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Abstract: We present a new technique for verifying nonlinear and hybrid models with inputs.
We observe that once an input signal is fixed, the sensitivity analysis of the model can be
computed much more precisely. Based on this result, we propose a new simulation-driven
verification algorithm and apply it to a suite of nonlinear and hybrid models of CMOS
digital circuits under different input signals. The models are low-dimensional but with highly
nonlinear ODEs, with nearly hundreds of logarithmic and exponential terms. Some of our
experiments analyze the metastability of bistable circuits with very sensitive ODEs and
rigorously establish the connection between metastability recovery time and sensitivity.

1. INTRODUCTION

Analog and mixed-signal circuits have provided a well-
spring of hard problem instances for formal verification
of hybrid systems (HS). Tools like HyTech (Henzinger
et al., 1997), PHAVer (Frehse, 2008), SpaceEx (Frehse et al.,
2011), Checkmate (Gupta et al., 2004), d/dt (Dang et al.,
2004), and Coho (Yan and Greenstreet, 2008) have tar-
geted and successfully verified linear dynamical and hy-
brid models for tunnel-diode oscillators (Lata and Ja-
madagni, 2010), ∆Σ modulators (Gupta et al., 2004; Dang
et al., 2004), filtered oscillators (Frehse et al., 2011), and
digital arbiters (Yan and Greenstreet, 2008). Only re-
cently, verification tools such as Flow* (Chen et al., 2013),
NLTOOLBOX (Dang et al., 2009), iSAT (Fränzle et al.,
2007), dReach (Kong et al., 2015), C2E2 (Fan et al., 2016)
and CORA (Althoff and Grebenyuk, 2016), have demon-
strated the feasibility of verifying nonlinear dynamic and
hybrid models. These tools are still limited in terms of the
complexity of the models and the type of external inputs
they can handle, and they require quite often manual
tuning of algorithmic parameters. The verification chal-
lenge for nonlinear circuits is further exacerbated by the
fact that these problems often require state exploration in
regions, where the model is very sensitive. For example,
bi-stable circuits like a storage element or a flip-flop can
be driven into a metastable state where the circuit may
output signals in the forbidden region between logical 0
and logical 1 or experience very high-frequency oscilla-
tions for an arbitrary time, before resolving to a proper
state (Marino, 1981).
In this paper, we present a novel technique for verifying
nonlinear dynamic and hybrid models with externally
controlled input functions. The approach builds up on
previous work that combines numerical simulation with
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model-based sensitivity analysis for bounded invariant
verification (Fan et al., 2016). For (bounded) invariant ver-
ification, we need to check whether the set of reachable
states (up to a given time T ) intersects with the unsafe set.
In general, computing the exact bounded reachable set
for nonlinear dynamic systems is hard. The simulation-
driven approach circumvents this by over-approximating
the reachable states using numerical simulations from a
finite number of initial states and bloating these simu-
lations by a factor determined by the sensitivity of the
solutions to initial states. Previous work establishes that
the resulting algorithms are sound, complete for robust
invariant verification (Duggirala et al., 2013), and exten-
sible to nonlinear hybrid models (Fan et al., 2016). The
key ingredient for the effectiveness of this approach is the
precise symbolic approximation of sensitivity as formal-
ized by so called discrepancy functions. If the discrepancy
function is excessively conservative, then in practice, the
verification algorithm may trigger many refinements, and
never reach a decision. One major shortcoming of existing
approaches is their inability to handle sensitivity analysis
of models with external inputs. For a typical digital circuit
like a simple inverter, the output trajectory Vout depends
strongly on the input trajectory Vin. The naı̈ve approach
for handling external inputs, namely, making the system
closed by considering input signals as additional state
variables, does not work as the resulting discrepancy
functions become too conservative to be effective, i.e.,
the overapproximation error of the discrepancy function
becomes too large (see the discussion in Section 2).
In this paper we therefore propose a new method for
computing discrepancy functions for open models. We
show that for a given input signal and a numerical solu-
tion of the model, it is possible to compute precise upper-
bounds on solutions from neighboring initial states, ex-
periencing the same input (Theorem 6). Using this new
method for discrepancy computation, we have general-
ized the verification algorithm to handle nonlinear hy-
brid models with inputs. This approach was later inte-



