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Abstract: Partial differential equations (PDEs) mathematically describe a wide range of
phenomena such as fluid dynamics, or quantum mechanics. Although great achievements have
been accomplished in the field of numerical methods for solving PDEs, from a safety verification
(or falsification) perspective, methods are still needed to verify (or falsify) a system whose
dynamics is specified as a PDE that may depend not only on space, but also on time. As
many cyber-physical systems (CPS) involve sensing and control of physical phenomena modeled
as PDEs, reachability analysis of PDEs provides novel methods for safety verification and
falsification. As a first step to address this challenging problem, we propose a reachability
analysis approach leveraging the well-known Galerkin Finite Element Method (FEM) for a
class of one-dimensional linear parabolic PDEs with fixed but uncertain inputs and initial
conditions, which is a subclass of PDEs that is useful for modeling, for instance, heat flows. In
particular, a continuous approximate reachable set of the parabolic PDE is computed using linear
interpolation. Since a complete conservativeness is hardly achieved by using the approximate
reachable set, to enhance the conservativeness, we investigate the error bound between the
numerical solution and the exact analytically unsolvable solution to bloat the continuous
approximate reachable set. This bloated reachable set is then used for safety verification and
falsification. In the case that the safety specification is violated, our approach produces a
numerical trace to prove that there exists an initial condition and input that lead the system
to an unsafe state.
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1. INTRODUCTION

Reachability analysis is the fundamental problem in safety
verification of cyber-physical systems. Over the last two
decades, numerous techniques and tools have been pro-
posed for continuous and hybrid systems whose dynamics
are described by linear or nonlinear ordinary differen-
tial equations (ODEs). Reachability analysis using zono-
topes/support functions has been demonstrated to be the
most efficient and scalable approach that can verify linear
continuous and hybrid systems with up to hundreds of
state variables ??. For the nonlinear case, Flow* ? utilizing
Taylor model is well-known. Recently, the order-reduction
abstraction ?? and simulation-based reachability analy-
sis ?? have exhibited an ability to tackle the most chal-
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lenging problem in reachability analysis named state space
explosion.

Although significant works in reachablity analysis have
been done for continuous and hybrid systems with ODE
dynamics, little attention has been paid to the class of
systems with PDE dynamics that appear in many science
and engineering problems such as fluid dynamics control,
heat equation and quantum mechanics. This motivates us
to conduct research on this interesting but challenging
problem. It should be noted that a typical parabolic equa-
tion called heat equation has been used as a benchmark for
evaluating the scalability of a recent reachability analysis
approach dealing with large scale linear systems ?. In this
context, the heat equation was transformed into a contin-
uous ODE model using a finite difference method and the
safety specification of interest was given for discrete mesh
points. It is also worth noting that the input of the heat
equation benchmark was assumed to be a constant with a
small time-invariant uncertainty while the initial states of
the mesh points was represented as a bounded box.

Although the heat equation has been demonstrated to
be a good benchmark for accessing the scalability of
verification techniques, a deeper study should be done
for two reasons. Firstly, it is reasonable to have a safety
specification concerned with a region in space and not
only concentrated at specific mesh points. In other worlds,



we are interested in continuous-space and not discrete-
space reachability analysis. Second, it is crucial to have an
approach that works for more general types of inputs and
initial conditions, i.e., an input described by a nonlinear
function in both time and space, and an initial condition
defined by a nonlinear spatial function.

In this paper, we propose a continuous reachability anal-
ysis approach for linear parabolic equations with time-
invariant uncertain nonlinear inputs and initial conditions.
By “continuous”, we mean that the continuity in both
space and time are investigated. Our main contributions
are : 1) an extension of the well-known space-time Galerkin
method and linear interpolation into a continuous reach-
ability analysis approach for one dimensional parabolic
equation; 2) enhancing the conservativeness of the pro-
posed method by investigating and utilizing the error
between the numerical solution and the exact analytically
unsolvable solution; 3) providing an implementation the
proposed method in a prototype called pdev, which is avail-
able online for further experimentation and evaluation.

