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Abstract: We introduce a new formalism of higher-dimensional timed automata, based on
van Glabbeek’s higher-dimensional automata and Alur’s timed automata. We prove that their
reachability is PSPACE-complete and can be decided using zone-based algorithms. We also show
how to use tensor products to combat state-space explosion and how to extend the setting to
higher-dimensional hybrid automata.
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1. INTRODUCTION

In approaches to non-interleaving concurrency, more than
one event may happen concurrently. There is a plethora
of formalisms for modeling and analyzing such concur-
rent systems, e.g., Petri nets (Petri, 1962), event struc-
tures (Nielsen et al., 1981), configuration structures (van
Glabbeek and Plotkin, 2009), or more recent variations
such as dynamic event structures (Arbach et al., 2015)
and Unravel nets (Casu and Pinna, 2017). They all share
the convention of differentiating between concurrent and
interleaving executions; using CCS notation (Milner, 1989),
a|b 6= a.b+ b.a.

For modeling and analyzing embedded or cyber-physical
systems, formalisms which use real time are available.
These include timed automata (Alur and Dill, 1994),
time Petri nets (Merlin and Farber, 1976), timed-arc
Petri nets (Hanisch, 1993), or various classes of hybrid
automata (Alur et al., 1995). Common for them all is that
they identify concurrent and interleaving executions; here,
a|b = a.b+ b.a.

We are interested in formalisms for real-time non-
interleaving concurrency. Hence we would like to differ-
entiate between concurrent and interleaving executions and
be able to model and analyze real-time properties. Few
such formalisms seem to be available in the literature. (The
situation is perhaps best epitomized by the fact that there
is a natural non-interleaving semantics for Petri nets (Goltz
and Reisig, 1983) which is also used in practice (Esparza,
2010; Esparza and Heljanko, 2008), but almost all work on
real-time extensions of Petri nets (Hanisch, 1993; Merlin
and Farber, 1976; Sifakis, 1977; Srba, 2008), including the
popular tool TAPAAL 1 , use an interleaving semantics.

Also Uppaal 2 , the successful tool for modeling and ana-
lyzing networks of timed automata, uses an interleaving
semantics for such networks. This leads to great trouble
with state-space explosion (see also Sect. 7 of this paper)
which, we believe, can be avoided with a non-interleaving
semantics such as we propose here.
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We introduce higher-dimensional timed automata (HDTA),
a formalism based on the (non-interleaving) higher-
dimensional automata of van Glabbeek (2006) and Pratt
(1991) and the timed automata of Alur and Dill (1990,
1994). We show that HDTA can model interesting phenom-
ena which cannot be captured by neither of the formalisms
on which they are based, but that their analysis remains
just as accessible as the one of timed automata. That is,
reachability for HDTA is PSPACE-complete and can be
decided using zone-based algorithms.

In the above-mentioned interleaving real-time formalisms,
continuous flows and discrete actions are orthogonal in the
sense that executions alternate between real-time delays
and discrete actions which are immediate, i.e., take no time.
(In the hybrid setting, these are usually called flows and
mode changes, respectively.) Already Sifakis and Yovine
(1996) notice that this significantly simplifies the semantics
of such systems and hints that this is a main reason for
the success of these formalisms (see the more recent Srba
(2008) for a similar statement).

In the (untimed) non-interleaving setting, on the other
hand, events have a (logical, otherwise unspecified) dura-
tion. This can be seen, for example, in the ST-traces of van
Glabbeek (2006) where actions have a start (a+) and a
termination (a−) and are (implicitly) running between
their start and termination, or in the representation of
concurrent systems as Chu spaces over 3 = {0, 1

2 , 1}, where
0 is interpreted as “before”, 1

2 as “during”, and 1 as “after”,
see Pratt (2000). Intuitively, only if events have duration
can one make statements such as “while a is running, b
starts, and then while b is running, a terminates”.

In our non-interleaving real-time setting, we hence abandon
the assumption that actions are immediate. Instead, we
take the view that actions start and then run during
some specific time before terminating. While this runs
counter to the standard assumption in most of real-time
and hybrid modeling, a similar view can be found, for
example, in Cardelli (1982). 3

2 http://www.tapaal.net/
2 http://www.uppaal.org/
3 The author wishes to thank Kim G. Larsen for pointing him towards
this paper.