Fig. 1. Input signal u(t) (leftmost), corresponding trajectory of x1, x2

(second from left), reach sets from B0.1([0.5, 0.24]T ) (second from
right), Over-approximation of x1(t) without separate input from
state variables (rightmost).

grated in a new version of the tool C2E2 described in
detail in Fan et al. (2016). We show the feasibility of our
approach by evaluating several Complementary Metal-
Oxide Semiconductor (CMOS) digital circuit models, in-
cluding an inverter, a NOR-gate and an OR-gate 1 . Fur-
thermore, two very sensitive models of storage elements,
one consisting of two inverters in a feedback-loop and
the other of an OR-gate with its output fed back to one
of its inputs, are investigated. The latter allows to mem-
orize a rising transition on its second input, and is an
ideal target for demonstrating the capability of C2E2 to
even predict metastable behavior correctly. Our results
demonstrate that the new C2E2 can indeed be used to
verify reachability problems for open circuits with un-
precedented complexity (over one hundred logarithmic
and exponential terms in differential equations). Experi-
ments confirm what is known about metastable behavior,
and provide detailed insights into the close connection
between sensitivity and metastability recovery (time).

2. SIMULATION-DRIVEN VERIFICATION

Notations For a real vector x ∈ Rn, ‖x‖ denotes its
l2 norm. For a set S ⊂ Rn, the diameter dia(S) is the
supremum of the distance between any pair of points in
S. For δ ≥ 0, Bδ(x) is the closed δ-ball around x. Closed
δ-balls around sets are defined as Bδ(S) = ∪x∈SBδ(x).
S ⊕ S′ is the Minkowski sum of sets S and S′. For a real
matrix A ∈ Rn×n, (A)ij is the entry on the ith row and
the jth column; eig(A) is the largest eigenvalue of A. For
a pair of matrices A, Ā with (A)ij ≤ (Ā)ij for all 1 ≤
i, j ≤ n, we define the interval matrix as the set of matrices:
[A, Ā] , {A ∈ Rn×n|(A)ij ≤ (A)ij ≤ (Ā)ij , 1 ≤ i, j ≤ n}.
Dynamic systems with inputs An n-dimensional dynamic
system with m-dimensional input is described by an ordi-
nary differential equation:

ẋ(t) = f(x(t), u(t)), (1)
where f : Rn × Rm → Rn is a continuously differentiable
function, and a compact set Θ ⊆ Rn of initial states. The
input is an integrable function u : [0,∞) → U , where
U ⊂ Rm is a compact set. Given an input u, the solution
or the trajectory of the system is a function ξu : Rn ×
Rm × R≥0 → Rn, such that for any initial state x0 ∈ Θ
and at any time t ∈ R≥0, ξu(x0, t) satisfies (1). A state
x ∈ Rn is reachable if there exists x0 ∈ Θ and a time
t ≥ 0 such that ξu(x0, t) = x. The set of all reachable
states over an interval of time [0, t1] with input u is
denoted by Reachu(Θ, [0, t1]); Reachu(Θ, [t1, t1]) is written
as Reachu(Θ, t1) in brief.
Example 1. Consider a cardiac oscillator described by the
time-invariant ODEs ẋ1 = −x1(x2

1 + 0.9x1 + 0.9) + 2x2u+

1 Files can be found at https://publish.illinois.edu/
c2e2-tool/gate/.

1; ẋ2 = x1 − 2x2. For a smoothed sigmoidal input u, the
corresponding trajectories and (over-approximations of)
reach sets projected on x1(t), x2(t) are shown in Figure 1.

