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Cesson-Sévigné Cedex France (e-mails: Amanda.Abreu@supelec.fr,

Romain.Bourdais@centralesupelec.fr, and
Herve.Gueguen@centralesupelec.fr).

Abstract: In this paper a two-layer controller is proposed to tackle the building energy
management problem for hybrid systems at different levels of abstraction and different time
scales. In the upper layer a relaxed long term energy allocation problem with a large decision
time step is defined, taking into account the energy prices, the comfort requirements, and a
global power constraint. The discrete decision variables are considered only in the lower layer,
where the continuous global solution computed by the first optimization is projected into local
mixed-integer programming (MIP) tracking problems with a shorter prediction horizon and a
higher sampling rate. To fulfill the building global power constraint each load has a specific
priority to access the available power, following a non-iterative priority algorithm.
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1. INTRODUCTION

The main goal of most Building Energy Management
Systems (BEMS) found in the literature is to design
control strategies that are able to maximize the comfort
of occupants, to minimize the energy consumption costs,
and to certify the good operation of the appliances, see
Shaikh et al. (2014). As pointed by the survey paper
Thieblemont et al. (2017), a large number of research
works are based in hierarchical concepts due their ability to
decompose the original energy management problem into
hierarchically well-defined simpler subtasks, to consider
distinct dynamics at different levels of abstraction, and
to make it easier to define specific policies/roles for each
one of the control levels, see some examples in Schirrer
et al. (2016), and Mayer et al. (2017). In this paper, we
focused in a particular type of hierarchical structure that
implements multi-time scale problems to manage a set of
different sub-systems, with a higher long-term scheduling
optimization layer to compute overall tendencies with a
large time step, and a lower layer that performs control
decisions in a fast time-scale.

Regarding the literature of multi-time scale structures for
BEMS, one relevant challenge still under-investigated is
the management of devices with discrete control variables
in systems with strict global power constraints. Appliances
that are naturally present in most building scenarios
such as heat pumps, stratified water tanks, ON/OFF
valves, etc.; submit the final correspondent optimization
problem to local integer/binary hard power constraints.
In Lefort et al. (2013), for example, a scheduling layer
periodically communicates to a piloting layer the optimal
trajectories and the maximal amount of energy that should
be consumed for each controllable device, but no integer

constraints were treated. In Beaudin et al. (2014), a
mixed-integer programming (MIP) scheduling algorithm is
formulated, where the energy states of each device and the
peak power consumption related to the long time period
are transmitted to the lower level as set-points. Although,
the information exchanged between the layers concerns
only the continuous control devices.

To support discrete control appliances the multi-time scale
architecture need to directly consider discrete decision
variables. But the introduction of this kind of variable in
the optimization problem of the upper layer would have
no practical sense, since the control signals are piece-wise
constant between two large time steps. Hence, the purpose
of the higher layer is limited to the allocation of an average
amount of energy among the sub-systems considering a
global and long term relaxed optimization problem; raising
important questions about the projection of the upper
layer relaxed results into the lower layer optimization and
the respect of the original discrete constraints.

Another essential feature that is also poorly contemplated
is the fact that the building consumption must remain
below a strict power threshold specified by contract with
the electricity supply company. The authors of Yu et al.
(2013), for example, proposed a stochastic MIP multi-time
scale energy management problem in which the utility may
restrict the power demand, but the global constraint was
considered only in the upper slow time scale layer, where
the integer local power constrains were relaxed.

In this context, the current paper is motivated by the
necessity to address a general multi-time scale energy man-
agement problem for residential buildings with ON/OFF
loads and global power constraints that are able to 1)
Properly project the continuous solution computed by



the relaxed problem of the higher layer into the discrete
set of control variables of the lower layer. 2) Guarantee
the hard global power constraint in the fast optimization
time-scale. More specifically, we combine centralized and
distributed approaches to define a two-layer hierarchical
control structure that offers a balanced trade-off between
optimality and computation time.

The remaining of this paper is organized as follows. In
section 2, the building management scenario is defined
and the control objective is formulated. In section 3,
the proposed hierarchical approach is presented. Finally,
in section 4, the hierarchical approach are applied to
manage a group of ON/OFF loads and its performance
is compared with the pure centralized and distributed
benchmark solutions.

