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Abstract: Controller synthesis techniques based on symbolic abstractions appeal by producing
correct-by-design controllers, under intricate behavioural constraints. Yet, being relations
between abstract states and inputs, such controllers are immense in size, which makes them
futile for embedded platforms. Control-synthesis tools such as PESSOA, SCOTS, and CoSyMA
tackle the problem by storing controllers as binary decision diagrams (BDDs). However, due
to redundantly keeping multiple inputs per-state, the resulting controllers are still too large. In
this work, we first show that choosing an optimal controller determinization is an NP-complete
problem. Further, we consider the previously known controller determinization technique and
discuss its weaknesses. We suggest several new approaches to the problem, based on greedy
algorithms, symbolic regression, and (muli-terminal) BDDs. Finally, we empirically compare
the techniques and show that some of the new algorithms can produce up to ≈ 85% smaller
controllers than those obtained with the previous technique.
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1. INTRODUCTION

Controller synthesis techniques based on symbolic mod-
els, such as e.g. Tabuada (2009); Rungger et al. (2013);
Liu et al. (2013), are becoming increasingly popular. One
of the key advantages of these techniques is that they
allow for synthesising correct-by-construction controllers
of general nonlinear systems under intricate behavioural
requirements. However, the downside of the synthesised
controllers is their size as, in essence, they are huge tables
mapping abstract state-space elements into input-signal
values. Even for toy examples, the produced controllers
can reach a size of several megabytes. In real-life appli-
cations however, they can be several orders of magni-
tude larger. The latter prohibits them from being used
on embedded micro-controllers which typically have very
limited memory resources. This state-space explosion is
the consequence of: (1) the number of abstract system
states and inputs which are exponential in the number
of dimensions and inverse-polynomial in the discretisation
values; and (2) storing multiple valid input signals per
abstract state.
There are numerous tools, implementing or incorporating
control synthesis, such as PESSOA, SCOTS, CoSyMA,
TuLiP, see Mazo Jr et al. (2010), Rungger and Zamani
(2016), Mouelhi et al. (2013), and Wongpiromsarn et al.
(2011) correspondingly. Internally, they either use an ex-
plicit control law representation in a table form or employ
Reduced Ordered Binary Decision Diagrams, introduced
by Bryant (1986) and called RO-BDDs or simply BDDs,
in an attempt to optimise the memory needed to store
the synthesised control law. RO-BDDs are canonical, effi-
ciently manipulable, and in many cases allow for compact
data representation. However, their size is strongly depen-
dent on the variables’ ordering and the problem of finding
an optimal one is known to be NP-complete, as shown by
Bollig and Wegener (1996). To fight that issue, tools such
as SCOTS and Pessoa use the state of the art RO-BDD
library CUDD, see Somenzi (2015), which implements nu-
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merous efficient variable ordering optimisation heuristics.
Yet for practical applications, synthesised BDD controllers
can still easily reach hundreds of megabytes.
To our knowledge, there have been just a few attempts
made to find compact but practical representations of
(symbolically produced) control laws. Except for using
BDDs, we are only aware of another two approaches.
The first one, suggested by Staudt (1998), uses piece-wise
linear functions, also known as linear in segments (LIS)
functions, to approximate control functions of the form g :
R→ R. The approximation is considered for scalar control
functions of one argument only. The main motivation for
LIS is to reduce the memory footprint of implementing
controllers at the cost of some on-line computations, which
nonetheless are fast to perform. However, this approach
does not directly scale to multiple dimensions or allows to
resolve multiple-input’s non-determinism.
Another technique to reduce the control-law size, we shall
refer to as LA (Local Algorithm), was proposed by Girard
(2012b). It borrows ideas from algebraic decision diagrams
(ADDs), see Bahar et al. (1993), for compact function
representation and exploits the non-determinism inherent
to safety controllers. The considered controllers are multi-
valued maps g : Rn ⇒ N. The suggested approach
attempts to optimise the controller size determinizing
the control law by choosing one of the possible control
signals for each of the state-space points. In the selection
of such unique inputs, LA maximizes the size of state-
space neighbourhoods employing the same input with the
expected outcome of minimizing an ADD representation of
the resulting control function. However, the minimality of
the ADD representation cannot be guaranteed in general
by this approach, which leads us to investigate if better
compression approaches may be viable.
In this paper, we first prove that the problem of choosing
a size-optimal controller determinization is NP-complete.
We do that assuming the BDD controller representation,
but the result can be easily generalised. Next, we suggest
two new determinization approaches : GA (Global Algo-
rithm) - based on a greedy algorithm for the minimum set-
cover selection problem, see Karp (1972); SR - a hybrid of