Safety verification problem Given an n-dimensional dy-
namic system, an input signal u(t), a compact initial set
Θ ∈ Rn, an unsafe set unsafe ⊆ Rn, and a time bound
T > 0, the safety verification problem is to check whether
Reachu(Θ, [0, T ])∩unsafe = ∅. Safety verification of non-
linear ODEs and hybrid models is difficult even in the
absence of inputs. For closed models (without inputs),
recently developed simulation-driven verification algorithms
decide the safety verification question rigorously by com-
bining numerical simulations with sensitivity analysis of
the trajectories with respect to their initial states (Donzé,
2010; Duggirala et al., 2013; Fan et al., 2016). These ap-
proaches are most effective when the sensitivity of the
solutions to initial states can be precisely approximated.
The previous version of C2E2 does not support mod-
els with inputs. The seemingly natural idea of explicitly
modeling the input u as a state variable, i.e., its control-
ling ODE, and then verifying the resulting closed model
does not work. This is because inputs often model unsta-
ble signals—like the pulse u in Example 1—and in such
cases the trajectories of the resulting closed system will
turn out to be extremely sensitive with respect to the
initial states and render simulation-driven verification in-
effective. In Example 1, if we treat u as a state variable,
the over-approximation reach set of x1(t) using C2E2 is
shown in Figure 1 (rightmost). The (prohibitive) blow-up
in the over-approximation is due to the unstable input
u̇ = u(1.8−1.5u)+0.0015 that models the rising transition
of the smoothed pulse.

3. SENSITIVITY ANALYSIS FOR OPEN SYSTEMS

We formalize sensitivity using discrepancy functions as in-
troduced in Duggirala et al. (2013). Given an input signal
u(t) for (1), a discrepancy function bounds the distance
between two neighboring trajectories, as a function of the
distance between their initial states and the time.
Definition 2. Given an input signal u(t), a continuous
function βu : R≥0 ×R≥0 → R≥0 is a discrepancy function
of (1) if (1) for any pair of states x, x′ ∈ Rn, and any time
t ≥ 0, ‖ξu(x, t) − ξu(x′, t)‖ ≤ βu(‖x − x′‖, t), and (2) for
any t, lim‖x−x′‖→0+ βu(‖x− x′‖, t) = 0.

Definition 2 generalizes the discrepancy functions de-
fined in Fan and Mitra (2015); Duggirala et al. (2013). Ob-
serve that at any time t, the ball with radius βu(δ, t) cen-
tered at ξu(x0, t) contains the reach set of (1) starting from
Bδ(x0). Therefore, by bloating the simulation trajectories
ξu(·) using the corresponding discrepancy function, we
can obtain reach set over-approximations. Several tech-
niques for computing discrepancy functions for closed
systems have been presented in the literature (see Fan and
Mitra (2015) and the references therein). The technique
discussed next works for open systems and exploits the
fact that the input signal is fixed for trajectories starting
from different initial states.
First, we introduce a basic result that follows from the
high-order mean value theorem (Lemma 3) to connect
the differential equation with its Jacobian matrices. Then
we show that the terms of the Jacobian matrix with re-



spect to the state variables are bounded over compact
sets (Lemma 4). Using these two results, we establish
that the distance between neighboring trajectories actu-
ally follows a differential equation related to the bound of
the Jacobian matrix (Lemma 5). Finally, we prove that the
upper bound on the largest eigenvalue of the symmetric
part of the Jacobian provides us with a suitable discrep-
ancy function (Theorem 6).
The Jacobian of f with respect to the state Jx and the input
Ju are matrix-valued functions of all the first-order partial
derivatives of f :
(Jx(x, u))ij = ∂fi(x, u)/∂xj ; (Ju(x, u))ij = ∂fi(x, u)/∂uj .

The following lemma from Fan and Mitra (2015) relates f
with its Jacobian matrices based on the generalized mean
value theorem, see Fan and Mitra (2015) for the detailed
proof.
Lemma 3. For any continuously differentiable vector-valued
function f : Rn × Rm → Rn, x, r ∈ Rn and u,w ∈ Rm,
f(x+ r, u+ w)− f(x, u) =(∫ 1

0
Jx(x+ sr, u+ w)ds

)
· r +

(∫ 1

0
Ju(x, u+ τw)dτ

)
· w,

(2)
where the integral is component-wise.

If f is continuously differentiable, all terms in the Jaco-
bian matrix are continuous. Since the input signals are
bounded, i.e., ∀t > 0, u(t) ∈ U ⊂ Rm, the Jacobian matrix
Jx(x, u) over compact sets is also bounded:
Lemma 4. For any compact sets S, U there exists an inter-
val matrix [A, Ā] s. t. ∀x ∈ S, u ∈ U , Jx(x, u) ∈ [A, Ā].

