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1. INTRODUCTION

Recently, there has been a big interest in the analysis
of dynamic equations on time scales (Hilger, 1990; Bohner
and Peterson, 2001, 2003) which unifies the traditional and
well-covered theories of continuous and discrete systems
respectively. The use of Lyapunov-type functions plays a
fundamental role in investigating the stability properties of
dynamic systems. Our focus in this paper is to analyze the
well-know Lyapunov-Razumikhin method in the time scale
framework. This method has been previously considered
by (Peterson and Tisdell, 2004; Peterson and Raffoul,
2005; Liu, 2006; Akin-Bohner et al., 2010) to study bound-
edness, uniqueness of solutions and exponential stability of
dynamic equations on arbitrary time domains.

The main description of the mentioned approach is
that the candidate Lyapunov function must be decrescent
and positive definite. As well, from its first time derivative
type condition, along trajectories, such function decreases
over time. Hereby, the important role of the comparison
functions, i. e., K, L and KL function classes

(
introduced

in (Massera, 1956; Hahn, 1967; Sontag, 1989)
)
, arises.

The Lyapunov-Razumikhin method uses the comparison
functions and a great effort was made to extend these
concepts to the time scale field in order to study some
stability properties as seen in (Kaymakçalan, 1993; Lak-
shmikantham and Sivasundaram, 1998; Hoffacker and Tis-
dell, 2005; Bohner and Martynyuk, 2007; Messina et al.,
2015; Yakar and Oğur, 2015; Martynyuk, 2016; Ogulenko,
2017).

Further, an interesting objective of the use of Lya-
punov theory is to prove global stability of a dynamic
system. Nevertheless, in some cases it is impossible that

all states of the considered system reach the equilibrium
state. In those cases, the trajectories may be confined
in a ball around the equilibrium point. A basic concept
which matches to such trajectory aspect is the practical
stability. In this context, the practical stability of contin-
uous and discrete dynamics has been widely studied and
several stability criteria based on Lyapunov functions and
Razumikhin techniques have been obtained as in (Raffoul,
2003, 2004, 2007; Chaillet and Loŕıa, 2008; Song et al.,
2008; Wangrat and Niamsup, 2016; Wei and Lin, 2016;
Mironchenko, 2017).

It should be noted that the Lyapunov-Razumikhin
process can be applied for studying the practical stability
of dynamic systems evolving on arbitrary time domains,
which is theoretically challenging and of fundamental im-
portance to some applications (Wang and Wu, 2007; Cher-
netskaya et al., 2013; Wang and Sun, 2014; Ben Nasser
et al., 2016). The main contribution of the paper is to
study the uniform global practical asymptotic stability of
dynamic equations on arbitrary time scales. We will de-
rive some sufficient conditions for uniform global practical
asymptotic stability in terms of Lyapunov-type functions
based on Razumikhin techniques. Analytically, we will
derive interesting estimates of trajectories using the weak
triangular inequality given in (Jiang et al., 1994). Also,
we will introduce some numerical results illustrating the
feasibility of the proposed approach.

The organization of the paper is as follows. Some
preliminaries highlighting the time scale theory are stated
in Section 2. The problem formulation and stability def-
initions are given in Section 3. The main result, that is
the sufficient criteria for practical stability of dynamic



systems on time scales, are formulated and proved in
Section 4. In addition, some numerical examples show the
effectiveness of the presented approach in Section 5. At the
end, concluding remarks are given.

2. NOTATIONS AND PRELIMINARY FACTS

Throughout this work, we use rather standard notation.
Denote real numbers by R, natural numbers by N and
integers by Z. Also, R+ (resp. R−) indicates the set of non-
negative (resp. negative) real numbers and N0 = N ∪ {0}.
Let n ∈ N, for a vector U = (u1, . . . , un) ∈ Rn, ‖.‖

stands its Euclidean norm, i. e., ‖U‖ =

(
n∑
i=1

|ui|2
) 1

2

. We

will denote identity function by id, i. e., id(r) = r for all
r ∈ R.