Given that we abandon the orthogonality between contin-
uous flows and discrete actions, we find it remarkable to
see that the standard techniques used for timed automata
transfer to our non-interleaving setting. Equally remarkable
is, perhaps, the fact that even though “[t]he timed-automata
model is at the very border of decidability, in the sense
that even small additions to the formalism [. . . ] will soon
lead to the undecidability of reachability questions” (Aceto
et al., 2007), our extension to higher dimensions and non-
interleaving concurrency is completely free of such trouble.

The contributions of this paper are, thus, (1) the intro-
duction of a new formalism of HDTA, a natural extension
of higher-dimensional automata and timed automata, in
Sect. 3; (2) the proof that reachability for HDTA is
PSPACE-complete and decidable using zone-based algo-
rithms, in Sects. 5 and 6; (3) the introduction of a tensor
product for HDTA which can be used for parallel compo-
sition, in Sect. 7; and (4) the extension of the definition
to higher-dimensional hybrid automata together with a
non-trivial example of two independently bouncing balls,
in Sect. 8.

Because of space constraints, all proofs and some other
material had to be omitted from this paper. These can be
found in the full version Fahrenberg (2018).

2. PRELIMINARIES

2.1 Higher-Dimensional Automata

Higher-dimensional automata are a generalization of finite
automata which permit the specification of independence
of actions through higher-dimensional elements. That is,
they consist of states and transitions, but also squares
which signify that two events are independent, cubes which
denote independence of three events, etc. To introduce
them properly, we need to start with precubical sets.

A precubical set is a graded set X =
⋃
n∈NXn, with

Xn ∩ Xm = ∅ for n 6= m, together with mappings
δνk,n : Xn → Xn−1, k = 1, . . . , n, ν = 0, 1, satisfying the
precubical identity

δνk,n−1δ
µ
`,n = δµ`−1,n−1δ

ν
k,n (k < `) .

Elements of Xn are called n-cubes, and for x ∈ Xn,
n = dimx is its dimension. The mappings δνk,n are called
face maps, and we will usually omit the extra subscript
n and write δνk instead of δνk,n. Intuitively, each n-cube
x ∈ Xn has n lower faces δ0

1x, . . . , δ
0
nx and n upper faces

δ1
1x, . . . , δ

1
nx, and the precubical identity expresses the fact

that (n−1)-faces of an n-cube meet in common (n−2)-faces;
see Fig. 1 for an example.
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Fig. 2. Two example HDA. Left, the hollow cube; right, the
full cube

A precubical set X is finite if X is finite as a set. This
means that Xn is finite for each n ∈ N and that X is
finite-dimensional : there exists N ∈ N such that Xn = ∅
for all n ≥ N .

Let Σ be a finite set of actions and recall that a multiset
over Σ is a mapping Σ→ N; we denote the set of such by
NΣ. The cardinality of S ∈ NΣ is |S| =

∑
a∈Σ S(a).

A higher-dimensional automaton (HDA) is a structure
(X,x0, Xf , λ), where X is a finite precubical set with
initial state x0 ∈ X0 and accepting states Xf ⊆ X0, and
λ : X → NΣ is a labeling function such that for every
x ∈ X,

• |λ(x)| = dimx,
• λ(δ0

kx) = λ(δ1
kx) for all k ≤ n, and

• λ(x) \ λ(δ0
kx) is a singleton for all k ≤ dimx.

The conditions on the labeling ensure that the label of
an n-cube is an extension, by one event, of the label of
any of its faces. The computational intuition is that when
passing from a lower face δ0

kx of x ∈ X to x itself, the
(unique) event in λ(x)\λ(δ0

kx) is started, and when passing
from x to an upper face δ1

`x, the event in λ(x) \ λ(δ1
`x) is

terminated.

HDA can indeed model higher-order concurrency of actions.
As an example, the hollow cube on the left of Fig. 2,
consisting of all six faces of a cube but not of its interior,
models the situation where the actions a, b and c are
mutually independent, but cannot be executed all three
concurrently. The full cube on the right of Fig. 2, on the
other hand, has a, b and c independent as a set. The
left HDA might model a system of three users connected
to two printers, so that every two of the users can print
concurrently but not all three, whereas the right HDA
models a system of three users connected to (at least) three
printers.