2. PROBLEM FORMULATION

The mathematical description of a one-dimensional linear
parabolic equation with time-invariant uncertain nonlinear
inputs and initial conditions is given as follows:

∂u

∂t
− ∂2u

∂x2
= (1 + ε1)f(x, t), 0 < x < L

u(0, t) = u(L, t) = 0,

u(x, 0) = (1 + ε2)u0(x),

(1)

where f(x, t) is a nonlinear input function in both time
and space, u0(x) is a nonlinear initial condition function in
space, and ε1 and ε2 are in bounded ranges that illustrate
the time-invariant uncertainties of the input and the initial
condition.

The equation u(0, t) = u(L, t) = 0 describes the Dirichlet
boundary condition used in our problem. For simplicity,
we define α = (1 + ε2) and β = (1 + ε1) and use them as
time-invariant uncertainty parameters for the rest of the
paper. We also use u̇ to denote ∂u

∂t , u′ denotes ∂u
∂x , and u′′

designates ∂2u
∂x2 . The reachable set and safety verification

problem for this class of system are defined as follows.

Definition 2.1. (Continuous reachable set). A bounded-
time reachable set of the system (1) is defined by:

R[0,T ](u) = {
⋃
x,t

u(x, t)| u(x, t) satisfies (1), 0 ≤ t ≤ T ≤ ∞}.

Definition 2.2. (Continuous bounded-time safety verifica-
tion). Given a linear safety specification of the form:
u1 ≤ u(x, t) ≤ u2, 0 ≤ x1 ≤ x ≤ x2 ≤ L and 0 ≤ T1 ≤ t ≤
T < ∞ where u1, u2, x1, x2, T1, T are scalars, the system
(1) is called safe if and only if the continuous reachable set
of u(x, t) of the system in the time range [T1, T ] denoted
by R[T1,T ](u) ⊆ R[0,T ](u) satisfies the safety specification.

To verify the safety of the system, the continuous reachable
set R[0,T ](u) needs to be computed. The main challenge
is, with a nonlinear input and initial condition, it is in
general hard to solve for the exact solution u(x, t) analyti-
cally. Instead, only an approximate solution ũ(x, t) can be
computed numerically using FEM and linear interpolation.

Thus, instead of constructing the exact continuous reach-
able set R[0,T ](u), we can only construct an approximate
continuous reachable set R[0,T ](ũ) for the system. By doing
this, the ineluctable approximation error e(x, t) = u(x, t)−
ũ(x, t) needs to be taken into account. Using this error,
we bloat the approximate reachable set before checking
whether or not it violates the safety specification. The next
section will focus on the computation of the approximate
continuous reachable set in a bounded time R[0,T ](ũ).

3. APPROXIMATE CONTINUOUS REACHABLE SET
COMPUTATION

In this section, we present the core steps used to obtain
the approximate continuous reachable set of a parabolic
equation by leveraging the well-known space-time Galerkin
FEM and linear interpolation. We refer readers to ? for
further detail.

3.1 Approximate discrete reachable set computation

The Galerkin FEM is a powerful tool for approximat-
ing the solution of PDEs at mesh points and time
steps. The general idea is that, the space of interest
[0, L] is discretized by a list of mesh points x = [0 =
x0, x1, x2, · · · , xm−1, xm = L], and similarly, the time
range [0, T ] of interest is also discretized into a list of time
steps t = [0 = t0, t1, t2, · · · , tn−1, tn = T ]. For simplicity,
we use a uniform time step k = T/n, tj = j × k, 0 ≤ j ≤ n
and a uniform space step h = L/m, xi = i× h, 0 ≤ i ≤ m.
To compute the approximate discrete solution ũ(xi, tj) of
the system (1) at all time steps and mesh points, the weak
form of the system (1) is obtained below by multiplying
both sides of the first equation in (1) by a test function v
and integrating by parts.∫

In

∫
Ω

(u̇− u′′)vdxdt =

∫
In

∫
Ω

βf(x, t)vdxdt, (2)

where In = (tn−1, tn] and Ω = (0, L).

If we choose a specific class of the test function v such
that: v ∈ V = {v(x, t)| v(0, t) = v(L, t) = 0}, equation (2)
becomes:∫

In

∫
Ω

(u̇v + u′v′)dxdt =

∫
In

∫
Ω

βf(x, t)vdxdt, ∀v ∈ V.