In fact, Lemma 4 follows since Jx(x, u) is a continuous
function of x, u, hence has a maximum and minimum
value over the compact domains S,U , which define the
matrix pair [A, Ā]. The bounds of such values can be
computed for a broad class of nonlinear functions using
interval arithmetic solvers.
Lemma 5. Fix an input signal u(t). Suppose there exists
a compact convex set S ⊆ Rn and a time interval [0, t1]
such that for any x ∈ Θ, ∀t ∈ [0, t1], ξu(x, t) ∈ S. Then
for any x, x′ ∈ Θ, for any fixed t ∈ [0, t1], the distance
yu(t) = ξu(x′, t) − ξu(x, t) satisfies ẏu(t) = A(t)yu(t), for
some A(t) ∈ [A, Ā], where [A, Ā] is an interval matrix
satisfying Lemma 4.

Lemma 5 is proved by differentiating yu(t) using Lemma 3.
The detailed proof can be found at Fan et al. (2018). Using
the differential equation in Lemma 5, we can get a dis-
crepancy function by bounding the eigenvalues of [A, Ā]:
Theorem 6. Fix the input signal u(t) for system (1). Sup-
pose the assumptions in Lemma 5 hold, and ∃γ ∈ R such
that ∀A(t) ∈ [A, Ā],

eig(AT (t) +A(t))/2 ≤ γ; (3)
then for any x, x′ ∈ Θ and for any t ∈ [0, t1],

‖ξu(x, t)− ξu(x′, t)‖ ≤ ‖x− x′‖eγt.
Theorem 6 follows from Lemma 5 by applying Grönwall’s
inequality. The proof can be found at Fan et al. (2018).
Theorem 6 obviously provides a discrepancy function
βu(‖x − x′‖, t) = ‖x − x′‖eγt. However, computing one
γ for the entire time horizon is usually too conserva-
tive to be directly used. Algorithm 2 in Fan and Mitra
(2015) provides a method for constructing a reachtube
using one simulation trajectory and initial partition size

δ as input, and produces a sequence of coefficients that
defines the piece-wise exponential discrepancy function.
The algorithm consists of the following steps: a) First, us-
ing the Lipschitz constant, a coarse over-approximation
of the reachable set up to a short time horizon Ts is
constructed. Let this set be S. b) Compute the interval
matrix [A, Ā], which bounds the possible values of the Ja-
cobian matrix Jx(x, u). c) Compute the largest eigenvalue
eig
(
(A+ Ā) + (A+ Ā)T

)
/2. From this value, an upper

bound γ of the eigenvalue of (A+AT )/2 for allA ∈ [A, Ā]
is computed using a theorem from matrix perturbation
theory. d) The upper bound γ (possibly negative) defines
the discrepancy function βu(δ, t) = β′u(δ, t0)eγ(t−t0) over
the simulation time interval [t0, t0 + Ts], where β′u(·, ·) is
the previous piece of the discrepancy function. Using this
piece-wise discrepancy function, an over-approximation
of the reachable set is finally computed.
Example 7. For Example 1, restricting x1 to be within the
range [0.4, 0.6] and u to be within the range [0.1, 0.2]
provides Jx ∈ [A, Ā] for A = [−3.06, 0.2; 1,−2 ] and
Ā = [−2.1, 0.4; 1,−2 ]. Using Algorithm 2 in Fan and
Mitra (2015), we get that γ = −1.05 satisfies Equation (3).
Therefore, βu(‖x−x′‖, t) = ‖x−x′‖e−1.05t is a discrepancy
function for this system with fixed input u(t).

4. VERIFYING SYSTEM WITH FIXED INPUTS

To implement our novel method for computing dis-
crepancy functions of open systems, the algorithm for
simulation-driven verification (see Algorithm 1) pub-
lished in Fan and Mitra (2015) can be used with minor
modifications. For sake of completeness, we briefly dis-
cuss the key features here; for more details the reader is
referred to (Fan and Mitra, 2015). Throughout this section,
we fix an input signal u(t) for the system (1).