2.2 Timed Automata

Timed automata extend finite automata with clock vari-
ables and invariants which permit the modeling of real-time
properties. Let C be a finite set of clocks. Φ(C) denotes
the set of clock constraints defined as

Φ(C) 3 φ1, φ2 ::= c ./ k | φ1 ∧ φ2

(c ∈ C, k ∈ Z, ./∈ {<,≤,≥, >}) .
Hence a clock constraint is a conjunction of comparisons
of clocks to integers.

A clock valuation is a mapping v : C → R≥0, where R≥0

denotes the set of non-negative real numbers. The initial
clock valuation is v0 : C → R≥0 given by v0(c) = 0 for
all c ∈ C. For v ∈ RC≥0, d ∈ R≥0, and C ′ ⊆ C, the clock
valuations v + d and v[C ′ ← 0] are defined by



(v + d)(c) = v(c) + d ; v[C ′ ← 0](c) =

{
0 if c ∈ C ′ ,
v(c) if c /∈ C ′ .

For v ∈ RC≥0 and φ ∈ Φ(C), we write v |= φ if v satisfies φ
and JφK = {v : C → R≥0 | v |= φ}.

A timed automaton is a structure (Q, q0, Qf , I, E), where
Q is a finite set of locations with initial location q0 ∈ Q
and accepting locations Qf ⊆ Q, I : Q → Φ(C) assigns
invariants to states, and E ⊆ Q×Φ(C)×Σ× 2C ×Q is a
set of guarded transitions.

The semantics of a timed automaton A = (Q, q0, Qf , I, E)
is a (usually infinite) transition system JAK = (S, s0, Sf ,;),
with ; ⊆ S × S, given as follows:
S = {(q, v) ⊆ Q× RC≥0 | v |= I(q)}
s0 = (l0, v0) Sf = S ∩ Qf×RC≥0

; = {((q, v), (q, v + d)) | ∀0 ≤ d′ ≤ d : v + d′ |= I(q)}
∪ {((q, v), (q′, v′)) | ∃(q, φ, a, C ′, q′) ∈ E :

v |= φ, v′ = v[C ′ ← 0]}
Note that we are ignoring the labels here, as we will be
concerned with reachability only. As usual, we say that A
is reachable iff there exists a finite path s0 ; · · · ; s in
JAK for which s ∈ Sf .
The definition of ; ensures that actions are immediate:
whenever (q, φ, a, C ′, q′) ∈ E, then A passes from (q, v)
to (q′, v′) without any delay. Time progresses only during
delays (q, v) ; (q, v + d) in locations.

3. HIGHER-DIMENSIONAL TIMED AUTOMATA

Unlike timed automata, higher-dimensional automata make
no formal distinction between states (0-cubes), transitions
(1-cubes), and higher-dimensional cubes. We transfer this
intuition to higher-dimensional timed automata, so that
each n-cube has an invariant which specifies when it is
enabled and an exit condition giving the clocks to be reset
when leaving:
Definition 1. A higher-dimensional timed automaton
(HDTA) is a structure (L, l0, Lf , λ, inv, exit), where
(L, l0, Lf , λ) is a finite higher-dimensional automaton and
inv : L → Φ(C), exit : L → 2C assign invariant and exit
conditions to each n-cube.

The semantics of a HDTA A = (L, l0, Lf , λ, inv, exit) is a
(usually infinite) transition system JAK = (S, s0, Sf ,;),
with ; ⊆ S × S, given as follows:
S = {(l, v) ⊆ L× RC≥0 | v |= inv(l)}
s0 = (l0, v0) Sf = S ∩ Lf×RC≥0