The above equation is called the weak form or the varia-
tional formulation of the system (1). We are interested in
finding a piecewise linear approximate solution ũ(x, t) of
u(x, t) that satisfies the variational formulation. Let,

ũ(x, t) = ũn−1(x)ψn−1(t) + ũn(x)ψn(t), (3)

where

ψn(t) =
t− tn−1

k
, ψn−1(t) =

tn − t
k

, t ∈ In, (4)

and

ũn(x) = ũn,1φ1(x)+ũn,2φ2(x)+· · ·+ũn,m−1φm−1(x), (5)

with φi, 1 ≤ i ≤ m− 1 is a hat function defined by:

φi =


(x− xi−1)/h, xi−1 < x <= xi
(xi+1 − x)/h, xi < x <= xi+1

0, otherwise

(6)



One can see that φi ∈ V . Thus, the piecewise linear ap-
proximate solution ũ(x, t) of u(x, t) satisfies the following
discrete variational formulation:∫

In

∫
Ω

( ˙̃uφi + ũ′φ′i)dxdt =

∫
In

∫
Ω

βf(x, t)φidxdt (7)

From (3) - (7), the discrete approximate model of the
system (1) can be derived as follows.

ũn = Aũn−1 + βgn, (8)

where:

ũn = [ũn,1, ũn,2 · · · , ũn,m−1]T ,

A = (M +
k

2
S)−1(M − k

2
S)andgn = (M +

k

2
S)−1ḡn,

M ∈ R(m−1)×(m−1),M = [

∫
Ω

φiφj ]i,j ,

S ∈ R(m−1)×(m−1), S = [

∫
Ω

φ′iφ
′
j ]i,j ,

ḡn = [ḡn,1, ḡn,2, · · · , ḡn,m−1]T , ḡn,i =

∫
In

∫
Ω

f(x, t)φidxdt.

M, S and ḡn are called mass matrix, stiff matrix and load
vector of the system (1) respectively. It should be clarified
that we use the notation ũn, a scalar vector, to represent
the approximate solution ũ(x, t) at a specific time step
t = tn and at all of mesh points xi. Thus, ũn is a discrete
approximate solution of the system (1) at t = tn. Bear in
mind that this is different from the notation ũn(x) which
is a continuous function of the position x.

The approximate discrete reachable set of system (1) is
obtained below from (8):

ũn = αzn + βln, (9)

where:

zn = Azn−1 = A2zn−2 = · · · = Anz0,

z0 = [u0(x1), u0(x2), · · · , u0(xm−1)]T ,

ln = gn +Aln−1 = gn +Agn−1 +A2ln−2,

= · · · = Σnj=0A
jgn−j , l0 = [0, 0, .., 0]T .

3.2 Approximate continuous reachable set computation

Using linear interpolation, the approximate continuous
reachable set of the system (1), R[0,T ](ũ), can be con-
structed from the approximate discrete reachable set de-
rived previously in two steps. The first step is the con-
struction of the linear interpolation set in space from
the approximate discrete reachable set using (5) and (6).
The second step constructs the approximate continuous
reachable set using (3) and the interpolation set in space
obtained in the first step.

Linear interpolation set in space. From (5), (6) and (9),
for every x, 0 < x < L, the linear interpolation set in space
at the time step t = tn can be constructed in the following.

ũn(x) = (anα+ bnβ)x + cnα+ dnβ, (10)

where ũn(x) is represented as a one-dimensional array, i.e.,
ũn(x) ∈ Rm and an, bn, cn and dn ∈ Rm are vectors whose
values depend on x as follows.

For 0 < x ≤ x1 :

an[1] = zn[1]/h, bn[1] = ln[1]/h, cn[1] = 0, dn[1] = 0.

For xi−1 < x ≤ xi,1 < i ≤m− 1 :

an[i] = (zn[i]− zn[i− 1])/h, bn[i] = (ln[i]− ln[i− 1])/h,

cn[i] = i · zn[i− 1]− (i− 1) · zn[i],

dn[i] = i · ln[i− 1]− (i− 1) · ln[i].

For xm−1 < x <= xm = L :

an[m] = −zn[m− 1]/h, bn[m] = −ln[m− 1]/h,

cn[m] = mZn[m− 1], dn[m] = mln[m− 1].

Approximate continuous reachable set. Using (4) and the
spatial interpolation set computed in the previous step,
the approximate continuous reachable set is obtained as a
function of the time variable t, the position variable x and
the uncertainty parameters (α, β) as follows.