ADD-based and symbolic regression techniques, powered
by genetic programming, see Koza (1994); Willis et al.
(1997). GA attempts to minimise the BDD size by max-
imising the number of controller states having the same
input signal. It differs from LA in that, when choosing a
common input for a set of states, it looks at the state-space
globally, without considering the actual state positions.
SR (Symbolic Regression) aims at bridging the intrinsic
limitations of LA and GA by using “arbitrary” (polynomial
and sigmoid in our case) functions as controller representa-
tions. This way we realise the Kolmogorov’s Li and Vitnyi
(2008) view on data compression 1 . Further, we combine
LA and GA into a hybrid approach called LGA (Local-Global
Algorithm). The idea here is that the determinization is
done as in LA but, if multiple common inputs are possible,
the preference is given to the one suggested by GA. In
addition, we consider B-prefixed version of LGA (BLGA)
which attempts for a better compression by using BDD
variable reordering to produce abstract state indexes.
We perform an empirical evaluation on a number of
examples from the literature. Our results show that
compression-wise 2 there is no absolute best approach.
However, LGA seems, on most cases, to be providing the
best compression. The SR approach, while only providing
better compressions in few examples, may be most promis-
ing when looking at actual embedded deployments, if it
could be pushed to remove any use of BDDs, and their
overhead on actual implementations.

2. PRELIMINARIES

2.1 Minimum set cover

The minimum set cover problem (MSC) is formulated as:

Problem 2.1. (MSC). Given a set X and a cover {Sj}j∈I ,
i.e. X ⊆

⋃
j∈I Sj , where |X|, |I| < ∞, find the smallest

subcover I∗ ⊆ I : X ⊆
⋃
j∈I∗ Sj .

Both, the decision and selection versions of MSC, are known
to be NP-complete. The first approximate poly-nomial-
time solution for MSC was given by Karp (1972).

2.2 Symbolic regression

Symbolic regression is a type of regression analysis that
searches for analytical expressions best fitting a given
dataset of numerical data, both in terms of accuracy
and simplicity. We apply this technique in order to find
the smallest analytical expressions best fitting symbolic-
model-based control-law functions, ensuring for the small-
est control law representation. One of the most popular
means for symbolic regression is genetic programming,
see Koza (1992) (GP). In this work, similar to Whigham
et al. (1995), we employ grammar guided genetic program-
ming algorithms (GGGP) to find multi-dimensional ana-
lytical expressions fitting the controller’s data. In fact, the
genetic process follows Verdier and Mazo (2017) except for
that the real-value parameter tuning is done with CMA-
ES Hansen and Ostermeier (2001). To speed up the CMA-
ES procedure, we use sep-CMA-ES which has a linear time
and space complexity Raymond and Nikolaus (2008).

2.3 Binary Decision Diagrams

Binary Decision Diagrams (BDDs), represented with
rooted directed acyclic graphs were introduced by Bryant
(1986), as a compact representation for boolean functions
F : {0, 1}n → {0, 1}. Given F with a list of arguments
{vi}ni=0, also called BDD variables or just variables, the

1 Instead of storing the control law as an explicit map, we search for
a symbolic function that for a given state computes the input value.
2 Up to the found optimal BDD variable reordering.

BDD of F results from the Shannon expansion thereof.
The order of arguments in the signature of F has clearly
no impact on F itself, but it has a drastic impact on the
size of the resulting BDD. Finding a size-optimal BDD
variable ordering was shown, in Bollig and Wegener (1996),
to be NP-complete. Yet, there are multiple polynomial
heuristics, Scholl et al. (1999), that can find a semi-
optimal variable ordering. One of the most popular thereof
is sifting, Rudell (1993), and its variants. Given a fixed
variable order, each BDD has a canonical minimum-size
representation, called Reduced Ordered BDD (RO-BDD).
Assuming the bottom-up BDD traversal, an RO-BDD can
be obtained by the following poynomial-time algorithm,
for more details see Section 4.2 of Bryant (1986):
(1) Combine terminal nodes with equal values
(2) Eliminate nodes with equivalent 3 children
(3) Combine nodes with pairwise equivalent children