; = {((l, v), (l, v + d)) | ∀0 ≤ d′ ≤ d : v + d′ |= inv(l)}
∪ {((δ0

kl, v), (l, v′)) | k ∈ {1, . . . ,dim l},
v′ = v[exit(δ0

kl)← 0] |= inv(l)}
∪ {((l, v), (δ1

kl, v
′)) | k ∈ {1, . . . ,dim l},

v′ = v[exit(l)← 0] |= inv(δ1
kl)}

We omit labels from the semantics, as we will be concerned
only with reachability : Given a HDTA A, does there exist
a finite path s0 ; · · ·; s in JAK such that s ∈ Sf?
Note that in the definition of ; above, we allow time to
evolve in any n-cube in L. Hence transitions (i.e., 1-cubes)

l0 l1

l2 lf

x, y ← 0 x ≥ 2; y ← 0

y ≥ 1;x← 0 x ≥ 2 ∧ y ≥ 1

x ≤ 4; y ← 0

e1 a

y ≤ 3
x← 0

e2

b
x ≥ 2
y ≤ 3
e3

b

x ≤ 4 ∧ y ≥ 1

e4 a

x ≤ 4 ∧ y ≤ 3
ab

u

Fig. 3. The HDTA of Example 2

are not immediate. The second line in the definition of
; defines the passing from an (n− 1)-cube to an n-cube,
i.e., the start of a new concurrent event, and the third line
describes what happens when finishing a concurrent event.
Exit conditions specify which clocks to reset when leaving
a cube.
Example 2. We give a few examples of two-dimensional
timed automata. The first, in Fig. 3, models two actions, a
and b, which can be performed concurrently. It consists of
four states (0-cubes) l0, l1, l2, lf , four transitions (1-cubes)
e1 through e4, and one ab-labeled square (2-cube) u. This
HDTA models that performing a takes between two and
four time units, whereas performing b takes between one
and three time units. To this end, we use two clocks x and
y which are reset when the respective actions are started
and then keep track of how long they are running.

Hence exit(l0) = {x, y}, and the invariants x ≤ 4 at the
a-labeled transitions e1, e4 and at the square u ensure that
a takes at most four time units. The invariants x ≥ 2 at l1,
e3 and lf take care that a cannot finish before two time
units have passed. Note that x is also reset when exiting e2

and l2, ensuring that regardless when a is started, whether
before b, while b is running, or after b is terminated, it must
take between two and four time units.

Example 3. In the HDTA shown in Fig. 4 (where we have
omitted the names of states etc. for clarity and show
changes to Fig. 3 in red), invariants have been modified so
that b can only start after a has been running for one time
unit, and if b finishes before a, then a may run one time
unit longer. Hence an invariant x ≥ 1 is added to the two b-
labeled transitions and to the ab-square (at the right-most
b-transition x ≥ 1 is already implied), and the condition
on x at the top a-transition is changed to x ≤ 5. Note that
the left edge is now permanently disabled: before entering
it, x is reset to zero, but its edge invariant is x ≥ 1. This
is as expected, as b should not be able to start before a.

x, y ← 0 x ≥ 2; y ← 0

y ≥ 1;x← 0 x ≥ 2 ∧ y ≥ 1

x ≤ 4; y ← 0

a

y ≤ 3
x ≥ 1
x← 0

b
x ≥ 2
y ≤ 3b

x ≤ 5 ∧ y ≥ 1

a

1 ≤ x ≤ 4 ∧ y ≤ 3
ab

Fig. 4. The HDTA of Example 3
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Fig. 5. Conversion of 1DTA edge to timed automaton

4. ONE-DIMENSIONAL TIMED AUTOMATA

We work out the relation between one-dimensional HDTA
(i.e., 1DTA) and standard timed automata. Note that this
is not trivial, as in timed automata, clocks can only be
reset at transitions, and, semantically, transitions take no
time. In contrast, in our 1DTA, resets can occur in states
and transitions may take time.
Proposition 4. There is a linear-time algorithm which,
given any timed automaton A, constructs a 1DTA A′,
with one extra clock, so that A is reachable iff A′ is.

Proof. Let A = (Q, q0, Qf , I, E) be a timed automaton. It
is clear that L = Q∪E forms a one-dimensional precubical
set, with L0 = Q, L1 = E, δ0

1(q, φ, a, C ′, q′) = q, and
δ1
1(q, φ, a, C ′, q′) = q′. Let l0 = q0 and Lf = Qf . In order
to make transitions immediate, we introduce a fresh clock
c /∈ C. For q ∈ Q, let λ(q) = ∅, inv(q) = I(q), and
exit(q) = {c}. For e = (q, φ, a, C ′, q′) ∈ E, put λ(e) = {a},
inv(e) = φ ∧ (c ≤ 0), and exit(e) = C ′. We have defined a
1DTA A′ = (L, l0, Lf , λ, inv, exit) (over clocks C ∪ {c}). As
c is reset whenever exiting a state, and every transition has
c ≤ 0 as part of its invariant, it is clear that transitions in
A′ take no time, and the claim follows. 2

Proposition 5. There is a linear-time algorithm which,
given any 1DTA A, constructs a timed automaton A′ over
the same clocks such that A is reachable iff A′ is.