For convenience, we include hereafter main characteristics
and some basic results of time scale theory (Bohner and
Peterson, 2001, 2003). We mean by a time scale, denoted
by symbol T, every arbitrary nonempty closed subset of
R with the ordering induced from R. If a ∈ R, then
T+
a designates the trace of T on the ordinary interval

[a,+∞[. Similarly, closed and open intervals are defined.
This theory includes the most familiar scales such as:
the continuous time scale R, closed intervals in R, the
discrete sets hZ for h ∈ R, the so-called quantum calculus
T = qN0 for q > 1, the space of harmonic numbers{
Hm;m ∈ N0, H0 = 0, Hm =

m∑
k=0

1

k

}
, the hybrid scales

as the finite union of closed subintervals of R and the
Cantor set. Topologically, closed subset elements of R
may or may not be connected. The link is through two
operators characterizing the theory as follows. For t ∈ T,
the forward jump operator σ (resp. the backward jump
operator ρ) is defined by σ(t) := inf{s ∈ T; s > t}
(resp. ρ(t) := sup{s ∈ T; s < t}). Those operators ensure
the classification of time scale elements: If t < sup(T)
and t = σ(t) then, t is called right dense point. While,
t is called a left dense element when t > inf(T) and
ρ(t) = t. Moreover, the distance between the time scale
elements is measured by the granulation operator µ given
by µ(t) := σ(t) − t. Also, we define the set of all non-
degenerate points of T by

Tκ =

{
T\]ρ(sup(T)), sup(T)] if sup(T) <∞
T otherwise.

The following definition characterizes the differentiability
on time scales.

Definition 1. (Hilger, 1990)
Let h : T→ R be a function and t ∈ Tκ. We define h∆(t)
to be the real number, provided it exists, with the property
that for all ε > 0, there exists a neighborhood Ut of t, i. e.,
Ut =]t− δ, t+ δ[T for some δ > 0, such that

|[h(σ(t))− h(s)]− h∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|, ∀s ∈ Ut.

h∆(t) is called the delta-derivative of h at t. We say that
h : T→ R is delta-differentiable on Tκ, if h∆(t) exists for
every t ∈ Tκ. A function h : T→ R is called rd-continuous,
if it is continuous in right-dense elements and if the left-
sided limits exist in left-dense points. Crd(T,R) denotes
the set of rd-continuous functions. A function H : T → R

is called an antiderivative of h : T→ R provided H∆ = h
on Tκ. In this case, we define the Cauchy integral by
t∫
s

h(τ)∆τ = H(t)−H(s) for all s, t ∈ T. Moreover, every

rd-continuous function h : T→ R has an antiderivative. In

particular, if t0 ∈ T, then H defined by H(t) =

t∫
t0

h(τ)∆τ ,

for t ∈ T, is an antiderivative of h. Now, if a ∈ T,
sup(T) = +∞ and h is rd-continuous on T+

a , then we de-

fine the improper integral by

+∞∫
a

h(t)∆t = lim
b→+∞

b∫
a

h(t)∆t

provided this limit exists, and we say that the improper
integral converges. In contrary, the improper integral di-
verges. For more details about the delta integral, one can
refer to (Bohner and Peterson, 2003, Section 1.4). One can
note, there exist more general definitions for time scale
integrals including notions of Riemann or Lebesgue delta
integrability (Bohner and Peterson, 2001, Chapter 5).

A function h : T→ R is called regressive if 1 + µh 6= 0 on
Tκ.R(T,R) denotes the set of regressive and rd-continuous
functions and R+(T,R) =

{
h ∈ R : (1 + µh)|Tκ > 0

}
is

the set of positively regressive elements of Crd(T,R). The
set R(T,R) (resp. R+(T,R)) together with the circle addi-

tion
µ
⊕ defined by p

µ
⊕ q = p+ q + µpq is an Abelian group.

For p ∈ R, the inverse element is given by
µ
	 p =

−p
1 + µp

.

If the circle substraction is defined as
µ
	
(
p
µ
	 q
)

= p
µ
⊕
µ
	 q,

then p
µ
	 q =

p− q
1 + µq

.

The time scale exponential function is introduced as fol-
lows.

Definition 2. (Hilger, 1990)

Let p ∈ R(T,R). The Cauchy problem{
u∆(t) = p(t)u(t)

u(t0) = 1

has a unique solution, the so-called exponential function,
denoted by ep(t, t0).

