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Abstract: Mechanistic models in biology often involve numerous parameters about which we
do not have direct experimental information. The traditional approach is to fit these parameters
using extensive numerical simulations (e.g. by the Monte-Carlo method), and eventually revising
the model if the predictions do not correspond to the actual measurements. In this work we
propose a methodology for hybrid system model revision, when new types of functions are needed
to capture time varying parameters. To this end, we formulate a hybrid optimal control problem
with intermediate points as successive infinite-dimensional linear programs (LP) on occupation
measures. Then, these infinite-dimensional LPs are solved using a hierarchy of semidefinite
relaxations. The whole procedure is applied on a recent model for haemoglobin production in

erythrocytes.
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semidefinite optimization, occupation measures.

1. INTRODUCTION AND CONTEXT

Context. Mechanistic models in biology generally involve
many parameters whose values can be either measured
experimentally or inferred from data which provide rela-
tionships between parameters and other biological entities.
To a large extent, biological mechanisms can be modelled
using ordinary differential equations (ODEs), or hybrid dy-
namical systems with ODEs and discrete switches, applied
for example when the system is perturbed or measured
during its evolution. A basic concern is to determine the
numerical values for the parameters of the ODEs, or more
generally a subset of the parameter space, under which
the model agrees with the available data. It is common to
synthesize parameters using a Monte-Carlo sampling of the
parameter space, which is validated then by numerous sim-
ulations. When model simulation does not reproduce sat-
isfactorily available experimental data, to a degree which
depends on data quality, for any admissible parameter
value, the model has to be revised. In this paper we develop
a formal approach which does not rely on simulations, to
study mechanistic biological models in their experimental
context and revise parameters to produce conservative
results with respect to experimental data.

Model revision. Consider the optimization problem:

Nexp

inf Y distm(x(Tyu(T),z) (1)

(x, 1)

where x is a vector of biological variables, such as concen-
trations, whose dynamics is governed by a biological dy-
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namical system. Time-varying parameters are represented
by the input variables u (modelling biological parameters)
such that V¢ € [0,7],u(t) € U. Xy is the set of initial
conditions and the set of pairs {(7},z;)}; is the set of
data points, for 1 < j < negp, in the time frame [0,7]. An
experimental measurement is a function of the variables
x and is modelled via the function m(x), e.g. measure-
ment of a kinetic parameter of a biochemical reaction in
enzymology. In other words, the typoe of model revision
considered here consists of finding time-varying laws of
parameter evolution that minimize the error in matching
experimental measurements.

Contribution. In this paper we address the model revi-
sion problem (1) for the haemoglobin production model
from Bouchnita et al. (2016). The framework of our ap-
proach is a mathematical formalization of experimental
protocols as hybrid dynamical systems, by formulating a
particular instance of the optimal control problem with in-
termediate costs, when the objective function depends on
the state variables and control inputs at a given set of time
points. This problem is then approximated by multiple
hybrid optimal control problems (HOCP) with one final
cost. The solution stands on a recently developed method
of Zhao et al. (2017) from the field of certified convex opti-
mization to globally solve these HOCP. This method relies
on occupation measures and a sequence of semidefinite
relaxations to produce a sequence of polynomial controls
converging to the optimal solution of a HOCP. However,
the method described in Zhao et al. (2017) produces piece-
wise optimal control functions which either may not be
biologically realistic or may be difficult to yield coherent
and meaningful biological interpretations. Consequently,



in order to respect realistic constraints on parameters, we
use smooth approximations of the generated control input
to revise the given model while maintaining good data
fitting accuracy.

Related works. An important effort to formalize and
validate the parameter synthesis of biological models has
been made in works such as Donzé (2010); Mobilia (2015);
Dreossi (2016); Benes et al. (2016), or Rumschinski et al.
(2010). Other approaches such as the ones of Cardelli
et al. (2017) or Bartocci et al. (2013) design ODE models
satisfying sets of temporal constraints.

The hybrid formalism has previously been used as an ab-
straction method to simplify complex mechanisms which
are hard to analyse as seen in Noel et al. (2011); Rocca
et al. (2016), or to represent “jump” evolution such as ac-
tivation processes in gene regulatory networks for example
using the stochastic formalism as in Li et al. (2017).