R[0,T ][ũ] = {
⋃
x,t

ũ(x, t) | ũ(x, t) = (1/k)(∆aα+ ∆bβ)xt+

(∆cα+ ∆dβ)t/k + (∆γ(a)α+ (∆γ(b)β)x

((∆γ(c)α+ (∆γ(d)β)},
(11)

where R[0,T ](ũ) is represented as a two-dimensional array,

i.e., R[0,T ](ũ) ∈ Rm×n with the associate coefficient ma-

trices ∆a,∆b,∆γ(a),∆γ(b),∆γ(c),∆γ(d) ∈ Rm×n defined
below.

For 1 ≤ j ≤ n :

∆a.column[j] = aj−1 − aj ,
∆b.column[j] = bj−1 − bj ,
∆c.column[j] = cj−1 − cj ,
∆d.column[j] = dj−1 − dj ,
∆γ(a).column[j] = j · aj − (j − 1) · aj−1,

∆γ(b).column[j] = j · bj − (j − 1) · bj−1,

∆γ(c).column[j] = j · cj − (j − 1) · cj−1,

∆γ(d).column[j] = j · dj − (j − 1) · dj−1,

a0 = b0 = d0 = [0, 0, · · · , 0]T , c0 = z0.

(12)

with (aj , bj , cj , dj) from the interpolation set in space at
time step t = tj .

The safety verification problem can be solved using the
constructed approximate continuous reachable set if we
neglect the error between the approximate solution ũ(x, t)
and the exact unknown solution u(x, t). However, we
can enhance the conservetiveness of using the approxi-
mate continuous reachable set by further analyzing the
ineluctable error e(x, t) = u(x, t) − ũ(x, t) caused by the
Galerkin FEM.

4. ERROR ANALYSIS

It is important to emphasize that the exact solution for
the error e(x, t) is also analytically unsolvable in general.
Thus, the only way to deal with this reality is to again
approximate this error.

Recall that ũ(x, t) is a linear function in x. Thus, we have
ũ′′(x, t) = 0. Using this fact, the error e(x, t) is the solution
of the following equation:

ė− e′′ = βf − ˙̃u = r(ũ), 0 < x < L,

e(0, t) = e(L, t) = 0,

e(x, 0) = 0.

(13)



Using Galerkin FEM and linear interpolation with the
same time step k and space step h, the approximate con-
tinuous reachable set R[0,T ](ẽ) of e(x, t) can be constructed
as follows.

R[0,T ](ẽ) = {
⋃
x,t

ẽ(x, t) | ẽ(x, t) = (1/k)(∆aeα+ ∆beβ)xt+

(∆ceα+ ∆deβ)t/k + (∆γ(ae)α+ (∆γ(be)β)x+

((∆γ(ce)α+ (∆γ(de)α)}.

5. CONTINUOUS SAFETY
VERIFICATION/FALSIFICATION

The previous two sections focused on the computation
of the approximate continuous reachable set R[0,T ](ũ) of
system (1) and the corresponding approximate continuous
error reachable set R[0,T ](ẽ). Combining these two reach-
able sets, a more conservative approximate continuous
reachable set R[0,T ](ū) of system (1) can be obtained as
follows.

R[0,T ](ū) = {
⋃
x,t

ū(x, t)| ū(x, t) = ũ(x, t) + ẽ(x, t) =

q1(α, β)xt+ q2(α, β)t+ q3(α, β)x+ q4(α, β)},
(14)

where:
q1(α, β) = (1/k)[(∆a + ∆ae)α+ (∆b + ∆be)β],

q2(α, β) = (1/k)[(∆c + ∆ce)α+ (∆d + ∆de)β],

q3(α, β) = (∆γ(a) + ∆γ(ae))α+ (∆γ(b) + ∆γ(be))β,

q4(α, β) = (∆γ(c) + ∆γ(ce))α+ (∆γ(c) + ∆γ(ce))β.

Utilizing the conservative approximate continuous reach-
able set R[0,T ](ū), the continuous safety verification prob-
lem defined in Section 2 can be solved by splitting the time
range [T1, T ] and position range [x1, x2] of interest into
a finite number of segments with time step k and space
step h. In other words, a large continuous safety verifica-
tion/falsification problem can be decomposed into a finite
number of small continuous safety verification problems
where the time and position ranges are tj−1 < t ≤ tj and
xi−1 < x ≤ xi respectively. Then, verifying whether or not
the system violates the safety specification is solving the
following problem.