Let t, s, r ∈ T and p, q ∈ R(T,R). Those useful relation-

ships hold ep(t, s)ep(s, r) = ep(t, r),
ep(t, s)

eq(t, s)
= e

p
µ

	q
(t, s),

ep(σ(t), s) =
(
1 + µ(t)p(t)

)
ep(t, s),

ep(s, t) = ep(t, s)
−1 = eµ

	p
(t, s) and [ep(r, .)]

∆ = −pep(r, σ(.)).

Moreover, if p ∈ R+(T,R), then ep(t, s) > 0. More if p ≤ q,
then ep(t, s) ≤ eq(t, s).
For more details on the time scale exponential function
properties, one can refer to (Bohner and Peterson, 2003,
Chapter 2).

3. PROBLEM FORMULATION AND PRACTICAL
STABILITY DEFINITION

In this paper, the problem of uniform global practical
asymptotic stability is addressed to dynamic equations on
time scale T of the form{

x∆(t) = f(t, x(t))
x(t0) = x0

(1)



where t ∈ T+
t0 , t0 ∈ T+

a , sup(T) = +∞, a ∈ T, x0, x ∈ Rn
and f : T × Rn → Rn is a rd-continuous vector function.
Denote by x(t) := x(t, t0, x0) an arbitrary solution of
system (1) initiated at (t0, x0). It is assumed that the
conditions for the existence of a unique solution of system
(1) on T+

t0 are satisfied for all initial states x0. Hereafter,
we introduce for system (1) some basic definitions of com-
parison functions and stability and a technical lemma.
Comparison functions is an important and useful tool for
stability analysis. Over the last decades, some significant
results are developed highlighting the computational effi-
ciency of this process in studying time scale stability prop-
erties, as in (Kaymakçalan, 1993; Lakshmikantham and
Sivasundaram, 1998; Hoffacker and Tisdell, 2005; Wang
and Wu, 2007; Bohner and Martynyuk, 2007; Messina
et al., 2015; Yakar and Oğur, 2015; Ogulenko, 2017). Hahn
has first defined functions of class-K in (Hahn, 1967) after
their use in stability studies by Massera (Massera, 1956). A
function α : R+ → R+ is said to belong to class-K (α ∈ K)
if it is continuous, zero at zero and strictly increasing.
To englobe radially unbounded functions, Sontag (Sontag,
1989) introduced, class-K∞ functions, a characterization
if α is also unbounded. So, a function α : R+ → R+ is said
to belong to class-K∞ (α ∈ K∞) if α ∈ K, and in addition,

lim
r→+∞

α(r) = +∞.
To characterize attractivity of zero-solutions, we will in-
troduce a time scale version for class-L as given in (Hahn,
1967).

Definition 3.
A function ψ : T → R+ is said to belong to class LT
(α ∈ LT) if it is rd-continuous, strictly decreasing and

lim
t→+∞

ψ(t) = 0.

For a constant δ ∈ R− ∩ R+, t 7→ eδ(t, a), t ∈ T+
a , is of

class-LT. After, we state a time scale version of class-KL
functions.

Definition 4.
An rd-continuous function β : R+ × T → R+ is said to
belong to class-KLT (β ∈ KLT) if it is of class-K in its
first argument and of class-LT in its second argument.

In other words, it means that, for each fixed s, the mapping
β(., s) ∈ K and, for each fixed r, the mapping β(r, .) ∈ LT.
One can see that the last characterization is similar and
more general to that introduced by Hahn (Hahn, 1967).
As an example, for a constant δ ∈ R− ∩ R+, (w, t) 7→
weδ(t, a), w ≥ 0, t ∈ T+

a , is of class-KLT.

Now, practical stability is characterized here using class-
KLT functions.

Definition 5.
The dynamic system (1) is said to be uniformly globally
practically asymptotically stable if and only if there exist
β ∈ KLT and a nonnegative constant r such that

‖x(t)‖ ≤ r+β
(
‖x(t0)‖, t

)
for all (t0, t) ∈ T+

a ×T+
t0 (2)

Furthermore, if r = 0, then (1) is uniformly globally
asymptotically stable.

The following auxiliary lemma gives the weak triangular
inequality, which will be useful in relaxing estimation
for trajectories of system (1) while developing practical
stability criteria.