Optimal control theory and variation theory have been
applied to biological systems in several works. Most of
them address the classical problem of finding a correct
input such that the system reaches a desired state. For
example, one can control drug input such that a patient
attains a healthy state, see Ledzewicz and Schéttler (2007)
or Caraguel et al. (2016). Another example is the control
of some input in population studies as detailed in Bodine
et al. (2008). A detailed review on the use of optimal
control in systems biology can be found in Lenhart and
Workman (2007). The problem of parameter estimation
in presence of multiple data, also called data assimilation,
is stated in (Lenhart and Workman, 2007, Chapter 26).

The optimal control problem for specific classes of hybrid
systems has been investigated in several domains, such
as mechanical systems in Pace and Burden (2017) and
switched-mode systems in Wardi et al. (2015); Xu and
Antsaklis (2004); Bengea and DeCarlo (2005). The work
of Pakniyat and Caines (2014) relies on Dynamic Program-
ming and an extension of Pontryagin’s Maximum Princi-
ple. However, these approaches need a priori knowledge
either on the sequence of discrete transitions, or on the
number of visited subsystems. To perform optimal control
on hybrid systems, we build our work on the techniques
from Zhao et al. (2017), which proposes a method to
obtain a global solution for hybrid systems with state-
dependent transitions, without any a priori knowledge on
the execution and the sequence of transitions.

Semidefinite programming (SDP) eases the resolution of
hard optimization problems and yields conservative re-
sults ensured by positivity certificates. In Lasserre (2001),
hierarchies of semidefinite relaxations were introduced
for static polynomial optimization. The definition of an
infinite-dimensional linear program (LP) over occupation
measures, for optimal control problems, was first intro-
duced in Vinter (1993). From this infinite-dimensional LP,
Lasserre et al. (2008) defines hierarchies of Linear Matrix
Inequalities (LMI) relaxations, to synthesize a sequence
of polynomial controls converging to the solutions of the
optimal control problem. In Abdalmoaty et al. (2013) the
authors propose an extension to piecewise affine systems.
Our underlying idea of constructing a suboptimal control
with an iterative algorithm is similar to (Abdalmoaty
et al., 2013, Section 4). However, we use this scheme to

find input functions allowing to reproduce data not only
at a final time point but also at intermediate time points.

Organization. In Section 2 we give the necessary back-
ground on hybrid systems and the optimal control prob-
lem. Section 3 presents our contribution to the resolution
of the hybrid optimal control problem with intermediate
points. The case study is presented and discussed in Sec-
tion 4, and conclusions are drawn in Section 5.

2. PRELIMINARIES

We first give the notations and recall the definition of
controlled hybrid system and hybrid optimal controlled
problem that are used in the sequel.

Notation. Given x € R", let z; denote its i-th component.
In general, letters in bold font denote multidimensional
elements, and normal font unidimensional ones. Let B :=
{true,false} be the set of Booleans. Let R[x] denote
the ring of real polynomials in x € R”, and let Ry4[x]
be the subspace of polynomials whose degree is at most
d. Let T be the time interval [0, 7], where T is the final
time (possibly co). Consider the n-dimensional ODE with
inputs, x(t) = f(¢,x(t),u(t)), with f : 7 x R* x R™ — R”
a vector field which is Lipschitz continuous in x and
piecewise continuous in u. Let X and U be compact
subsets of R™ and R™ respectively. Here, u : T —
U is a feasible input function which represents time-
varying parameters, or external commands. The tuple
F :=(T,X,U,f) defines a continuous dynamical system.

Controlled hybrid systems. Let us recall the definition
from Zhao et al. (2017). A controlled hybrid system (CHS)
is defined by the tuple: H = (Z,&,X,U,F, S, R) where:

e 7 C N is the finite set of mode indices, and n.,odes
the number of modes.

e £ C T x T is the set of transitions e = (4, j) between
two modes: 7 is the source mode, and j the destination
mode.

e X := [[;c7 X; is the disjoint union of domains of H
and X; the domain of the mode 7. We note that X;
is a compact subset of R™ with n; the dimension
of the mode . The disjoint union [] can simply
be considered as a labelling operation on the set of
domains by Z, that is the set of mode indices.

e U is the set of input values of H.

o F := {F,}iez is the set of continuous dynamical
sub-systems associated to each mode. The dynamical
system associated to mode 7 is:

-Fi = (T7 Xi7qui)7

with f; : T x X; x U — R™ a vector field polynomial
in x and affine in u.

e S :=]].ce Se is the disjoint union of guards S, C X;
associated to each transition e = (i, j) € £. The guard
S(i,j) defines the switch condition from i to j: for
x € X, if x € §(; ;) then the system at x can make
the transition from mode 7 to mode j.

e R := {Rec}ece is the set of reset maps, each reset
map R : S¢ = X, being associated to a transition
e := (i,j) € &€ and it defines how the continuous

variables may change after the discrete transition
from mode ¢ to mode j.



