agent j heads to the charging station at the maximum
speed. There are two different cases: T} < 7J and 7'} > 7l
For the former case, there are no conflicts between agents 7
and j. This is because when agent j arrives at the charging
station using the maximum speed, agent 7 has already left
the charging station. For the latter case, the speed of agent
j will be set to
v (t) = 7HSJ ]H <w,

Tf — 77
for 77 < t < T}. Therefore, agent j will arrive at the
charging station right after agent ¢ finishes charging. It is
straightforward to extend the case of two agents to the
case of multiple competing agents.

Shortest Distance First  Suppose that agent i sends a
charging request at 7¢. While agent i is on its way to
the charging station, suppose that agent j, which is closer
to the charging station at time 77, also sends a charging
request. Therefore, if both agents travel at the maximum
speed, agent j will arrive at the charging station before
agent 7. In this case, the speed of agents j is set as

v; (t) = v,
and its arrival time is Tg The arrival time of agent 7 will
be scheduled at max{r{, 7.}, where 77 is the leaving time
of agent j from the charging station and 7, is the intended
arrival time of agent i to the charging station. Similarly,
there are two different cases: 77 < 7;, and 77 > 7.. For the

former case, there are no conflicts between agents j and 1.

For the latter case, the speed of agent i is set as
for t € [r,79),
vi (t) = Hs H for t € [77,79).
Tf -7 !

In this case, agent ¢ is scheduled to arrive at the charging
station right after agent j finishes charging. It is not



difficult to extend this reasoning to the case of multiple
agents: the one closer to the charging station always
receives the highest priority to be served first.

4.8 Optimality

Mode 1 Since the feasibility of the problem in (5) has
already been guaranteed by the hybrid system model
constructed, the constraints on ¢;(t),7 = 1,..., N are no
longer needed. In addition, since an agent does not know
the state-of-charge of all other agents or the positions of
non-neighbor agents, it does not know when it will switch
to Mode 2. Thus, an agent in Mode 1 seeks to maximize
the objective function H(s(t)) at the fastest possible rate.
Given the trajectories of other agents, the optimization
problem for agent ¢ in Mode 1 becomes

max H(s(t))
wt(s).’t.z( ) 0<w(t)<w (15)
(1) and (2)

Here, a continuous-time gradient method is used to seek
the optimal solution of the optimization problem (15). The
normalized gradient direction is shown in (9) and (10). We
can show that when v(t) = v, the gradient method achieves
the fastest rate of convergence. In particular, calculating
the time derivative of H (s (t)), we obtain

N
W) =Y |50 0+ i)

-3 () (4.

Given the positions of other agents, we can achieve the
largest increasing rate of H (s(t)) due to agent i by
choosing v; (t) = v.

Mode 2 Once an agent is in the to-charging mode, its
trajectory no longer follows the gradient direction of the
objective function. Therefore, we seek to minimize the
time duration of an agent in Mode 2, that is, to solve the
following minimum time optimization problem:
min J = f ™ 1dt
T2
st. 0<w(t) <w,
(1) and (2)
S; (T3) =0

(16)

where 75 is the time when an agent switches to Mode 2,
and 73 is the time when an agent switches to Mode 3.

Then we have the following theorem.

Theorem 2. The shortest time of an agent in Mode 2 is
J* = ||si(72)]| /v and the corresponding energy cost is
va[si(ma)]l-

Proof. The optimization problem in (16) is subject to
(1) and (2), and the final state constraints z; (t3) = 0,
yi (13) = 0. The Hamiltonian is

H =14 A (t)v; (t) cosw; (t) + A (t) v; (¢) sinw; (t).
By the stationarity condition, we have —A¥ = —AY = 0.
Therefore, we know A? and A/ are constants. Again, by
the stationarity condition, we have

oH

6’LUZ'

0= = —A7sinw; (t) + AY cosw; (t) .

Then, w; is a constant. By the final condition z; (73) = 0,
and y; (13) = 0, we obtain
1+ Av; (13) cosw; + N v; (3) sinw; = 0.

Therefore, we have the condition A¥ cosw; + AY sinw; < 0
since 0 < v; (73) < v. According to Pontryagin’s minimum
principle, the optimal v} (f) must satisfy

1+ 7 (t) (AF cosw; + A sinw;)

<1+ (t) (AT cosw; + A sinw;) .