Algorithm 1: Verification of systems with input
input: Θ, u(t), T, unsafe, ε0, τ0

1 δ ← dia(Θ); ε← ε0; τ ← τ0; STB← ∅;
2 C ← Cover(Θ, δ, ε);
3 while C 6= ∅ do
4 for 〈x, δ, ε〉 ∈ C do
5 ψ = {(Ri, ti)ki=0} ← Simulate(x, u, T, ε, τ);
6 R ← Bloat(ψ, δ, ε);
7 ifR∩ unsafe = ∅ then
8 C ← C\{〈x, δ, ε〉} ;
9 STB← STB ∪R ;

10 else if ∃j, Rj ⊆ unsafe then
11 return (UNSAFE, ψ)

12 else
13 C ← C ∪ Cover(Bδ(x), δ2 ,

ε
2 ), τ ← τ

2 ;

14 return (SAFE, STB);

Function Cover() returns a set of triples {〈x, δ, ε〉}, where
x’s are sample states, the union of Bδ(x) covers Θ com-
pletely, and ε is the precision of the simulation. Func-
tion Bloat() expands the simulation trace ψ by βu to get
the reachtube R = {(Oi, ti)}ki=1. That is, for each i =
1, . . . , k, Oi ← hull(Ri−1, Ri)⊕maxt∈[ti−1,ti] βu((δ+ε), t).
From Theorem 6, it follows that Bloat(ψ, δ, ε) contains
Reachu(Bδ(x), [0, T ]). There are two important data struc-
tures used in Algorithm 1: C is a collection of the triples
returned by Cover(), which represents the subset of Θ



that has not yet been proved safe, and STB that stores the
bounded-time reachtube.
Initially, C contains a singleton 〈x0, δ0 = dia(Θ), ε0〉,
where Θ ⊆ Bδ0(x0) and ε0 is a small positive constant.
For each triple 〈x, δ, ε〉 ∈ C, the while-loop from Line 3
checks the safety of the reachtube from Bδ(x), which is
computed in Line 5-6. ψ is a (ε, τ, T )-simulation from x
with input u(t), which is a sequence of time-stamped
rectangles {(Ri, ti)}ki=0 and is guaranteed to contain the
trajectory ξ(x, T ). Bloating the simulation result ψ by the
discrepancy function βu we getR, a (Bδ(x), T )-reachtube
with input u(t). If R is disjoint from unsafe, then the
reachtube from Bδ(x) is safe and the corresponding triple
can be safely removed from C. If for some j, Rj (one
rectangle of the simulation) is completely contained in
the unsafe set, then we can get a counterexample of a
trajectory that violates the safety property. Otherwise,
the safety of Reachu(Bδ(x), [0, T ]) is inconclusive and a
refinement of Bδ(x) is made with some smaller δ and
smaller ε, τ .
Recall that the safety verification problem requires us to
check whether Reachu(Θ, [0, T ])∩ unsafe = ∅. If there ex-
ists some ε > 0 such thatBε(Reachu(Θ, [0, T ]))∩unsafe =
∅, we say the system is robustly safe. If there exists some
ε > 0, x ∈ Θ, such that Bε(Ri) ⊆ unsafe for some
Ri in the simulation from x, {(Ri, ti)}ki=0, we say the
system is robustly unsafe. The algorithm returns SAFE if
Reachu(Θ, [0, T ]) has no intersection with unsafe, along
with a robustly safe reachtube STB. It returns UNSAFE
upon finding a counter-example, i.e., the simulation ψ
with an interval fully contained in unsafe.
According to Theorem 6, if δ gets smaller, the value of
the discrepancy function βu becomes smaller (i.e., the
reachtube is arbitrary close to the simulation), which
guarantees that the algorithm always terminates.
Theorem 8. (Soundness & completeness). Given an unsafe
set unsafe, time bound T and fixed input u(t) for sys-
tem (1), if Algorithm 1 using the discrepancy of Theo-
rem 6 returns SAFE or UNSAFE, then (1) is safe or unsafe,
respectively. It terminates if (1) is robustly safe or unsafe.