Additionally, the CHS must respect a few technical as-
sumptions, ensuring that it is deterministic, see Dang et al.
(2017).

Hybrid optimal control problem. Given a CHS H, let
Xg, and X7, be the initial set and target sets defined by
Xo := [1;ez Xo,i and X7 := [[;.7 X7,;, where Xg; and
Xr,; are compact subsets of X, for each mode i € Z. Let
ig and i be the initial mode and the final mode at time
T, respectively. Then, given (ig,x(0)) = (ig,%Xo) € Xo and
u : 7 — U an input function, we say that for T > 0,
(x(t),u(t)) € P is an admissible pair on 7 and P is the
set of admissible pairs, if (i,x(t)) € X is a trajectory of
H (Zhao et al., 2017, Algorithm 1) and (ip,x(T)) € Xr.
The HOCP is defined by:

T
JE = inf Bxcoetn (£ %nisen (£), u(t)) dt
hocp = I | e (B Xaeey (0, u(B) dE- o)
+ Hyx(r)) (%o (1)) -
where {hz [O,T] x R" x R™ — R}iél' and {H,

R™ — R};c7 are measurable functions, and A\(x(t)) is the
function which associates to an instantaneous state x(¢)
its corresponding mode.

3. OPTIMAL CONTROL FOR MODEL REVISION

We propose in this section a method to synthesize time-
varying parameters reproducing experimental results of
a multiple-phase protocol modelled by a hybrid system.
Indeed, it is crucial to approach model revision taking into
account the biological system in the evolving environment
of the complete protocol.

Problem statement. We begin by stating an optimal
control problem where u(t) are input functions which
minimize the distance of the results produced by the
model and given experimental data points. Measurements
modelled by a function m(x(t)), are performed at times
T;, 1 < j < Negp. Let z; be the data point at time T3,
and 7egp be the number of data points. Let X, , be
compact subsets of X;, and Xr, := ]_L.GI X7, As in
(2), let (ig,x(0)) € Xy, and suppose that we are given
a set of time values {Tj}, with 1 < j < neyp, and
Tn.,, = T. Given an input function u : 7 — U, we
say that (x,u) € P;p; is an admissible pair for a problem
with intermediate points and P;,; the associated set of
admissible pairs, if (i(t),x(t)) € X is a CHS trajectory,
and (ir;,x(T})) € Xr, for all j. Let H(x(T})) be a cost at
time Tj, and h(t,x(t),u(t)) a running cost for the whole
[0,T] interval. The model revision problem is the optimal
control problem with intermediate cost for the CHS H:

T Neap
J*:= inf / h(t,x(t),u(t))dt + H (x(T;)) (3
[, MO O 3 H ) 3
In this paper, H (x(T;)) = [|mx(T};)) — zj||% and

h(t,x(t),u(t)) model additional constraints on the control
or temporal properties. To our best knowledge there is no
method to efficiently address directly problem (3) which is
a generalization of (2). Consequently, we search for an ad-
missible solution using a greedy approach: we cut problem
(3) into a sequence of problems (2) that can be solved using
the method from Zhao et al. (2017). A good trade-off is
obtained between computational cost, optimality and flex-
ibility with this solution scheme. Moreover, this method

does not constrain the form of the sought parameters
which eases the modelling and biological interpretation.
For each 1 < j < ngyp the HOCP subproblem is:

T;
Ji = inf /
(x(J)7ﬁ(J)) T 1

with (iU)(t),xU)(t)) a trajectory of a CHS H on the
interval T; := [Tj_1,T}], and similarly @) (¢) the control
on 7;. We let Tp = 0 and T,,,,, = T. We note that
if a transition ¢ — ¢’ occurs at time T} of the interval
[Tj-1,T}], we retain only the left part in the mode ¢
for the next optimization on the interval [T}, Tj41]. Let
u(t) and (i(t),x(t)) be respectively the control and the
trajectory, for ¢ € [0,T]. They are respectively defined
by the concatenation of all the controls @) (¢) and the
trajectories (i) (t),x\9)(t)) on the sub-intervals [T;_y, Tj].
By construction, (x(¢),u(t)) is an admissible pair for (3),
as (ir,, x(Ty)) = (i) xV)(Ty)) € Xr,.