2. PROBLEM DESCRIPTION

2.1 Model and constraints

The hierarchical approach developed in this paper aims
to manage a set of electric devices governed by discrete
control variables in a residential building scenario where
the power consumption is strictly limited by the public
supply company. In order to select the optimal control
actions that meet the objectives of the energy management
system and respect the operation constraints, the model
of each device as well as occupancy predictions and price
profiles are used to predict the future behavior of the
system.

Two types of power constraints are distinguished: global
power constraints and local power constraints. The first
ones have to be considered to ensure that electricity de-
mand does not exceed the capacity of the utility company
or in some cases the local production restrictions. The sec-
ond ones refer to the electric limitation of the equipment
and are necessary to prevent the appliances from damage
caused by excess current. In order to study important
effects of the introduction of these constraints, we focused
on the management of ON/OFF controllable appliances. It
means that the loads are allowed to have a discontinuous
operation during the optimization period and the power
consumption is controlled by binary decision variables. In
this conditions, we assume that:

• The controlled system is composed by a set of electric
devices denoted by M = {1 : M}, with M ∈ Z∗. The
dynamics of each sub-system m, with m ∈M, is given
by the following discrete-time model: xm,k+1 = fm(xm,k, um,k)

ym,k = gym(xm,k)
pm,k = gpm(um,k)

(1)

Where k ∈ Z0 is the time instant index, xm,k+1 ∈ Nnx

is the state vector, ym,k ∈ Nny is the output vector,
and pm,k ∈ Nnp is the power consumption vector.
• The input vector um,k contains the discrete manipu-

lated variables that are going to be optimized by the
controller, with um,k ∈ Ud

m. The lower and the upper
bounds of the control variable set are represented by
umin
m and umax

m .
• The building is connected to the electric power grid

and the maximum power supplied is represented by

Pmax
k , with Pmax

k ≥ 0. The global power consumption
is restrained by:

M∑
m=1

pm,k ≤ Pmax
k (2)

• The cost of the energy consumed from the grid is a
time varying function represented by Ek.

2.2 Control objective

The objective of the building energy management system
(BEMS) is:

• to minimize the energy consumption cost;
• to maximize the comfort of the occupants;
• to guarantee the global and the local power con-

straints.

The control goals are considered in a multi-objective
criteria in order to find a compromise solution between
the energy consumption cost and the discomfort of the
users regarding the respect of the chosen operating set-
points, represented respectively by Jeco and Jdis. The
optimization is carried out in a finite prediction horizon
∆h and a sampling time ∆k, with N = ∆h / ∆k and
N ∈ N∗. The correspondent discrete problem solved at
time t = kt∆k, with kt ∈ N∗, is formulated as follows:

min
ûM,H

∑
m∈M

∑
k∈H

Jeco(p̂m,k, Ek) + Jdis(ŷm,k+1,W
y
m,k+1)

subject to
∀ m ∈M and ∀ k ∈ H{ i. x̂m,k+1 = fm(x̂m,k, ûm,k)

ii. ŷm,k+1 = gym(x̂m,k+1)
iii. p̂m,k = gpm(ûm,k)

iv.

M∑
m=1

p̂m,k ≤ Pmax
k

v. ûm,k ∈ Ud
m

vi. x̂m,kt = xm,kt

(3)
The decision variables vector is composed by ûM,H, which
is the set of optimal control moves over the optimization
horizon H for all m ∈M, with H = {kt, kt +1, ..., kt +N−
1}. The desired operation set-points given by the users
are represented by W y

m,k+1. The discrete functions (i),

(ii), and (iii) are used to predict the system behavior.
The predictions for the state, the output and the power
consumption are represented by x̂m,k+1, ŷm,k+1 and p̂m,k,
respectively. The global power constraint and the local
input constraints are defined respectively by (iv) and (v),
and the initial state condition by (vi).