When extending this verification algorithm to work for
open hybrid models, the main complication is that spu-
rious transitions may arise from the over-approximations
in the computed reach sets. Thus, we have to keep track
of possibly spurious mode changes from genuine ones.
This is what is implemented in the new version of C2E2
used in Section 6 for verifying hybrid circuit models.

5. MODELING OF CMOS CIRCUITS

To investigate the feasibility of our approach, we ana-
lyzed models of complementary metal-oxide-semiconductor
(CMOS) circuits, the most common technology nowa-
days. Its basic components are two types of transistors
(nMOS and pMOS), which differ in physical and, hence,
electrical properties. These two are sufficient to build any
desired logic. Essentially, both deliver current based on
the voltages applied to their gate, drain and source con-
tact. Modern digital simulation tools like Modelsim or
NC-Verilog consider transistors as simple switches, how-
ever. Such tools allow fast functional and timing analysis
of complex circuits, but lack sufficient accuracy for critical
parts of a circuit design. The latter is provided by analog

simulations, using state-of-the-art tools like Spice. They
are capable of handling very detailed transistor models,
consisting of tens to hundreds of equations and config-
ured by hundreds of manufacturer-provided parameters.
However, analog simulations quickly reach their limits in
terms of simulation complexity for circuits consisting of
more than a few tens of transistors and/or signal traces
beyond milliseconds in real-time.
In order to decrease simulation times, simplified models
have been developed (e.g. Arora, 1993). They are smaller
than Spice models (at most six equations are required),
and thus amenable to general simulation tools like MAT-
LAB. Despite the reduced complexity, these models can
still capture subtle phenomena like channel length mod-
ulation and carrier velocity saturation.
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of CMOS inverter
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In our model (Maier, 2017), every transistor operates in
one of three different operation regions: the sub-threshold
(ST) region, where very little current is delivered, the
ohmic region (OHM), where the current scales linearly
with the voltage between source and drain, and the sat-
uration region (SAT), where the current only changes
moderately. The actual behavior within every region is
described by a set of differential equations, which involve
several fitting parameters. These differ for nMOS and
pMOS transistors and are either inferred directly from
Spice model variables or fitted to Spice simulations.

Hybrid inverter model The simplest CMOS gate is an
inverter (see Figure 2), which consists of two transistors
stacked above each other. Its output voltage Vout is the
inverse of the input voltage Vin, ideally Vout = VDD − Vin
with VDD denoting the supply voltage. In reality, Vout is
determined by

V̇out = (1/CL)Iout (4)
where CL is the external load capacitance seen by the
output. The output current Iout is the difference between
the current delivered by 1 and the current consumed by
2 , which both depend upon Vin and Vout. Since each of

the two transistors can operate in three different regions,
our basic hybrid inverter model has nine modes. As two
of those modes are unreachable, the hybrid model InvHy
(see Figure 5 in Fan et al. (2018)) has only 7 modes.

Uniform model Given that the number of modes increases
exponentially with the number of transistors in a circuit,
it is natural to consider ways of avoiding multiple modes
already in the transistor models: If the behavior of a
transistor could be described by a single, possibly more



complex equation that is valid for all operation regions,
the need for a hybrid model vanishes altogether.
Our uniform model InvUni (Maier, 2017) accomplishes this
by smoothening the boundaries between different re-
gions, using suitably chosen continuous functions. This
results in a single non-linear equation (involving expo-
nentials and logarithms), which describes the current
through the transistor over the whole operation range. In
conjunction with equation (4), this finally leads to a non-
linear ODE that describes the behavior of Vout depending
on Vin. Empirical validations using Spice simulations re-
vealed a surprisingly good modeling accuracy.
Apart from dramatically reduced model complexity, a
key feature of our uniform model is the straightforward
development of models for multi-transistor circuits like
the NOR gate shown in Figure 3. In a hybrid model, this
gate would blow up to a system of 34 = 81 states; here,
we end up with a system of two non-linear ODEs only:

V̇m = 1
CM

(I1 − I2); V̇out = 1
CL

(I2 − I3 − I4)

Herein, IX represents the current through transistor X .
The change of Vm is proportional to the current charging
CM (cp. eq. (4)) and is just the difference between the cur-
rents flowing through the transistors 1 and 2 . Note that
CM represents the capacitances of the transistor contacts
only, and is hence several orders of magnitude smaller
than CL. The derivative of Vout is finally determined by
the current passing through 2 minus the ones consumed
by the transistors 3 and 4 .