Multi Terminal BDDs (MTBDDs) extend BDDs in that
tree’s terminal nodes allow for arbitrary labels, thus useful
to encode functions of the form F : {0, 1}n → U , with
|U | < ∞. The BDD reduction algorithm is naturally
extendible towards MTBDD which thus have the canonical
RO-MTBDD form. For an (MT)BDD M , we define R (.)
as a reduction function producing the RO-(MT)BDD
R (M). Algebraic Decision Diagrams (ADDs), introduced
by Bahar et al. (1993), are a synonym of MTBDDs. The
current state of the art implementation for RO-(MT)BDDs
is provided by the CUDD package Somenzi (2015).

3. PROBLEM STATEMENT

Consider a (possibly non-linear) discrete time control
system of the form:

x(k+1) = f(x(k), u(k)), x(k) ∈ X ⊆ Rn, u(k) ∈ U ⊆ Rm.
Symbolic approaches, see e.g. Tabuada (2009), automat-
ically synthesize controllers in the form of discrete state
transition systems. Furthermore, the resulting controllers
can often be reduced to a look-up table, see Reissig et al.
(2016), prescribing for each point of the state-space a set of
applicable inputs guaranteeing that the control specifica-
tion is satisfied. Such synthesized controllers usually take
the form of the combination of a (finite) set-valued map
g : S ⇒ V, and quantization maps qx : X → S, qu : U → V
reducing the originally infinite state and input sets to finite
sets (usually defining a grid), i.e. S ⊂ X , S ⊂ X , |S| <∞,
|V| < ∞. Moreover, the usual approach is to quantize
each dimension of X and U independently, i.e. qx(x) =
(q1x(x1), . . . , qnx(xn)), qu(u) = (q1u(u1), . . . , qnu(un)), where
each of the qix : Xi ⊂ R → Si, such that S = S1 ×
. . .×Sn, and similarly for the input quantizer. This results
in controller implementations selecting at each time step
u(k) ∈ g (qx(x(k))), see for details of such controllers Reis-
sig et al. (2016). Most often, the controllers synthesized
do not provide a valid input for some subset S∅ ⊂ S. We
define the set Sc := S \ S∅. We may assume that there is
some element nc ∈ V denoting a “no-input”, and thus we
can define S∅ := g−1(nc).
A symbolic controller g ⊆ S×V, by indexing the countable
sets Si and Vi, can alternatively be interpreted as a relation
g ⊂ Z≥0 × Z≥0. Consider B := {0, 1}, and let us define a
fixed-length base-2 bit encoding for non-negative integers
bits : K → Bb for some K ⊂ Z≥0, |K| < ∞, and
b := dlog2 (max (K))e. For k = (k1, k2) ∈ g ⊂ Z≥0 × Z≥0,
mapping the bit vector (bits (k1) , bits (k2)) to a boolean 1
defines a BDD encoding of g. Similarly, one can construct
an MTBDD encoding of g by mapping bits (k1) to k2.

3 “Equivalent” means: Representing the same binary function.



Relating elements of S or V with Z≥0 can be done with an
indexing function, typically defined as:

fb (ka, . . . , kb) :=

b∑
i=a

ki ·

i−1∏
j=a

2|bits(Nj)|

 , or (1)

fs (ka, . . . , kb) :=

b∑
i=a

ki ·

i−1∏
j=a

Nj

 (2)

Here, Nj :=|Sj | for j∈1, n, and Nj :=|Vj | for j∈n+1, n+m;
|bits (Nj) | is the data-type size needed to enumerate
intervals in j. Equations 2 and 1 are both used in
SCOTSv2.0. The former is employed in its interface classes
(UniformGrid and SymbolicSet), as it delivers smaller
indexes. The latter is used for BDD encoding as it avoids
bit sharing between distinct dimension interval indices.
In the present we consider the following minimisation
problem aimed at finding the smallest controller deter-
minization of a given controller g:

Problem 3.1. (OD). Find the best determinization g∗ of a
controller g optimizing: g∗ = argming̃∈F |enc (g̃)|, where
F : = {g̃ : Z≥0 → Z≥0|

∀s ∈ Dom (g) : ((g̃ (s) ∈ g (s)) ∧ (|g̃ (s) | = 1))} ,
enc (.) encodes controllers into RO-(MT)BDDs, and |.|
provides the (MT)BDD size.