Lemma 1. (Jiang et al., 1994)
For any functions α ∈ K and ρ ∈ K∞ such that ρ −
id ∈ K∞, and any nonnegative real numbers a and b we
have

α(a+ b) ≤ α ◦ ρ(a) + α ◦ ρ ◦ (ρ− id)−1(b) (3)

4. RAZUMIKHIN THEOREMS

In this section, using Lyapunov-Razumikhin method, we
will develop some results which provide sufficient criteria
for uniform global practical asymptotic stability of system
(1) using the so-called Lyapunov-type functions on time
scales as studied in (Liu, 2006; Peterson and Raffoul,
2005; Peterson and Tisdell, 2004). They are the mapping
V : T+

a × Rn → R+, verifying V (t, 0) = 0 for all t ∈ T+
a ,

delta-differentiable in its first variable and continuously
differentiable in variable x, x(t) denotes a solution of (1).
At first, the study is done on an arbitrary time domain.

Theorem 1.
Assume there exists a Lyapunov-type function V : T ×
Rn → R+ satisfying the following conditions

(F1) There exist a nondecreasing rd-continuous positive
function λ1, positive bounded rd-continuous function λ2

with bound λ̄2 and class-K functions α1, α2 such that

λ1(t)α1(‖x‖) ≤ V (t, x) ≤ λ2(t)α2(‖x‖).
(F2) There exist a positive rd-continuous function λ3 and

a class-K function α3 such that the derivative of V with
respect to (1) verifies

V ∆(t, x) ≤ −λ3(t)α3(‖x‖)
1 + λ3(t)µ(t)

.

(F3) MV (t, x)− λ3(t)α3 ◦ α−1
2

(V (t, x)

λ2(t)

)
≤ γ, for a con-

stant γ ≥ 0, with M = sup
t∈T+

a

λ3(t).

Then, the dynamical system (1) is uniformly globally
practically asymptotically stable.

Proof.
Let ε > 1 and define Q1(t, x) := V (t, x)eM (t, t0). Then,

Q∆
1 (t, x) = [Q1(t, x(t))]∆

Q∆
1 (t, x) = MV (t, x)eM (t, t0) + V ∆(t, x)eM (σ(t), t0)

=
(
MV (t, x) + V ∆(t, x)

(
1 +Mµ(t)

))
eM (t, t0)

(F2)

≤
(
MV (t, x)− λ3(t)α3(‖x‖)

)
eM (t, t0)

(F1)

≤
(
MV (t, x)− λ3(t)α3 ◦ α−1

2

(V (t, x)

λ2(t)

))
eM (t, t0)

(F3)

≤ γeM (t, t0).

A simple integration of the last inequality gives

V (t, x(t))eM (t, t0) ≤ V (t0, x(t0)) +
γ

M

(
eM (t, t0)− 1

)
.

As M > 0, eM (t, t0) is well-defined and positive and one
can see that

V (t, x(t)) ≤ V (t0, x0)eµ
	M

(t, t0) +
γ

M
.

By manipulating the upper and the lower bound in (F1),
we get,



‖x(t)‖
(F1)

≤ α−1
1

(
λ̄2

λ1(a)
α2(‖x0‖)eµ	M (t, t0) +

γ

Mλ1(a)

)
(4)

Applying the weak triangular inequality (3) to (4) with
ρ(r) = ε.r,
i. e., ρ ◦ (ρ− id)−1 = ε

ε−1 id, one can obtain

‖x(t)‖ ≤ α−1
1

(
ε
λ̄2

λ1(a)
α2(‖x0‖)eµ	M (t, t0)︸ ︷︷ ︸

:=β1(‖x0‖,t)

)

+α−1
1

(
εγ

(ε− 1)Mλ1(a)︸ ︷︷ ︸
:=r1

)

for all t > t0 and x0 ∈ Rn, proving uniform global practical
asymptotic stability for solutions of system (1).

Hereafter, the study will be reduced over a time scale
T with bounded graininess, i. e., µ(t) ≤ µT < +∞. We
will relax hypothesis (F2) by adding a term in the delta-
derivative Lyapunov-type function bound.

Theorem 2.
Suppose that there exists a Lyapunov-type function V :
T× Rn → R+ such that the following statements hold.