6. EXPERIMENTS AND RESULTS

We have implemented the discrepancy computation and
verification algorithm for open models in the new version
of C2E2 and used it to verify several challenging CMOS
circuits (see footnote 1). Due to lack of space, we restrict
our discussion here to a few examples that demonstrate
the principal feasibility, as well as particular strengths,
of our approach. Experimenting with larger and more
complex circuits, which is mandatory for validating scal-
ability, for example, will be part of our future work.

Input, simulation and verification As external input sig-
nals, we use both ramp (Ramp) and sigmoidal signals
(Sig), which are generated using two separate hybrid au-
tomata; a 4-state one for Ramp and 2-state one for Sig. We
successfully verified several properties of InvHy, InvUni,
NOR-gate, and OR-gate (is easily derived from the NOR
shown in Figure 3 by appending an inverter) models us-
ing the tool. For all the models, we set the unsafe set to
be Vout > 1.32 V (110 % of VDD) and the time horizon to
be 6.4 s. The first one uses the hybrid model presented
in Section 5, so we end up with 7 × 4 = 28 modes in the
Ramp case and 7×2 = 14 in the Sig case. All other circuits
are based on the uniform model. All circuit models based
on the uniform model have very complex descriptions,
i.e., hundreds of logarithmic and exponential terms in
their ODEs. Figure 4 shows some simulation results for
the NOR-gate.
In addition, we also investigated a two-inverter loop,
where the input of one inverter is connected to the output
of the other one, implementing a simple state-holding
device. In contrast to the other circuits used in our ex-
periments, however, it does not have an external input.

Fig. 4. NOR gate output voltage over-approximation set for Vin =
Ramp (left) and Vin = Sig (right). Different colors indicate differ-
ent modes in the model.

Consequently, we just set the output voltages to some
initial values and let the circuit run.
Generally, all the simulations behave as expected and
show smooth output transitions even when activated by
a ramp at its input. Verification shows that, despite ini-
tial state uncertainty, the unsafe set Vout > 1.32 V is not
reached and simultaneously provides the complete reach-
tube within the safe set. For example, Fig. 4 shows that
the reachtube converges quickly to a deterministic sig-
nal trace. Total verification time, split between simulation
(Sim.) and discrepancy computation (Discr.), is shown in
Table 1.

Table 1. Verification of InvHy, InvUni, NOR-gate and OR-gate with
Ramp (top) and Sig (bottom) input and InvLoop without input on a
standard laptop (16G RAM, Intel Core i7 CPU). All verification results

are safe.

Model
Verification parameters Timing split [s]

time [s]
Steps Initial Set Sim. Discr. I/O

InvHy 25.6k Vout ∈ [1.15, 1.2] 7 5 2 14
InvUni 12.8k Vout ∈ [1.15, 1.2] 7 12 2 21
NOR 320k Vout ∈ [1.15, 1.2] 223 708 108 1039

OR 320k Vnor ∈ [1.199, 1.201]
Vout ∈ [0, 0.002]

766 1406 122 2294

InvHy 25.6k Vout ∈ [1.15, 1.2] 7 1 1 9
InvUni 12.8k Vout ∈ [1.15, 1.2] 3 13 2 18
NOR 320k Vout ∈ [1.15, 1.2] 112 822 66 1000

OR 320k Vnor ∈ [1.199, 1.201]
Vout ∈ [0, 0.002]

384 1617 74 2075

InvLoop 64k V1 ∈ [1.0, 1.2]
V2 ∈ [0.5, 0.6]

18 119 2 139

We also provide a comparison with several state-of-the-
art nonlinear 2 hybrid system verification tools, namely,
Flow* (Chen et al., 2013), dReach (Kong et al., 2015) and
CORA (Althoff and Grebenyuk, 2016). The comparison
results are reported at Fan et al. (2018).