Find (α, β, x, t) such that:

q1[i, j]xt+ q2[i, j]t+ q3[i, j]x+ q4[i, j] < u1,

or :

q1[i, j]xt+ q2[i, j]t+ q3[i, j]x+ q4[i, j] > u2,

subject to:

xi−1 < x ≤ xi, tj−1 < t ≤ tj ,
α1 ≤ α ≤ α2, β1 ≤ β ≤ β2,

(15)

where [α1, α2] and [β1, β2] are the bounded ranges of the
uncertainty parameters (α, β).

Algorithm 5 describes the whole process of our approach.
In the next section, we discuss the conservativeness and
soundness of our approach.

6. CONSERVATIVENESS AND SOUNDNESS

A continuous reachable set is said to be completely con-
servative if it contains all trajectories of the system while
neglecting the error introduced by using floating-point
computation. A verification method is sound if it uses

Algorithm 5 Continuous Safety Verification/Falsification
for Parabolic Equation

Input 1: L, k, h, f(x, t), u0(x), [α1, α2], [β1, β2]
Input 2: u1, u2, T1, T2, x1, x2 % Specification
Output: Safe/ (Unsafe, Unsafe Trace)

1: procedure Initialization
2: Compute mass matrix M , stiff matrix S, A, z0.

3: procedure Check Safety
4: Construct R[0,T2](ū) (14).
5: Decompose [x1, x2] and [t1, t2].
6: if (15) is feasible:
7: Get feasible solution (α, β, x, t).
8: Compute unsafe trace using (α, β, x) and (11).
9: return Unsafe, unsafe trace.

10: else: return Safe.

a completely conservative continuous reachable set and
handles the error in computation using floating-point.

Our method uses floating-point computation without han-
dling the error. Thus, our method is not sound. Addi-
tionally, the approximate continuous reachable set in our
method is not completely conservative because a com-
pletely conservative error e(x, t) is unobtainable. This is
the most challenging problem that we are going to address
in the future work. However, it is worth noting that in
some specific cases such as the stationary heat equation, a
completely conservative reachable set can be obtained.

The main goal of our approach is to achieve a high con-
servative guarantee and a high scalability for continuous
safety verification/falsification of PDEs. Thus, we neglect
the floating-point error and enhance the conservativeness
by further investigating the error in computing the contin-
uous reachable set. In the next section, we will illustrate
shortly the implementation of our method and evaluate it
in detail via a specific example.

7. IMPLEMENTATION AND EVALUATION

Our method is implemented in a prototype named pdev 1

written in python. We use the following parameters for
evaluation. The rod length is L = 10. The input function is
f(x, t) = e−x−t, 0.2 ≤ x ≤ 0.4 and the initial condition is
u0(x) = sin(x/L). The ranges for the initial condition and
input uncertainties are 0.8 ≤ α ≤ 1.1 and 0.9 ≤ β ≤ 1.1
respectively. All experiments are done on a computer with
the following configuration: Intel Core i7-6700 CPU @
3.4GHz × 8 Processor, 62.8 GiB Memory, 64-bit Ubuntu
16.04.3 LTS OS.

Reachability analysis. To construct the approximate
continuous reachable set of the parabolic equation, the
discrete reachable set of the approximate solution ũ(xi, tj)
at each mesh point and each time step is computed. At
the same time, we also compute the discrete reachable set
of the corresponding approximate error ẽ(xi, tj). Fig. 1
presents the discrete reachable sets of the approximate
solution ũ(x = 8, t) and the approximate error ẽ(x =
8, t) at position x = 8 with time step k = 0.1 and
space step h = 0.5. Using these discrete reachable sets,
we construct the bloated discrete reachable set of the

1 https://github.com/trhoangdung/pdev



Fig. 1. Approximate discrete reachable sets of the
parabolic equation at position x = 8.0 using
time step k = 0.1 and space step h = 0.5.

Fig. 2. Bloated approximate discrete reachable sets
of the parabolic equation at position x = 8.0
using time step k = 0.1 and space step h = 0.5.