3. HIERARCHICAL CONTROL STRUCTURE

In the literature, similar optimization problems as the
one depicted in equations 3 are solved using centralized
and distributed approaches, see Haider et al. (2016). The
first ones can ensure an optimal solution since the global
MIP problem, including global constraints and all coupled
variables, is solved in a single central controller. However,
some shortcomings with respect to computational time,
privacy, and reliability issues might turn the centralized
approach prohibitive for real time applications in large
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Fig. 1. Two-time scale Hierarchical Control Structure.

buildings. On the other hand, distributed strategies tries
to break the global energy management problem into
local smaller controllers, returning a sub-optimal but less
computational demanding solution.

The idea of the hierarchical strategy formulated in this pa-
per is to combine both strategies in order to offer balanced
trade-off between optimality and computation time. The
hierarchical approach is able to approximate the solution
of the centralized MIP optimization problem through a
modular architecture, where an upper layer operates to
allocate the energy to all sub-system over a global point
of view and a lower layer to respect the power constraints
while following the local energy allocation tendencies. The
computational complexity of the final control is kept small
because the nonlinearities are considered only in the in-
dividual optimization problems of the lower layer, where
the number of decision variables is reduced. To prevent
communication issues, minimal information is exchanged
between the global and the local controllers and a non-
iterative procedure is used to reach coordination of the
local controllers.

The hierarchical control structure is schematically repre-
sented in Fig. 1. The upper layer is denoted the Scheduling
Layer (SL) and the lower one the Control Layer (CL). SL
and CL operate at different sampling times represented by
∆kSL and ∆kCL, and over different prediction horizons,
denoted by ∆hSL and ∆hCL, respectively, with ∆kSL >
∆kCL and ∆hSL > ∆hCL. k and k′ are the optimization
time steps of SL and CL, respectively.

3.1 Scheduling layer

The main purpose of SL is to assign an average amount
of energy among the sub-systems considering the global
constraints and the slow varying behaviors (daily price
predictions, daily reference profiles, thermal dynamics,
etc.). To do that, SL implements the centralized energy
allocation problem defined in equations 3 over a long time
prediction horizon ∆hSL and at a long time control step
∆kSL, with ∆h = ∆hSL and ∆k = ∆kSL. In order to
properly consider the energy consumption of the ON/OFF
devices over the long time decision step, the discrete

control variables are relaxed, redefining the local input
constraints 3(v) as:

ûm,k ∈ Uc
m

with Uc
m = {u : u ⊂ Nnu , umin

m ≤ u ≤ umax
m } (4)

Thanks to this relaxation, the computation effort needed
to find the global solution is reduced but the resulting
energy tendencies calculated as optimal by the higher
layer are intermediate quantities that still need to be
projected in a discrete set in order to respect the non-
linear constraints. For this purpose, the optimal output
trajectory vector computed by SL for each one of the m
loads, represented by ŷm,Hl

, is transmitted to CL to be
used as a reference to build the set-point vectors given to
the local regulators. The details on the conversion of the
smaller resolution results of the upper layer into the higher
resolution set-points of the lower layer can be found in our
previous paper Abreu et al. (2017).

3.2 Control layer

CL implements a dynamic tracking layer over a short
prediction horizon ∆h′ and short control step ∆k′. In order
to respect the integer constraints of the original problem,
the variables relaxed by the centralized optimization im-
plemented by SL must be considered into the optimiza-
tion problem of CL, generating the necessity to define a
MIP problem. However, as highlighted by Tsui and Chan
(2012), the computation of mixed-integers problems for
large scale systems can become prohibitive in a centralized
approach since the time required to find a solution grows
exponentially with the size of the system. So, to limit the
mathematical complexity of the optimization process, CL
is composed of M independent regulators that implement
individual dynamic tracking problems performed in a dis-
tributed fashion. The local optimizations are carried out
in a short finite prediction horizon ∆h′ = ∆hCL and a
sampling time ∆k′ = ∆kCL, with N′ = ∆h′ / ∆k′ and
N′ ∈ N′∗. At time t = k′t ∗ ∆k′, for each m load, with
m ∈ M, the local MIP problem that has to be solved is
formulated as follows:

min
ûm,H′

∑
k′∈H′

Jdis(ŷm,k′+1,WSy
m,k′+1)

subject to
∀ k′ ∈ H′{ i. x̂m,k′+1 = fm(x̂m,k′ , ûm,k′)

ii. ŷm,k′+1 = gym(x̂m,k′+1)
iii. p̂m,k′ = gpm(ûm,k′)
iv. p̂m,k′ ≤ pmax,up

m,k′

v. ûm,k′ ∈ Ud
m

vi. x̂m,k′
t

= xm,k′
t

(5)