In theoretical derivations, as in Kwiatkowska et al. (2006),
we define |.| to be the number of (MT)BDD nodes.
In practice, |.| is the number of bits used to store the
(MT)BDD by the CUDD package in the best-found,
variable reordering.

Theorem 1. The OD problem is NP-complete (NP-C).

Proof. See the proof in Zapreev et al. (2018)

4. LA ON MTBDDS

Girard (2012b) suggests a controller-size minimisation
technique, which we call LA, that uses ideas from MTBDDs
to represent the controller function in the form of a
binary tree. The approach does dimension-wise binary
splitting of the controller’s state-space bounding box.
The areas with no-inputs are considered to allow for
any input. For the areas with common inputs possible
a single input is selected non-deterministically. A branch
in the tree represents a state-space area with all states
having common inputs (stored in terminal nodes). The
determinization aims at choosing single inputs in a way
minimising the depth of the tree branches. The latter
is equivalent to reductions as in steps (1) and (2) of
the RO-BDD construction (c.f. Section 2.3), but not (3).
Girard (2012b) showed that LA can lead to drastic size
reductions, e.g., for “the simple thermal model of a two-
room building” example the original controller required
1.000.000 data units, whereas in the tree format it went
down to 27. Yet, in its original form this approach: (i)
does not preserve the controller’s domain – neglecting
basic data of safe initial states; (ii) employs a fixed state-
space splitting algorithm – not using controller’s structural
features; (iii) uses simple binary trees which are less
efficient than MTBDDs, due to the latter compression
abilities by variable reordering and their canonical reduced
form. This motivates extending the approach towards
MTBDDs.
LA can be adapted to quantised state-spaces, since:
(i) For dimension i∈1, n and si∈Si, the bit sequence

bits (si), defines a binary-tree path to si in Si.
(ii) For s∈S, a binary-tree path to s in S, is defined by al-

ternating the bits of sequences bits (s1) , . . . , bits (sn).

x1

x2 x2

{1, 5} {4, 3} {1, 2} {0, 3}

Fig. 1. An example MTBDD

x1

x2 x2

{5} {4} {1} {3}

Fig. 2. A non-reducible determinization

x1

x2 x2

{1} {3} {1} {3}

(a) After determinization

x2

{1} {3}

(b) After reduction

Fig. 3. A reducible determinization
The latter, using bounded-length bit sequences as in
Section 3, allows to encode the LA’s binary tree as an
MTBDD. The size reductions obtained for the original LA
are then a subset of those we get using MTBDDs 4 , as we
can: (i) obtain RO-MTBDDs, utilising all the reduction
steps (ii) find a more efficient variable ordering. Let us now
show that LA does not allow to utilise the full power of the
MTBDD reductions due to its pure spacial orientation.
Consider an MTBDD encoding of some LA’s binary tree,
in its original variable ordering, see Figure 1. LA traverses
an MTBDD trying to find common inputs, stored in
terminal nodes, for all of its sub-trees. A sub-tree with
a common input can then be trivially reduced to a single
terminal node. In this case however, there are no non-
trivial sub-trees with common inputs, so LA has to non-
deterministically choose one (arbitrary) input value per
terminal node. This results in 16 possible determinization
variants, most of which are non-reducible, see e.g. Figure 2,
but one giving a significant reduction, see Figure 3.
In this paper, we suggest alternatives and hybrid ap-
proaches to overcome this potential shortcoming of LA,
see Section 5. Furthermore, to preserve information on safe
initial states, we shall consider a modification of LA which
forbids assignment of “any input” to “no-input” grid cells.

5. DETERMINIZATION ALGORITHMS

The newly suggested determinization algorithms have var-
ious underlying ideas: GA tries to maximise the number of
states with the same input, and minimise the number of
different inputs as a whole, both in an attempt to max-
imise the chances for (MT)BDD reductions; LGA combines
complementary ideas of LA and GA to reduce the number
of non-deterministic choices to be taken in the former one;
SR attempts to find an analytical expression fitting the
controller points on the largest part of its domain to reduce
the number of distinct control mode areas to be stored;

5.1 Global Approach

The GA approach is summarised by the following steps:

4 Even with the original variable ordering.



(i) Obtain sets: C – domain state indexes, I – input
indexes, and {Cj}j∈I – states for the given inputs;

(ii) Solve the MSC, see Section 2.1, for {Cj}j∈I , getting an

ordered, more common inputs first, list of indexes I∗;
(iii) Iterate over all i ∈ I∗ and ∀x ∈ Ci, still having input

i, remove all other inputs.
GA differs from LA by looking at the state-space globally
regardless of its’ elements location. It maximizes the
number of terminal nodes with identical labels (inputs),
generally leading to a reduction in the number of used
labels, which should facilitate MTBDD reductions.