(H1) There exist a nondecreasing rd-continuous positive
function λ1, positive bounded rd-continuous function λ2

with bound λ̄2 and α1, α2 ∈ K such that

λ1(t)α1(‖x‖) ≤ V (t, x) ≤ λ2(t)α2(‖x‖).
(H2) There exist a rd-continuous positive function λ3,
α3 ∈ K, a nonnegative rd-continuous function λ4 and
a positive constant δ > m = inf

t∈T+
a

λ3(t) such that

V ∆(t, x) ≤ −λ3(t)α3(‖x‖) + λ4(t)

1 +mµ(t)

and

+∞∫
a

λ4(s)em(s, a)∆s ≤ λ̄4.

(H3) V (t, x) − α3 ◦ α−1
2

(
V (t,x)
λ2(t)

)
≤ γeµ

	δ
(t, a), for a non-

negative constant γ.

Then, the dynamic system (1) is uniformly globally prac-
tically asymptotically stable.

Proof.
Let ε > 1 and denote Q2(t, x) := V (t, x)em(t, t0). ∆-
differentiating Q2, one can see that

Q∆
2 (t, x) = mV (t, x)em(t, t0) + V ∆(t, x)em(σ(t), t0)

=
(
mV (t, x) + (1 +mµ(t))V ∆(t, x)

)
em(t, t0)

(H2)

≤
(
mV (t, x)− λ3(t)α3(‖x‖) + λ4(t)

)
em(t, t0)

(H1)

≤

(
mV (t, x)− λ3(t)α3 ◦ α−1

2

(
V (t, x)

λ2(t)

))
em(t, t0) + λ4(t)em(t, t0)

(H3)

≤ mγe
m
µ

	δ
(t, a) + λ4(t)em(t, a).

Integrating both sides from t0 to t, we get

V (t, x(t))em(t, t0)≤ V (t0, x(t0)) +

t∫
t0

mγe
m
µ

	δ
(s, a)

+λ4(s)em(s, a)∆s.

Since m > 0, em(t, t0) is well-defined and positive and one
can deduce

V (t, x(t))≤ V (t0, x0)eµ
	m

(t, t0) +(
γδ(1 +mµT)

δ −m
+ λ̄4

)
eµ
	m

(t, t0)

and

‖x(t)‖
(H1)

≤ α−1
1

(
λ̄2

λ1(a)
α2(‖x0‖)eµ	m(t, t0) +

γδ(1 +mµT)

λ1(a)(δ −m)
+

λ̄4

λ1(a)

)
.

Using Lemma 1 with α = α−1
1 and ρ(r) = (1 + ε)r,

one can obtain

‖x(t)‖ ≤ α−1
1

(
(1 + ε)λ̄2

λ1(a)
α2(‖x0‖)eµ	m(t, t0)︸ ︷︷ ︸

:=β2(‖x0‖,t)

)

+α−1
1

(
(1 + ε)γδ(1 +mµT)

ελ1(a)(δ −m)
+

(1 + ε)λ̄4

ελ1(a)︸ ︷︷ ︸
:=r2

)
.

This completes the proof.

Remark 1.
It should be mentioned that Lyapunov’s approach using
Razimikhin’s techniques is properly addressed in the past
for the study of some stability properties on arbitrary
time domains as boundedness of solutions, exponential
stability and uniform exponential stability in references
(Peterson and Tisdell, 2004; Peterson and Raffoul, 2005;
Liu, 2006). Our contribution extends this method for
studying the uniform global practical asymptotic stability
on time scales in a more general context which may include
the stability properties already mentioned.

5. NUMERICAL EXAMPLES

To demonstrate the applicability of the stability criteria
given in Theorem 1, we first propose a numerical example
in the plan tested for a variety of time domains.

Example 1.
Consider the following planar linear system on time scale
T+

0 {
x∆

1 = −x1 − e−tx2

x∆
2 = e−tx1 − x2

(5)

where x = (x1, x2)> ∈ R2 denotes the state.

Let us consider the Lyapunov-type function V (t, x) = x2
1+

x2
2. Hypothesis (F2) is satisfied with α1(r) = α2(r) = r2

and λ1(t) = λ2(t) = 1. Calculating the upper right
derivative of V along the solution of (5), it follows

V ∆(t, x) = −2
(
x2

1 + x2
2

)
+ µ(t)

(
x2

1 + e−2tx2
2 + e−2tx2

1

+x2
2

)
= −

(
2− (1 + e−2t)µ(t)

)
‖x‖2

λ3(t)=λ

≤ −λ
1 + λµ(t)

‖x‖2.