The decision variables vector is composed by ûm,H′ , which
is the set of optimal control moves over the optimization
horizon H′, with H′ = {k′t, k′t + 1, ..., k′t + N′ − 1}. As
explained before, the set-point vector WSy

m,k′+1 is created
taking into account the SL optimization results. The
discrete functions (i), (ii), and (iii) are used to predict the
short term system behavior. The short term predictions
for the state, the output and the power consumption are
represented by x̂m,k′+1, ŷm,k′+1, and p̂m,k′ , respectively.
The local integer input constraint and the initial state
condition are defined by (v) and (vi), respectively. Finally,
(iv) represents a local power constraint that is updated
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for each individual controller following a cascade priority
coordination procedure explained in the next sub-section.

3.3 Cascade priority coordination procedure

The global power constraint of the original optimization
problem, represented by 3(iv), is a shared variable among
all individual regulators. Hence, due the decentralized
nature of CL, some kind of cooperation need to be
applied to guarantee that the final integer control variables
computed at each short sampling time respect the global
maximum consumption threshold. In the literature of
distributed control, negotiation protocols and iterative
procedures are used to reach coordination. However, until
now, no operational mechanism is universally successful
in solving distributed optimization problems when the
control variables are discrete, see Luo et al. (2017). In
most cases, successive iterations may be need to converge
to the optimal solution leading to communication and time
issues.

For this reason, we choose to implement a non-iterative
algorithm that applies a cascade priority coordination
procedure. It means that the local optimization problems
are solved sequentially respecting a pre-defined priority
queue. Plus, at each new local optimization the value
of global available power pmax,up

m,k′ is updated in order to
deduct the power already used by the loads that have
bigger priority, with:

pmax,up
m,k′ = Pmax

k′ −
∑

mp∈Mm

p̂mp,k′
(6)

Where Pmax
k′ represents the global power constraint and

Mm ⊂ M the set of loads that have bigger priority
than the load m. This synchronization in the execution of
the local problems can guarantee that the original global
power constraint is respected and also requires little com-
munication efforts since only the current available power is
exchanged to the local controllers. Some literature works
proposed to define the load priority list according to the
users preferences or to the type of appliance, see some ex-
amples in the distributed strategies of Pipattanasomporn
et al. (2012) and Liu et al. (2012). However, the idea of the
present work is to try to find a solution as close as possible
to the centralized results, where the priority among the
sub-system is not explicit, but completely integrated in
the multi-objective cost function. Therefore, to avoid a
biased partition of the available power, the elements of
the priority queue are circularly shifted for each short
optimization horizon ∆h′, giving to different loads the
opportunity to have the higher priority at least once during

the long optimization horizon ∆h. The evolution of the
cascade priority queue is represented in Figure 2.

4. SIMULATION RESULTS

To analyze the performance of the hierarchical strategy
proposed in this paper, lets consider a building system
composed of a set three identical domestic hot water tanks,
with M = 1, 2, 3. The loads have an ON/OFF control with

um,k ∈ Ud
m, umin

m = 0kW, and umax
m = 4kW, ∀ m ∈ M.

The global power constraint is specified as Pmax
k = 8kW ,

meaning that a maximum of 2 water tanks can be On at
the same time. The simulations are carried over a 4-hour
period and the control signals are sent to the loads every
10 minutes. The energy daily price profile and the external
temperature, which are considered as constants during the
studied period, are predicted with no errors. Four different

Table 1. Configuration parameters for the
strategies C, DFP, DCP and H.

Strategy Layer Horizon Time step Priority

C - 4h 10min -
DFP - 4h 10min Fixed
DCP - 30min 10min Cascade

H
SL 4h 30min -
CL 30min 10min Cascade

control approaches are implemented in a open loop simu-
lation: the Centralized (C), the Decentralized with Fixed
Priority (DFP), the Decentralized with Cascade Priority
(DCP), and the Hierarchical (H):

• C: In C, the optimization problem represented in
equations 3 is solved over a long prediction horizon
∆h = 4h and at a short control time step ∆k =
10min. This approach is used as a benchmark in order
to have an idea of the best possible performance.