Remark 1. We emphasize that (x(¢), a(t)) is not necessary
an optimal solution for (3). Moreover, as the optimization
problem (4) is obtained through a greedy scheme, we have
no guarantee that its optimal cost J¥ is inferior to a given
€. However, as we want to equally ét all the data points,
searching iteratively for the control gives a satisfactory
solution.

h(t,x9, a)dt + H(xY) (1)), (4)

Algorithm. Algorithm 1 finds an admissible solution to
(3), by solving a sequence of the HOCP (4), and it is
decomposed in three steps. The first step is the procedure
HOCP, associated to the HOCP (2) for a given pair (7}, z;).
Given a starting relaxation degree r, and a relaxation order
d, > r, we solve the relaxed primal defined in (Zhao et al.,
2017, Section 5.1). As described in Zhao et al. (2017), we
obtain My, (y,,), the sequence moment matrices of degree
d,, associated to the occupation measure p; of each mode
1 € I. We also obtain J ;dr) an under approximation of the
optimum of (4). The second step is the procedure Synth,
which returns the admissible control @) (¢,x) of degree
d, < d, using a truncated moment matrix Mg, (y,,) of
Mg, (y.,) at the reduced degree d,. The third and last
step is the procedure Simu. It performs the validation that
the synthesized control @) yields ||m(x(T})) — z;||3 < ¢,
where ¢ is just a stopping criterion. This last step is
done with numerical simulations using an ODE solver with
discrete events. If ||m(x(T}))—z;]|3 < ¢, then (i7, xU)(T}))
reached at ¢t = T} give the initial conditions for the next
iteration j + 1. Otherwise, Ctrl_Synth and Simulate are
repeated while increasing the degree of the control until
dy = d,. If ||m(x(T})) — z;||3 < ¢ is still not satisfied,
the relaxation order d,. is increased, and the three steps
are repeated. If ¢ < lgdr) then for the considered pair
(ig, o), there is no control such that ||m(x(7})) — z;||3 <

€. Consequently, we keep our previous result a) and
(if,xY)(T})) is the initial condition for iteration j + 1.

4. CASE STUDY: HAEMOGLOBIN PRODUCTION

In this section, using the method developed in Section 3,
we revise the model of haemoglobin production by finding
a better fit for the time-varying parameter noted k3 in



Algorithm 1.
1: procedure ALGORITHM 1(H,{(T},2;)};,%0,X0,€,7)
2: Tinit =0
for all experimental data (7},z;) do
dy, =0,d, =r,err = 400
while err > ¢ /\lgdr) <edo

3

4

5

6: lg-dr), Mdr (yﬂ) = HOCP(H, 105---
T ~'~X07Tinitanazjadr)
8 while err > ¢ and d, < d, do

9 ﬂﬂ”(x(t)7 t) = Synth(My, (yu), du)

10: (if,x) (1)) = simu(H, a9 (x(t), t),...
11: io,Xo,/TinZ‘t,Tj)
12: err = H(zY)(T}),z))

13: increase d,

14: end while

15: increase d,

16: end while

17: g = if

18: Xo = X(j)(T])

19: Tinit = T

20: end for

21: end procedure

Bouchnita et al. (2016), with respect to the same error
function.

The haemoglobin production model. Erythrocytes
(also named red blood cells) are produced inside the bone
marrow. In this place, they go through multiple differenti-
ation stages from stem cells (also called hemocytoblasts
in this context) into erythroblasts and finally erythro-
cyte. This differentiation process is also called erythro-
poiesis. During its differentiation, an erythroblast pro-
duces haemoglobin. At the final stages, the erythroblast
forces out its nucleus and is released in the circulating
blood. The haemoglobin stored in the erythrocyte will
play the role of oxygen transport protein. Without entering
into details, the haemoglobin Hb is constituted of 8 sub-
components: 4 hemes (H) and 4 globins (G). The heme
contains iron Fe and its production directly depends on the
iron input into the cell. The globin production is regulated
by the heme. The experimental results considered in
this section are the same as the ones previously fitted
in Bouchnita et al. (2016), and are taken from the work
of Koury and Bondurant (1988). The experiments aim to
measure the rate of haemoglobin production at different
steps of the erythropoiesis.