5.2 Local-Global Approach

Recall the MTBDD-based LA algorithm discussed in Sec-
tion 4. We showed that such determinization procedure
can suffer from sub-optimal non-deterministic resolutions
when multiple input choices are available in some regions.
LGA combines LA with GA in an attempt to improve the
resulting reductions by minimising this uncertainty. In
essence, the LGA approach proceeds as LA up to the mo-
ment a non-trivial set of inputs, common for a grid area, is
found; then the input is chosen according to the priority-
descending order of inputs, as done in the LA algorithm.

5.3 BDD-index based Local-Global Approach

RO-(MT)BDDs achieve significant size reductions only if
a “good” variable ordering is found, see Section 2.3. Given
the (MT)BDD encoding, see Equation 1 of Section 3,
the variable reordering swaps grid-cell index bits realising
a limited 5 form of cell re-indexing. The latter has a
common-input-value clustering effect on the g⊂Z≥0×Z≥0

function viewed in RO-BDD indexes as opposed to those
of SCOTSv2.0. To use this to our benefit, we suggest a
version of LGA, called BLGA, using the RO-BDD indexes.

5.4 Symbolic Regression

For the SR algorithm, a set of candidate controllers is
evolved using a combination of GGGP and sep-CMA-ES,
c.f. references in Section 2.2, using imax individuals (i.e.
candidate solutions) for N generations. GGGP is used to
evolve the functional structure of the controller based on
a grammar and sep-CMA-ES to optimize the parameters.
Given a candidate controller gSR : Rn → Rm, the fitness
function F with respect to a finite set S is defined as:

F (gSR,Sc) =
|{s ∈ Sc | qu(gSR(s)) ∈ g(s)}|

|Sc|
.

In order to reduce the computation time, the set of
states Sc is down-sampled to a set with a maximum of λ
elements. The reproduction involves selecting individuals
based on tournament selection and the genetic operators
crossover and mutation, in which parts of the individuals
are exchanged or randomly altered respectively. More in
depth descriptions of the used GGGP and sep-CMA-ES
algorithms can be found in Verdier and Mazo (2017)
and Raymond and Nikolaus (2008) respectively. After a
maximum amount of generations the individual with the
highest fitness is selected. For the resulting controller, it is
verified for which states s ∈ Sc it holds that qu(gSR(s)) ∈
g(s). For the remaining states the inputs are determinized
using GA, LA or LGA. Finally, all states and corresponding
new input indexes are again stored in a BDD. Details
on the used grammar and SR parameters can be found
in Zapreev et al. (2018).

5 Swapping bits affects all indexes; bits can not change value.

6. EMPIRICAL EVALUATION

6.1 Case studies

All of the considered case-studies, but the last one,
are taken from the standard distribution of SCOTSv2.0:
Aircraft - a DC9-30 aircraft landing maneuver, see Reis-
sig et al. (2016); Vehicle - a path planning problem for an
autonomous vehicle, see Zamani et al. (2012) and Reissig
et al. (2016); DCDC - a boost DC-DC converter with a reach-
and-stay voltage specification, see Girard (2012a); DCDC
rec 1/2 - the same as DCDC but enforces a recurrence
specification for two targets; DCM - a DC motor with a
reach-and-stay velocity specification, see Mazo Jr et al.
(2010).The symbolic BDD controller sizes were varied by
modifying the models’ input-/state-space discretisation
parameters.

6.2 Software details

For the evaluation, we have realised the following software:
• A C++11 based LibLink library 6 for Mathemat-

ica 11, see Inc. (2017), allowing to load and store
BDD-based symbolic controllers of SCOTSv2.0.

• A C++11 based single-threaded (due to CUDD)
application implementing LA, GA, LGA, and BLGA.