• DFP: DFP implements a distributed control strategy
composed of M independent regulators that locally
minimizes the multi-objective criteria

∑
k∈H(Jeco +

Jdis). The generated optimization problem is similar
to the one described in equations 3, except by the
fact that each individual regulator minimizes only
the local criteria. In this case, ∆h = 4h and ∆k =
10min, and the local problems are solved sequentially
respecting a fixed priority queue. The value corre-
spondent to global power constraint is updated at
each new optimization to consider the energy already
consumed by the loads with bigger priority.

• DCP: As DFP, it is also composed of M indepen-
dent regulators that implements local multi-objective
optimization problems. However, ∆h = 30min and
∆k = 10min. Hence, to provide the open loop re-
sults for the 4-hour simulation, one local optimization
problem is built for each period of 30min (eight in
total). The local problems are solved following the
cascade priority coordination procedure explained in
section 3.3.

• H: H applies the hierarchical strategy proposed in this
paper, with ∆h = 4h, ∆k = 30min, ∆h′ = 30min,
and ∆k′ = 10min.

All strategies are implemented using MATLAB R2016a,
YALMIP (see Lofberg (2004)), and MOSEK 8.0.0.57.
Their configuration is summarized in Table 1.



Fig. 3. Comparison between the output behavior of DCP
and H.

4.1 Performance indicators

To compare the four strategies previously defined, three
different performance indicators are considered:

• The value of the local multi-objective cost function
represented by Jm,∀ m ∈M:

Jm =
∑
k∈Hp

Jeco(pm,k, Ek) + Jdis(ym,k+1,W
y
m,k+1)

(7)

• The value of the global multi-objective cost function
represented by Jg:

Jg =
∑
m∈M

Jm (8)

• The computation time to find the open loop solution
represented by Tg.

The performance indicators are calculated a posteriori for
each discrete time step kp and over a 4-hour simulation
period. In this case, ∆kp = 10min, ∆hp = 4h, N = ∆hp /
∆kp, and Hp = {kp, kp + 1, ..., kp + N− 1}. Note that the
lower the index Jg, the better the global performance of the
respective approach. In terms of cost function, the main
objective is to find the strategy that approximates the
best the solution achieved with the Centralized approach.
Hence, to facilitate the comparison, the normalized values
of Jm and Jg with respect to the Centralized solution are
represented by J̄m and J̄g.

4.2 Energy cost and comfort deviation

To analyze the energy cost and the comfort deviation by
means of Jm and Jg, 10 open loop simulations with differ-
ent values of hot water drawing-off speed (between 5L/h
and 40L/h) are performed considering Pmax

k = 8kW . The
average value, the minimum value, the maximum value,
and the standard deviation of J̄g for each strategy are
represented by J̄mean

g , J̄min
g , J̄max

g , and J̄std
g , respectively.

Table 2 shows that the values of Jg are in average 6% big-
ger than the benchmark results when using the hierarchical
strategy H, while 36% bigger when using DCP. Moreover
J̄std
g has its lower value when H is implemented, meaning

that J̄g slightly differs for the different simulations. As ev-
idenced, H over-performs the distributed approaches DFP

and DCP regarding the global cost function, approximat-
ing the solution the best to the Centralized results. The

Table 2. Average value, minimum value, max-
imum value, and standard deviation of J̄g.

Strategy J̄mean
g J̄min

g J̄max
g J̄std

g

C 100.00 100.00 100.00 0.00
DFP 136.17 107.23 165.74 22.04
DCP 133.54 116.46 155.25 12.38

H 106.12 100.45 115.70 5.11

comparison of H and DCP is particularly interesting due
the fact that the main difference between them is the pres-
ence of the global upper layer that implements the relaxed
long term optimization. The overall better performance
of H indicates that SL has a beneficial influence in the
final control results since it is able to anticipate fa3rther
events and to build the set-point vector of CL considering
them. As shown in Figure 3, the long term behavior of the
system is implicit incorporated through WSy

m,k′+1 (CL

set-point), where the change of the user temperature set-
point is anticipated. In this case, the big advantage of H
is that only the number of the decision variables of the
relaxed problem is increased to consider larger prediction
horizons, keeping constant the mathematical complexity
of the MIP problem of the second layer. DFP has also a

Table 3. Weight of local cost function Jm
regarding the global cost function Jg.