If as requested in the last inequality λ3 is a positive
constant λ, α3(r) = r2, (F3) is fulfilled with γ = 0 and
the statement (F2) is achieved as long as such constant
solves the following relationship

λ
[
(1+e−2t)µ2(t)−2µ(t)+1

]
≤ −(1+e−2t)µ(t)+2, t ≥ 0

(6)

This will be discussed for certain time domains.

Case 1: If T = R, then µ(t) = 0 and (6) is satisfied if
λ ∈ ]0, 2].

Case 2: If T = Th := hZ with a positive constant h ≤ 1
2 ,

then µ(t) = h. If we can find a constant λ > 0 such that

0 < λ
[
(1+e−2t)h2−2h+1

]
≤ −(1+e−2t)h+2, t ≥ 0.

then condition (6) holds. Thus, we can choose λ ∈ ]0,
2

3
].

Case 3: If T = Th,l := ∪∞k=0[k(h+ l), k(h+ l) + l], where

l > 0 and 0 < h ≤ 1
2 , then µ(t) ∈ {0, h}. Inequality (6)

gives{
0 < λ

[
(1 + e−2t)h2 − 2h+ 1

]
≤ −(1 + e−2t)h+ 2

λ ≤ 2, t ≥ 0

So, λ can be chosen in ]0,
2

3
].

From the above discussion, we can see that all condi-
tions in Theorem 1 hold and the original state of (5) is
uniformly globally asymptotically stable.

The numerical simulation for this example is given in Fig.
1 made for T0.3 and T 1

2 ,1
respectively with initial state

x0 = (−1, 3)>. It shows the exponential decay of the
trajectory components over time.

For testing the applicability of Theorem 2, we choose a
nonlinear system in the plan.

Example 2.
Let consider on a time scale T0 with µT = 3

4 the following
system 

x∆
1 = −1

2
x1 +

1

2
x2 +

1

4
φ

x∆
2 = −1

2
x1 −

1

2
x2 +

1

4
φ

(7)

where x = (x1, x2)> ∈ R2 denotes the state, φ(t) =
ceµ
	δ

(t, 0), c ≤ 0 and δ > 1
5 .

We choose the Lyapunov-type function as V (t, x) = x2
1 +

x2
2. It is clear that (H1) and (H3) hold with αi(r) = r2

and λ1(t) = λ2(t) = 1. It is then straightforward to show
that

V ∆(t, x) = 2
(
− 1

2
‖x‖2 +

1

4
φ(t)

(
x1 + x2

))
+µ(t)

(1

2
‖x‖2 − 1

2
φ(t)x1 +

1

8
φ(t)2

)
We apply Cauchy’s inequality to get

V ∆(t, x)≤ 2
(
− 1

2
‖x‖2 +

1

8
‖x‖2 +

1

4
φ(t)2

)
+ µ(t)(1

2
‖x‖2 +

1

4
‖x‖2 +

1

4
φ(t)2 +

1

8
φ(t)2

)
≤−3

4

(
1− µ(t)

)
‖x‖2 +

1

2

(
1 +

3

4
µ(t)

)
φ(t)2

≤ −λ3(t)‖x‖2 + λ4(t)

1 + µ(t)m
.
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Fig. 1. State trajectories for system (5) with time scales
T0.3 and T 1

2 ,1
respectively.

For c = −5, (H2) is validated with λ3(t) = m =
1

5
,

λ4(t) = cφ(t). It can be seen that the uniform global
practical asymptotic stability of system (7) is achieved
according to Theorem 2 as long as the requirements for
the relaxing derivative term are satisfied. The numerical
simulation of this example is given in Fig. 2 made with
µ(t) = 3

4e
− 1

2 t, δ = 2
3 and initial condition x0 = (−2, 4)>. It

shows the convergence of the solution in the neighborhood
of the origin.
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Fig. 2. Dynamics behavior of system (7) with time scale
T+

0 and x0 = (−2, 4)>.



6. CONCLUSION

In this paper we have considered the problem of practical
stability for dynamic equations on time scales. By the tools
of Lyapunov-Rzumikhin method, we have obtained suffi-
cient criteria under which the trivial solution is uniformly
globally practically asymptotically stable. The given nu-
merical examples corroborate our analytical findings. One
future study is to extend the current Lyapunov-stability
approach, while considering the trajectory tracking prob-
lem on arbitrary time domains.
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