However, haemogolobin production is not directly mea-
sured, and the experiments probe it indirectly through
the integration rate of radiolabelled iron °°Fe in heme
(free in the cell or integrated in the haemoglobin). Con-
sequently, we only observe the quantity of radiolabelled
heme *°H 4 4 °°Hb. Additionally, the measurements are
performed on a subset of the differentiating cells and 3
hours after the injection of radiolabels. Overall, this is
a multi-phase experiment that can be described with a
hybrid system with modes? that correspond to the evo-
lution of the control batch of cells without radiolabels
and modes representing the evolution after injection of the

2 Due to limitations, details on the transitions are given Dang et al.
(2017)

Fig. 1. Synthesized optimal control (blue) and various
approximations that yield a realistic interpretation.

radiolabels. Here, we search a better fit of the time-varying
parameter k3(t) modelling the production mechanism of
heme. Consequently, this parameter is directly linked to
the observations: the iron integration rate in heme and
haemoglobin.

Scaling and balancing. For numerical reasons, it is nec-
essary to scale the parameters and state variables, making
it easier for the solver to succeed in solving the relaxed
problem. Similarly, to facilitate the numerical optimization
we rewrite the control variable u(t) € U = [0,1] as
u(t) = Cks(t), with ¢ <« 1 and ks(¢) € [0,1/¢]. While the
scale factor ¢ may take different values depending on the
numerical optimization details, the objective control u(t)
always evolves in [0, 1]. We solve the optimal control prob-
lem with intermediate time points defined in (3), using the
method from Section 4. The experimental measurement is
m(x) := *’H+4 **Hb. Thus, we set H (x(T})) := (*°H(T};)+
45°Hb(T}) — z;)?, as we search to minimize the total
residual error term:

Etotal = §

H(x(13))
21 <y %

: (5)

where x is the vector of biological concentrations. The
original experimental data points (1},z;) are given in
Table 1. Here, the input control k3(t) models some hidden

Time (h) 7 11 19 27 35 45 55

Measure (;—%™ ) 16 85 348 391 399 481 395

Table 1. Experimental data points (T}, z;) used
as references.

mechanism which evolves with the differentiation of the
cells. It should be the same function of time for both the
control and the radioactive cell batch.

However, as the control generated by Algorithm 1 is piece-
wise, with 1 continuous piece for each mode, and the fact
that our data are on the radioactive species only, the
solution of the optimization problem with only a final cost
H(x(T;)) is not balanced, having a much stronger control
in the modes where the radioactive species are evolving.

A workaround for the balancing problem is the following.
We add a small penalization cost ¢} () = (0.01u(t))? to
equilibrate the control when ¢ corresponds to a mode
with radioactive species, otherwise c}(¢) = 0. In a similar
vein, we add another penalization cost ¢Z(t) = (u(T}) —
u(t))? to avoid when the control strongly varies between
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Fig. 2. Top: Radioactive quantities 59Fe, Gtot. Bot-
tom: comparison of the measurement function results
(**H + 4 **Hb)to the data of Table 1 (crosses).

two iterations j on the interval [T;_;,T;] and j + 1 on
[T, Tj+1] (with the exception of the first iteration). This
leads to h;(t,x(t),u(t)) = c}(t) + c3(t). Let us note that,
even if these additional costs can eventually degrade the
accuracy of the data fitting, we gain in terms of biological
interpretation of the resulting traces.

Implementation. Finally, by partitioning the compu-
tation in the time domain, we can greatly reduce the
computational cost at each iteration. More technically,
since the transitions of the hybrid system #H are fully
determined by the time ¢, we can pre-compute the function
A(x(t)) from Section 2. Thus, each iteration j of Algorithm
1 can be restrained to the sub-hybrid system H7 of H,
constituted by the modes visited in the interval [T};_+, T}].
For numerical implementation, the problem on measures
is formulated in SPOTLESS?, and then we extract the
primal solution provided by a primal-dual SDP solver.
To do so, we use the implementation from Zhao et al.
(2017) to generate the dual problem. We used the SDP
solver MOSEK v.7.1 (Andersen and Andersen, 2000), in
MATLAB v.9.0 (R2016a). Results are obtained with a
processor 17-5600U CPU (2.60 GHz) with 16Gb of RAM
on Debian 8. We only solve the problem for a relaxation
order r = 4, as any higher order would be too memory
expensive. Here, we did not impose any constraint on ¢.
Using this configuration, the total time taken by Algo-
rithm 1 is 2107s, with 1700s spent in the HOCP procedure,
and 390s in the Synth procedure. On Figure 1, the control
generated by Algorithm 1 is shown in blue. This control
is piecewise, and clearly divided in two phases: before and
after ¢t equals 11 hours. However, the control synthesized
is still difficult to interpret as a biological phenomenon.
Consequently, we propose and analyze three fits of this
control by using functions closer to biological knowledge.
In Figure 2, we show a graphical representation of how
closely each function can control the model to reach the
desired data points.