It follows that v} (t) = v since A¥ cosw; + A sinw; < 0.
The state equations are given as follows:

. OH . oH

% (t) = o =v;coswy, Ui (t) = N
Using the optimal control v} = v, and taking into account

the initial states, we can integrate the above state equa-
tions to get

= v; sinw;. (17)

z; (t) = z; (12) + v (t — T2) cos w;,
yi (t) = y; (T2) + v (t — 72) sinw;.
Thus, the final time 73 must satisfy
0= (12) +v (73 — T2) cosw; = y; (T2) +v (73 — T2) sinw;.

Here cos? w; + sin® w; = 1, which is

3 (12) vi()
V2 (15— 1) 02 (13— 72)? '
Therefore, the minimum-time is J* = ||s;(72)|| /v and the
optimal heading direction is determined by
cosw; = Ti\T2) (72) , sinw; = Yi\T2) (72) .
[[si(m2) [[si(72)

By integrating both sides of (3), we have

qi (13) — qi (12) = —aw [[si(72)| ,
and the proof is completed by multiplying both sides by
-1. O

Remark 3. The guard function (12) guarantees that when
an agent switches from Mode 1 to Mode 2, it has sufficient
energy to travel to the charging station using the least
time. The guard function (12) is optimal in the sense that
an agent maximizes its time in Mode 1 and minimizes its
time in Mode 2.

Mode 3 We now address the question of selecting an
optimal charging level, denoted by 6 = [1,...,0n], when
an agent is in the charging mode. This problem boils
down to optimizing the parameter 6 so that the objective
function in (5) is maximized. By writing explicitly the
dependence on 6, the optimization problem becomes

J(0) = meax%/o H (s(6,1)) dt.

Even though 6 is only used in Mode 3, its optimal value
affects the entire hybrid system model. By controlling 6, we
directly control the switching times of agents from Mode
3 to Mode 1, and indirectly control the switching times of
agents from Mode 1 to Mode 2. The switching times of
agents from Mode 2 to Mode 3 are controlled by the pro-
posed scheduling algorithms. Also note that the parameter
0 is constant. We can obtain optimal charging thresholds
through off-line analysis and implement the coverage task
on line by all agents in distributed fashion. To determine
the optimal 6, we will use Infinitesimal Perturbation Anal-
ysis (IPA) techniques (Cassandras et al.[2010]Cassandras



(Wardi)), a task which is the subject of ongoing research
to be reported in future work.

A visual interactive simulation can be found at http://
www.bu.edu/codes/simulations/Coverage_ADHS. Inter-
ested readers are encouraged to interact with the simula-
tion by choosing different scheduling algorithms, as well as
adjusting parameters such as the number of agents N, the
sensing range ¢;, or the maximum speed v.

5. CONCLUSION

A hybrid system model is proposed to capture the behavior
of multiple agents cooperating to solve an optimal cov-
erage problem under energy depletion and repletion con-
straints. The proposed model links each agent’s coverage,
to-charging, and in-charging modes so as to form a cycle
and the guard conditions are designed to maximize the
coverage performance over a finite time horizon as well
as to ensure that the agents never run out of energy. The
problem of controlling the amount of energy repletion that
maximizes the coverage objective function is the subject of
ongoing research, as is the inclusion of energy expended for
communication among agents. In addition, it remains to
investigate the performance of the two proposed schedul-
ing algorithms and explore additional ones. We conjecture
that SDF performs better than FRFS, but this remains
to be verified. Finally, when obstacles are present in the
mission space, finding optimal trajectories for agents in
Mode 2 is a challenging task that we plan to address in
future work.
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Appendix A. CALCULATION OF THE GRADIENT

To find the heading direction of agent 4, we need to
calculate the gradient of H (s) at point (z;,y;), which
is VH (s;) = [0H/8x;,0H/8y;]" . According to Flanders
(1973) we can calculate the gradient as

/ / 5‘:E oy de
axz 836z 89 8;161 O, ’

where the integration in the second term is done in
the counterclockwise direction over the boundary of €.
Recalling the expressions of (6) and (7), we have

Jr oy
/ <8xld B 8xld )
This is because when (z,y) € 92 N 09;, P = 0; when

(z,y) € OO\, Ox/0x; = Jy/dx; = 0. Therefore, we
can obtain

83; // (1 — p;) dedy. (A1)
i JEN;
Similarly, we have
on / [P ] a-p)aody. (42
Yi JEN,

Remark 4. When the sensing range 2; of agent 7 is blocked
by the boundary, the gradient can be derived similarly
using a simple projection onto the feasible mission space.
The detailed calculations for this case are thus not shown
here.