Proof. Let A = (L, l0, Lf , λ, inv, exit) be a 1DTA, we con-
struct a timed automaton A′ = (Q, q0, Qf , I, E). Because
transitions in A may take time, we cannot simply let
Q = L0, but need to add extra states corresponding to
the edges in L1. Let, thus, Q = L, I = inv, and E =
{(δ0

1x, tt, τ, exit(δ0
1x), x), (x, tt, λ(x), exit(x), δ1

1x) | x ∈ L1},
where τ /∈ Σ is a fresh (silent) action. See Fig. 5. 2

Note that even though silent transitions in timed automata
are a delicate matter (Bérard et al., 1998), the fact that
we add them in the last proof is unimportant as we are
only concerned with reachability. PSPACE-completeness of
reachability for timed automata now implies the following:
Corollary 6. Reachability for HDTA is PSPACE-hard.

5. REACHABILITY FOR HDTA IS IN PSPACE

We now turn to extend the notion of regions to HDTA, in
order to show that reachability for HDTA is decidable in
PSPACE.
Definition 7. Let (L, l0, Lf , λ, inv, exit) be a HDTA and
R ⊆ L×RC≥0×L×RC≥0. Then R is an untimed bisimulation
if ((l0, v0), (l0, v0)) ∈ R and, for all ((l1, v1), (l2, v2)) ∈ R,
• l1 ∈ Lf iff l2 ∈ Lf ;

• whenever (l1, v1) ; (l′1, v
′
1), then also (l2, v2) ;

(l′2, v
′
2) for some ((l′1, v

′
1), (l′2, v

′
2)) ∈ R;

• whenever (l2, v2) ; (l′2, v
′
2), then also (l1, v1) ;

(l′1, v
′
1) for some ((l′1, v

′
1), (l′2, v

′
2)) ∈ R.

For a HDTA A, let MA denote the maximal constant
appearing in any inv(l) for l ∈ L, and let ∼=MA

denote
standard region equivalence (Alur and Dill, 1994). Extend
∼=MA

to JAK by defining (l, v) ∼=MA
(l′, v′) iff l = l′ and

v ∼=MA
v′.

Lemma 8. ∼=MA
is an untimed bisimulation, and the quo-

tient JAK/∼=MA
is finite.

Lemma 9. Let A be a HDTA and R an untimed bisimula-
tion on A. Then A is reachable iff JAK/R is.
Theorem 10. Reachability for HDTA is PSPACE-complete.

6. ZONE-BASED REACHABILITY

We show that the standard zone-based algorithm for
checking reachability in timed automata also applies in our
HDTA setting. This is important, as zone-based reachability
checking is at the basis of the success of tools such as
Uppaal, see (Larsen et al., 1997).

Recall that the set Φ+(C) of extended clock constraints
over C is defined by the grammar

Φ+(C) 3 φ1, φ2 ::= c ./ k | c1 − c2 ./ k | φ1 ∧ φ2

(c, c1, c2 ∈ C, k ∈ Z, ./∈ {<,≤,≥, >}),
and that a zone over C is a subset Z ⊆ RC≥0 which can be
represented by an extended clock constraint φ, i.e., such
that Z = JφK. Let Z(C) denote the set of zones over C.

For a zone Z ∈ Z(C) and C ′ ⊆ C, the delay and
reset of Z are given by Z↑ = {v + d | v ∈ Z} and
Z[C ′ ← 0] = {v[C ′ ← 0] | v ∈ Z}; these are again zones,
and their representation by an extended clock constraint
can be efficiently computed (Bengtsson and Yi, 2003). Also
zone inclusion Z ′ ⊆ Z can be efficiently decided.