Results without fitting. In a simulation-based ap-
proach, we have to propose a template function to fit the
data, e.g. a polynomial of given degree, for the desired
time-varying parameter. If we want to fit a polynomial

3 https://github.com/spot-toolbox/spotless

of higher degree, the simulations have to be run again
multiple times. On the contrary, the proposed approach
returns a control signal, and since the fit to data points is
performed a posteriori, there is no additional computation
cost in refining the model. In this case study, from the form
of the experimental data points, a usual hypothesis is that
k3(t) should be similar to a jump function, with a low value
for the two first points, and a higher one for the following
ones. However, even with such information a good fit is not
easily achieved with simulations. The control generated
with Algorithm 1 returns the expected “jump” behaviour
for k3(t), and the total residual error is 9.59% which is
much lower than the 22.8% from Bouchnita et al. (2016).

Results with fitting. We first fit a step function to the
generated control, with a change at ¢ = 11. The associated
error of 12.24% is still lower than Bouchnita et al. (2016),
yet being higher than the generated control mainly due to
the second-to-last point. We also fit a piecewise polynomial
function in two pieces. The first piece, for t € [0, 11], is a
polynomial of degree 2 while the degree of the second,
for t € [11,55], is 4. This proposed input control allows
to reproduce more accurately, than the step function, the
third data point. However, the total error is 13%, being
overall the worst of the proposed fits. Lastly, we fit a Hill
function, a function used to model the kinetics of a class
of biochemical reactions and which is a very common way
to represent biological activation processes. The associated
total error is 7.5%, which is the lowest, taking advantages
from both the step function and the piecewise polynomial
function. In this case, the inaccuracy also mainly comes
from the second-to-last point, which is quite separated
from trend of the other experimental points, and may be
due to some experimental problems (no standard deviation
results were available). Without taking this point into
consideration for the error computation the error falls to
3% for the Hill function fit.

Discussion. On this particular example, the generated
control is accurate, and computed in a reasonable time
(~35min), even for a large hybrid system of 14 modes
with at most 9 continuous variables. Using some fitting
functions afterwards, it is even possible to refine the results
and also obtain a biologically meaningful interpretation for
the desired time-varying parameters.

The presence of a Hill function (jump behaviour) in the
evolution of the k3 parameter suggests that the consump-
tion of iron for heme synthesis is regulated, and triggered
at a given point in the differentiation process. The evolu-
tion law of k3 is thus a way to account for a regulation
process not explicitly described in this model.

5. CONCLUSION

In this work, we have addressed an important problem
arising in biological modelling: model revision. We pro-
pose a method for revising an experiment modelled by a
hybrid system, given a set of experimental data points.
The method scales even on large hybrid systems such
as the haemoglobin production model, while providing
an accurate result, and a meaningful interpretation, as
an activation process, for the mechanism underlying the
revised parameter. The CHS formalism is motivated by
the development of an automatic, and formal modelling of



multiple-step experimental protocols, and to develop new
methods for their analysis. Such formal representations
had already been used as alternative, non-ambiguous lan-
guages, in contrast with the natural language, for the de-
scription of experiments Soldatova et al. (2008). However,
those works do not consider an underlying mechanistic
model in the form of ODEs. In future work we plan to
investigate, using the CHS formalism, two other relevant
problems in biological systems modelling: finding valid
subsets of the parameters space fitting multiple data points
(as an extension Shia et al. (2014)), and the validation of
biological experiments. The focus of this work has been on
ODEs, but multicellular systems and transport processes
are described by partial differential equation (PDE) mod-
els. The extension of semidefinite programming techniques
to PDEs (Mevissen et al., 2011) and their application to
biological models would require further theoretical and
numerical developments.
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