• A Mathematica 11 package implementing the SR
approach. This realisation is natively multi-threaded
and allows for a best utilisation of the CPU cores.

6.3 Experimental setup

We have measured: (i) determinization run-time in sec-
onds as reported by the tools; (ii) size of the determinized
controllers in bytes, when stored to the file system. SR is
probabilistic and therefore each of its experiments was re-
peated 5 times. All other approaches are deterministic and
thus their experiments were repeated only once. Overall,
we have considered the algorithms on various size models,
varying the discretisation parameters, and thus changing:
(1) The number of model inputs:

(a) GA, LA, LGA, BLGA
(b) SR on LGA determinized controllers

(2) The number of model states:
(a) GA, LA, LGA, BLGA

SR was only done on LGA determinized controllers because
it: (i) did not scale well with the growing number of inputs;
(ii) if feasible, shall be capable of reducing deterministic
controllers. The experiments were done on two machines:
(A) MacBook Pro with: Intel i5 CPU (4 cores) 2.9 GHz;
8 GB 2133 Mhz RAM; MacOS v10.12.6; (B) PC with:
Intel Xeon CPU (8 cores) E5 − 1660 v3 3.00GHz; 32 GB
2133 MHz RAM; Ubuntu 16.04.3 LTS. The type (1.a)
experiments ran on machine (A); (1.b) and (2) on (B).
Given, a significant difference in software realization
(Mathematica v.s. C++11, multi v.s. single threaded),
running SR on faster multicore machine, and that con-
trollers’ determinization is an offline job, our run-time
data: (i) is only dedicated to show the approaches’ feasi-
bility; (ii) can only hint the actual performance differences
between SR and others. This is why also the run-time for
LA, GA, LGA, and BLGA is not averaged over multiple re-runs.

6.4 Results

Table 1 presents the core experimental data for models
obtained by varying the number of inputs. Here, column:
“SCOTS” lists information for the original controllers;
“Time” is the algorithm’s run-time in seconds; “A-SR”
and “M-SR”stand for the average and maximum SR values
over 5 repetitions; and “Fit %” is the fitness percent-
age of the SR controller’s symbolic part. To compare the
6 We preferred LibLink over WSTP due to faster data-exchange.



Table 1. Core experimental data
SCOTS LA LGA A-SR M-SR

#inputs #Bytes #Bytes Time #Bytes Time Fit %

A
ir
c
ra

ft 20 2878481 150459 121.81 150316 1065, 50 48.56

57 9563407 193590 159.61 193055 1547, 92 43.55

112 8533274 236753 183.62 235273 1949, 12 40.58

V
e
h
ic
le

49 21972 10462 1.38 9821 572, 77 32.31
169 28537 11956 1.79 11047 614, 85 27.15
441 54692 19430 2.86 17357 770, 81 13.96
729 52447 18435 3.41 15793 954, 53 18.14
1087 60757 18939 4.04 16338 1455, 87 24.82

D
C
M

2001 4951 830 2.04 371 458, 61 33.14
10001 11957 1000 13.3 420 639, 11 33.14
20001 24206 1166 34.65 410 742, 10 24.43
30001 19161 1306 63.45 441 951, 10 33.14
40001 13772 1308 94.00 449 975, 50 19.82
50001 12921 1252 143.13 448 1121, 98 33.14

D
C
D
C

2 4532 786 0.75 786 431, 15 94.19
45 5218 1025 1.57 1025 440, 99 94.19
89 5350 1030 2.38 1030 351, 11 94.18
134 5272 1036 3.31 1035 450, 36 94.17
178 5266 1036 4.11 1035 368, 17 94.15
223 5300 1037 5.09 1036 426, 01 93.55

D
C
D
C

r1

2 4247 773 0.78 773 448, 00 97.35
45 6009 915 1.48 915 417, 70 97.35
89 5615 921 2.15 921 422, 11 97.35
134 5768 936 2.96 930 359, 65 97.35
178 5781 936 3.64 930 409, 91 97.35
223 5714 936 4.48 930 428, 49 95.13