Fig. 3. Bloated approximate continuous (in space)
reachable sets of the parabolic equation at the
time t = 10s using time step k = 0.1 and space
step h = 0.5.

approximate solution ū(xi, tj) = ũ(xi, tj) + ẽ(xi, tj) for
all mesh points and time steps as shown in Fig. 2. From
the bloated discrete reachable set, we then construct the
interpolation set in space ū(x, t = tj) as depicted in Fig. 3.
Finally, the approximate continuous reachable set shown
in Fig. 4 of the parabolic equation ū(x, t) is constructed
from ū(x, t = tj) by implementing linear interpolation in
time.

Fig. 4. Bloated approximate continuous reachable
sets of the parabolic equation for all t in [0, 10s]
using time step k = 0.1 and space step h = 0.5.

Fig. 5. A trace showing that the parabolic equation
violates its safety specification.

Safety Verification/Falsification. The continuous safety
verification/falsification problem is equivalent to finding
a feasible solution (α, β, x, t) in the reachable set that
satisfies the dual unsafe constraint (15). Assume that we
want to verify whether or not the system satisfies the
following safety specification:

0.0 ≤ u(x, t) ≤ 0.3, ∀(x, t) : 7.2 ≤ x ≤ 8.3, 8.0 ≤ t ≤ 10.0

It should be noted that we are using time step k = 0.1
and space step h = 0.5. Therefore, the region of interest is
located between three mesh points: x = 7.5, x = 8.0 and
x = 8.5. Using Algorithm 5, we can find that the system
violates its safety requirement. An unsafe trace depicted
in Fig. 5 is produced from the Algorithm for the specific
point x = 7.2.

Error analysis. It is important to consider the appro-
priate time and space steps needed to verify the safety
property of the system. This is a trade off between an
increase in accuracy while cognizant of computation cost.
Decreasing the space step h increases the size of the
discrete system, i.e., the size of the matrix A. Similarly,
reducing the time step k increases the number of discrete
time steps used in computing the discrete reachable set.
Therefore, in order to verify the safety property with
an appropriate computation cost, reasonable time step k
and space step h are needed. Fig. 6 illustrates how the
approximate error varies with different space steps. It can
be seen that, reducing space step can help to produce
a tighter/better reachable set of the approximate error



Fig. 6. Approximate continuous reachable set of the
error at time t = 10s with different space steps.

Fig. 7. Approximate discrete reachable set of the
error at time x = 5 with different time steps k.

Table 1. Computation time for one time
step using different number mesh points.

m = 10 m = 20 m = 40 m = 80 m = 100

2.75s 5.79s 11.95s 25.1s 33.1s

and consequently, a tighter/better reachable set of the
system can be constructed. However, reducing the time
step does not help much in reducing the approximate error
ẽ as shown in Fig. 7. This recalls the fact that the time-
space Galerkin FEM is numerically stable regardless of any
choices of time step k.

Computation complexity. The time complexity for com-
puting the discrete reachable set is O(nm2), where n is
the number of time steps and m is the number of mesh
points. Constructing the interpolation set in space and
the continuous reachable set has time complexity O(nm).
Therefore, the total time complexity of our reachability
analysis approach is O(nm2). The memory complexity of
our approach is O(m2 + nm), where O(m2) is for storing
the matrix A andO(nm) is for storing the interpolation set
in space and the continuous reachable set. Table. 1 shows
the computation time of our method for one time step
with various numbers of mesh points. Table. 2 presents the
computation time versus the number of time steps where
the number of mesh points is fixed. The table shows that
the computation time depends linearly on the number of
time steps.

Table 2. Computation time versus the
number of time steps using fixed number

mesh points (m = 20).

n = 50 n = 100 n = 200 n = 1000 n = 2000

278.5s 548.2s 1110.04s 6136.4s 14718.6s

8. CONCLUSION

In this paper, a reachability analysis approach for linear
parabolic equation is proposed based on the well-known
Galerkin FEM. The conservativeness of our method is
enhanced by utilizing the error caused by the Galerkin
FEM to obtain a bloated continuous reachable set before
using it to check the safety of a system. The evaluation
section has shown that our method is practically applicable
where the safety verification/falsification problem can be
solved efficiently with an appropriate computation cost.
Moreover, the time complexity of our method is smaller
than the traditional reachability analysis methods because
our approach is simulation-equivalent. Achieving a com-
plete conservativeness of the proposed approach is the
main goal of our future work beside extending it to dif-
ferent classes/high-dimensional PDEs with different types
of boundary conditions.
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