Metastability analysis Any bistable digital circuit can be
driven into a metastable state (Marino, 1981) in which it
may output voltage values in the forbidden region be-
tween 0 and 1 or experience very high-frequency oscil-
lations for an arbitrary time, before it resolves to a proper
digital state again. Verifying whether a circuit may expe-
rience metastable behavior is challenging because it arises
in highly nonlinear and sensitive parts of its state space.
In order to demonstrate the capability of C2E2 to predict
metastable behavior correctly, we use an OR-gate with
its output fed back to one of its inputs. This circuit im-
plements a storage loop, which is capable of memoriz-
ing a rising transition on its second input. It has been
shown in (Függer et al., 2015) that it can be driven into a
2 A comparison with tools like SpaceEx and Coho, which support only
linear systems, is omitted.



Fig. 5. Metastability analysis of fed back OR gate

metastable state, namely, by an input pulse that is shorter
than the delay of the feedback loop.
Figure 5 shows input (top) and simulation traces (mid-
dle) of this circuit computed by C2E2 for different initial
values of Vout. The reachtube (bottom), corresponding to
the output trace sticking longest to a value around 0.6 V,
shows a blow up to several thousand Volts, which is
physically impossible but indicates the very high sensi-
tivity of the underlying system of ODEs in the metastable
region: Even the slightest disturbances of the initial state
results in very different trajectories, in particular, in very
different metastability resolution times, after which Vout
resolves to 0 or 1. Albeit this is in accordance with what is
known about metastability, to the best of our knowledge,
this is the first reachability analysis of circuits demon-
strating metastable behavior.

7. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a novel approach suitable for
verifying highly sensitive non-linear ODEs with arbitrary
external inputs. Its modeling power was shown by suc-
cessfully implementing several CMOS circuit models like
inverter, NOR gate and memory elements, based on both
a hybrid and a uniform non-linear transistor model with
highly sensitive ODEs and hundreds of nonlinear terms.
Moreover, we also succeeded to verify the metastable
behavior of a memory element, which demonstrates the
ability of our approach to handle highly sensitive ODEs.
The results of this paper suggest several interesting di-
rections for future research. First, for addressing the rela-
tively large simulation time for complex models, it would
be worthwhile to investigate state-of-the-art robust ODE-
solvers for stiff ODEs. Another direction would be to
generalize the core verification algorithm in order to
handle infinite sets of input signals. Finally, we envi-
sion promising applications in the area of advanced
digital circuit analysis, where C2E2 could be used for
verifying metastable behavior of circuits like Schmitt-
Triggers (Steininger et al., 2016).
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Függer, M., Najvirt, R., Nowak, T., and Schmid, U. (2015).
Towards binary circuit models that faithfully capture
physical solvability. In DATE, 1455–1460.

Gupta, S., Krogh, B.H., and Rutenbar, R.A. (2004). To-
wards formal verification of analog designs. In ICCAD,
210–217.

Henzinger, T.A., Ho, P.H., and Wong-Toi, H. (1997).
Hytech: A model checker for hybrid systems. In CAV,
460–463. Springer.

Kong, S., Gao, S., Chen, W., and Clarke, E. (2015). dReach:
δ-reachability analysis for hybrid systems. In TACAS,
200–205.

Lata, K. and Jamadagni, H.S. (2010). Formal verification
of tunnel diode oscillator with temperature variations.
In ASPDAC, 217–222. IEEE Press.

Maier, J. (2017). Modeling the CMOS inverter using
hybrid systems. Technical Report TUW-259633, E182-
TI; TU Wien. URL http://publik.tuwien.ac.
at/files/publik_259633.pdf.

Marino, L.R. (1981). General theory of metastable opera-
tion. IEEE ToC, 30(2), 107–115.

Steininger, A., Maier, J., and Najvirt, R. (2016). The
metastable behavior of a Schmitt-Trigger. In ASYNC,
57–64.

Yan, C. and Greenstreet, M.R. (2008). Verifying an arbiter
circuit. In FMCAD, 7:1–7:9. IEEE Press, Piscataway, NJ,
USA.