The zone graph of a HDTA A = (L, l0, Lf , λ, inv, exit) is a
(usually infinite) transition system Z(A) = (S, s0, Sf ,;),
with ; ⊆ S × S, given as follows:
S = {(l, Z) ⊆ L×Z(C) | Z ⊆ Jinv(l)K}
s0 = (l0, Jv0K↑ ∩ Jinv(l0)K) Sf = S ∩ Lf×Z(C)

; = {((δ0
kl, Z), (l, Z ′)) | k ∈ {1, . . . ,dim l},

Z ′ = Z[exit(δ0
kl)← 0]↑ ∩ Jinv(l)K}

∪ {((l, Z), (δ1
kl, Z

′)) | k ∈ {1, . . . ,dim l},
Z ′ = Z[exit(l)← 0]↑ ∩ Jinv(δ1

kl)K}
Lemma 11. For any HDTA A, an accepting location is
reachable in A iff an accepting state is reachable in Z(A).

Any standard normalization technique (Bengtsson and Yi,
2003) may now be used to ensure that the zone graph Z(A)
is finite, and then the standard zone algorithms can be
employed to efficiently decide reachability in HDTA.

7. PARALLEL COMPOSITION OF HDTA

There is a tensor product on precubical sets which extends
to HDTA and can be used for parallel composition:



Definition 12. Let Ai = (Li, li,0, Li,f , λi, invi, exiti), for
i = 1, 2, be HDTA. The tensor product of A1 and A2

is A1 �A2 = (L, l0, Lf , λ, inv, exit) given as follows:

Ln =
⊔

p+q=n

L1
p × L2

q l0 = (l1,0, l2,0) Lf = L1,f × L2,f

δνi (l1, l2) =

{
(δνi l

1, l2) if i ≤ dim l1

(l1, δνi−dim l1 l
2) if i > dim l1

λ(l1, l2) = λ(l1) t λ(l2) inv(l1, l2) = inv(l1) ∧ inv(l2)

exit(l1, l2) = exit(l1) t exit(l2)

Intuitively, tensor product is asynchronous parallel com-
position, or independent product. In combination with
relabeling and restriction, any parallel composition op-
erator can be obtained, see Winskel and Nielsen (1995)
or Fahrenberg (2005) for the special case of HDA.
Example 13. Of the two 1DTA in Fig. 6, the first models
the constraint that performing the action a takes between
two and four time units, and the second, that performing
b takes between one and three time units. (In the notation
of Cardelli (1982), these are a[2]:a(2):0 and b[1]:b(2):0.)
Their tensor product is precisely the HDTA of Example 2.

Using tensor product for parallel composition, one can
avoid introducing spurious interleavings and thus combat
state-space explosion. Take the real-time version of Milner’s
scheduler from David et al. (2015) as an example. This is
essentially a real-time round-robin scheduler in which the
nodes are simple timed automata, see David et al. (2015)
for the Uppaal model.

There are two transitions from the initial to the topmost
state, one which outputs w[i] (“work”) and another which
passes on the token (rec[(i+1)%N]!). These transitions
are independent, but because of the limitations of the
timed-automata formalism, they have to be modeled as
an interleaving diamond. Thus, when a number of such
nodes (N = 30, say) are composed into a scheduler, a
high amount of interleaving is generated: but most of it is
spurious, owing to constraints of the modeling language
rather than properties of the system at hand.

David et al. (2015) show that especially when d is much
smaller than D (say, d = 4 and D = 30), verification of the
scheduler becomes impossible already for N = 6 nodes. One
can use methods from partial order reduction (Godefroid,
1996) to detect spurious interleavings. Aside from the fact
that this has proven to be largely impractical for timed
automata (Hansen et al., 2014), we also argue that by using
HDTA as a modeling language, partial order reduction is,
so to speak, built into the model. Spurious interleavings
are taken care of during the modeling phase, instead of
having to be detected during the verification phase.

x← 0 x ≥ 2 y ← 0 y ≥ 1x ≤ 4

a

y ≤ 3

b

Fig. 6. The two 1DTA of Example 13

8. HIGHER-DIMENSIONAL HYBRID AUTOMATA

For completeness, we show that our definition of HDTA
easily extends to one for higher-dimensional hybrid au-
tomata. Let X be a finite set of variables, Ẋ = {ẋ | x ∈ X,
X ′ = {x′ | x ∈ X}, and Pred(Y ) the set of (arithmetic)
predicates on free variables in Y .
Definition 14. A higher-dimensional hybrid automaton
(HDHA) is a structure (L, λ, inv, flow, exit), where (L, λ)
is a finite higher-dimensional automaton and init, inv :
L → Pred(X), flow : L→ Pred(X ∪ Ẋ), and exit : L →
Pred(X ∪ X ′) assign initial, invariant, flow, and exit
conditions to each n-cube.