Strategy J%
1 J%

2 J%
3

C 31.39% 31.01% 37.60%
DFP 16.59% 16.59% 66.82%
DCP 39.33% 26.25% 34.42%

H 33.66% 30.91% 35.43%

long term prediction horizon but still global results that
are worse than H. To correctly analyze this behavior we
have to examine Table 3, where the weight of local cost
functions Jm regarding the global cost function Jg is given
in percentage for each different strategy. When using the
DFP strategy, the value related to the least priority load,
represented by J%

3 , is considerably higher than for the
other devices. This is because the power requirements of
the loads that have bigger priority are always the first to
be fulfilled and no energy is left for the loads with smaller
priority since the available global power is restrained. This
unbalanced reparation of the energy strongly increases the
dissatisfaction criteria of the least priority load, leading to
poor global performances. Table 3 also shows that H is able
to share the available power in a most equitable way and
to find a energy partition that is as fair as possible with
all loads considering the objective of the original global
optimization problem. At the end, the cascade priority
procedure implemented in H approximates the local so-
lution of CL to the results found with the Centralized
strategy.

By reason of simplicity, the size of the system analyzed
in this paper is limited, but the same conclusions can be
obtained when comparing the approaches for larger study
cases.



4.3 Computation time

The results of Table 4 summarizes the average Tmean
g , the

minimum Tmin
g , the maximum Tmax

g , and the standard

deviation T std
g of the computation time in seconds needed

to find the solution for the 10 different simulations defined
in the previous sub-section. The MOSEK MIP optimizer
employs a relaxed feasibility and optimality criterion to
determine when a sufficient good solution is located. In
our case, all termination parameters are set to their default
values. As we can remark, the computation time required

Table 4. Average value, minimum value, max-
imum value, and standard deviation of the

computation time in seconds.

Strategy Tmean
g Tmin

g Tmax
g T std

g

C 3006.82 0.47 3681.36 1116.17
DFP 0.60 0.10 1.45 0.42
DCP 0.23 0.19 0.28 0.03

H 0.27 0.21 0.46 0.07

to find a satisfactory solution when using the Centralized
strategy is much higher than for the other approaches.
Since all sub-systems are considered in the same long term
optimization, the search space of the problem is increased
and thus the mathematical complexity of the solution.
This behavior is especially prohibitive for problems involv-
ing a large number of sub-systems or longer prediction
horizons. In Table 5, for example, the values of Jmean

g
and Tmean

g for ∆h = 24h are presented. We can observe
that the strategies C and DFP are intractable. Contrary

Table 5. Global cost function value and com-
putation time in seconds for the 24-hours sim-

ulation.

Strategy Jmean
g Tmean

g

C intractable intractable
DFP intractable intractable
DCP 259.13 2.49

H 203.62 2.67

to MIP problems that are in many practical situations
non-deterministic polynomial-time hard (NP-hard), LP
problems can be solved efficiently in the worst case with
most of commercial solvers. To exploit this fact, H carries
out the global long prediction horizon optimization in the
relaxed upper layer problem and considers the discrete
constraints only in the local problems of the second layer,
where thanks to the small prediction horizon and the de-
centralized architecture the number of decision variables is
reduced. In this way, H offers a balanced trade-off between
computation overhead and sub-optimality.

5. CONCLUSIONS AND FUTURE WORK

This paper proposed a two-time scale controller that tack-
les the BEMS problem considering ON/OFF loads and
power global constraints. The simulations show that the
hierarchical structure is able to satisfactorily approximate
the solution to the Centralized strategy results in a rea-
sonable computation time.

Several future works will be performed to validate the
robustness of the control strategy under more realistic

conditions and to delineate its operating limits. The prior-
ity coordination procedure will also be improved in order
to dynamically update the priority queue considering the
current state of the system.
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