D
C
D
C

r2

2 2243 791 0.73 828 439, 04 95.08
45 3685 934 2.15 937 428, 78 94.51
89 3638 939 3.66 943 395, 83 95.12
134 3565 949 4.98 949 361, 49 94.99
178 3531 949 6.43 949 456, 36 94.82
223 3549 950 8.13 950 408.70 92.91

compressing power of the approaches, for an algorithm
ω and a case study ν we define size compression as:
Cνω:=(1− |Bνω|/|Bν |) ∗ 100, where Bν and Bνω stand for
the original and ω-determinized BDD sizes. Comparing
algorithms “ω1 v.s. ω2” is done by computing a difference
∆ν
ω1,ω2

:=Cνω1
− Cνω2

. Clearly, ∆ν
ω1,ω2

> 0 means ω1 being
better than ω2 on ν. Taking into account the A-SR exper-
iment repetitions, we define 7 : CνA-SR := E [CνSR].
Figure 4 contains two compression comparison sets: (i) GA,
LGA, BLGA v.s. LA; and (ii) A-SR, M-SR v.s. LGA 8 . The plot
features mean compressions and the standard deviation
thereof. We conclude the next compression ranking of the
algorithms: 1. LGA, 2. BLGA, 3. LA, 4. GA, 5. M-SR 6. A-SR.
Figure 5 summarises the execution times for the set-up
of Table 1. Relative to LA, on average: GA is ≈ 0.8 times
faster; LGA is comparable; BLGA is ≈ 1.1 times slower; A-SR
is ≈ 180 times slower but has a huge deviation of ≈ 174.
The latter is due to probabilistic nature of SR. Note that,
A-SR is multi-threaded and was run on a faster machine
than the single-threaded LA. So the actual performance
difference between the algorithms is more significant.
Additionally, we compared GA, LGA, BLGA and LA on up
to 52 Mb size BDD controllers, obtained by varying
the number of system states. These experiments only
strengthened the algorithms’ ranking conclusions implied
by Figure 4. We omit further detail on that, to save space.
To conclude, we present Figure 6 summarising the com-
pression of LGA relative to LA on all of the 67 considered
BDD controllers. Per case-study ν the compression is
computed as: CνLGA, LA:=(1− |BνLGA|/|BνLA|)∗100. The plot on
the left of Figure 6 shows the discretized distribution of
CνLGA, LA, the plot on the right shows its mean and standard
deviation. Notice that, on average, LGA produces ≈ 14%
smaller controllers than LA, in the best case LGA was
capable of delivering up to ≈ 85% smaller controllers.

7. CONCLUSIONS

In this work, we have considered the problem of size-
optimal BDD controllers determinisation (OD), which we
show to be NP-complete. Up until now, the only heuristic
approach to solve OD was proposed by Girard (2012b) and

7 The mean value over 5 experiment repetitions of SR on ν.
8 Since SR was applied to the LGA-determinized controllers.
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was based on representing the controller function as a
binary tree. We have shown how that such an approach,
which we call LA, can be extended to use the more size-
efficient RO-(MT)BDDs data structure. In addition, we
have identified examples where LA is sub-optimal due to
only considering controller’s local properties. A global
approach (GA), based on the minimum set cover problem
solution algorithm, was proposed to remedy this. Further,
a hybrid of GA and LA, called LGA, was suggested to
incorporate the strengths of both approaches. To exploit
the clustering of internal BDD indexes, we have come
up with a BDD-index based version of LGA, called BLGA.
Finally, we made an attempt of substituting the BDD-
based control-law representations by functions generated
using the symbolic regression (genetic-algorithm powered)
approach, we refer to as SR.



All of the devised approaches were compared in compress-
ing power and run-time by means of an extended empirical
evaluation. The compression ranking of the algorithms
turns out to be: 1. LGA, 2. BLGA, 3. LA, 4. GA, 5. SR. The
run times of LA, GA, LGA, and BLGA are of the same order
but SR is at least one to two orders of magnitude slower.
In principle, SR could allow us to eliminate BDDs com-
pletely, leading to potentially smaller functional expres-
sions and prevent using BDD-data accessing code that,
as for CUDD, is difficult (and size expensive) to port
to embedded hardware. We did not manage to achieve
that due to: (i) our SR realization not being powerful
enough, see low fitness values in Table 1; (ii) using BDDs
for storing the controller’s support, due to a decision to
preserve controller’s domain. For now, we shall note that
SR still looks promising for getting small and practical
controllers. However, symbolic controllers seem to have
structure that is not easy for SR to achieve a 100% fitness
on. So more research is needed to be done in this direction.
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