Note that we have removed initial and final locations from
the definition; this is standard for hybrid automata.

The semantics of a HDHA A = (L, λ, inv, flow, exit) is a
(usually infinite) transition system JAK = (S, S0,;), with
; ⊆ S × S, given as follows:

S = {(l, v) ⊆ L× RX≥0 | v |= inv(l)}
S0 = {(l, v) ∈ S | v |= init(l)}
; = {((l, v), (l, v′)) | ∃d ≥ 0, f ∈ D([0, d],RX) :

f(0) = v, f(d) = v′,∀t ∈ ]0, d[ :

f(t) |= inv(q), (f(t), ḟ(t)) |= flow(q)}
∪ {((δ0

kl, v), (l, v′)) | k ∈ {1, . . . ,dim l},
(v, v′) |= exit(δ0

kl)}
∪ {((l, v), (δ1

kl, v
′)) | k ∈ {1, . . . ,dim l},

(v, v′) |= exit(l)}
Here D(D1, D2) denotes the set of differentiable functions
D1 → D2.
Example 15. As a non-trivial example, we show a 2DHA
which models two independently bouncing balls, following
the temporal regularization from Johansson et al. (1999),
in Fig. 7. Here, the 2-cube models the state in which both
balls are in the air. Its left and right edges are identified, as
are its lower and upper edges, so that logically, this model
is a torus.

Its left / right edge is the state in which the second ball
is in the air, whereas the first ball is in its ε-regularized
transition (ε > 0) from falling to raising (v′1 = −cv, for
some c ∈ ]0, 1[). Similarly, its lower / upper edge is the
state in which the first ball is in the air, while the second
ball is ε-transitioning.

inv : x1, x2 ≥ 0
flow : ẋ1 = v1, v̇1 = −g,
ẋ2 = v2, v̇2 = −g, ṙ = 0

exit : r′ = 0

inv : x1 = 0, v1 ≤ 0,
x2 ≥ 0, r ≤ ε
flow : ẋ1 = 0, v̇1 = 0,
ẋ2 = v2, v̇2 = −g, ṙ = 1
exit : r = ε, r′ = 0,
v′1 = −cv1

inv : x2 = 0, v2 ≤ 0, x1 ≥ 0, r ≤ ε
flow : ẋ2 = 0, v̇2 = 0,
ẋ1 = v1, v̇1 = −g, ṙ = 1

exit : r = ε, r′ = 0, v′2 = −cv2

Fig. 7. Two independently bouncing balls



Due to the identifications, there is only one 0-cube, which
models the state in which both balls are ε-transitioning;
its inv, flow and exit conditions can be inferred from the
ones given. With a notion of tensor product similar to the
one for HDTA, this model can also be obtained as tensor
product of the one-dimensional models for the individual
balls.

9. CONCLUSION

We have seen that our new formalism of higher-dimensional
timed automata is useful for modeling interesting properties
of non-interleaving real-time systems, and that reachability
for HDTA is PSPACE-complete, but can be decided using
zone-based algorithms.

We believe that our notion that in a non-interleaving real-
time setting, events should have a time duration, is quite
natural. Working on non-interleaving real-time semantics
for Petri nets, Chatain and Jard (2013) remark that “[t]ime
and causality [do] not necessarily blend well in [...] Petri
nets” and propose to let time run backwards to get nicer
semantics. We should like to argue that our proposal of
letting events have duration appears more natural.

We have also seen how tensor product of HDTA can be
used for parallel composition, and that HDTA can easily
be generalized to higher-dimensional hybrid automata. We
believe that altogether, this defines a powerful modeling
formalism for non-interleaving real-time systems.
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