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Abstract: In this work, we propose a stratified sampling method to statistically check
Probabilistic Computation Tree Logic (PCTL) formulas on discrete-time Markov chains with
sequential probability ratio test. Distinct from previous statistical verification methods using
independent Monte Carlo sampling, our algorithm uses stratified samples that are negatively
correlated, thus give lower variance. The experiments demonstrate that the new algorithm uses
a smaller number of samples for a given confidence level on several benchmark examples.
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1. INTRODUCTION

Statistical model checking has received considerable at-
tention during the past decade (Younes, 2005b; Younes
and Simmons, 2006; Sen et al., 2004, 2005a,b; Larsen and
Legay, 2016; Clarke and Zuliani, 2011; Henriques et al.,
2012), due to its scalability to large-scale real-world prob-
lems with complicated stochastic behavior (Roohi et al.,
2017; Wang et al., 2015b,a, 2016; Zuliani et al., 2012).
The general idea is to treat the problem of checking if
a PCTL formula holds on a probabilistic system as a
hypothesis testing problem. By drawing sample behaviors
from the underlying probabilistic system and using proper
statistical inference, statistical model checking determines
whether the samples constitute a statistical witness to the
satisfaction of the specification with high confidence.

Most statistical model checking algorithms previously pro-
posed crucially rely on independent Monte Carlo sampling.
Specifically, the underlying probabilistic system is “simu-
lated” to generate a sample path and a new sample is
drawn in the same manner in each round. Consequently,
the samples are independent and identically distributed
(i.i.d.).

The main thesis of this paper is that verification time can
be significantly reduced if the statistical model checker
draws correlated samples, as opposed to independent sam-
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ples. To illustrate this, let us consider the core task of
a statistical model checker, namely, to determine if the
measure of executions satisfying a property φ is greater
than some threshold p. Let us, for simplicity, assume that
the truth of φ itself can be determined by a finite prefix of
the execution. In such a situation, the model checker draws
sample executions, determines how many of the executions
satisfy φ, and uses this to estimate the measure of paths
satisfying φ. Thus, each sample can be viewed as a 0/1-
valued random variable Xi (which takes value 1 if the
execution satisfies φ, and 0 otherwise), whose expectation
is estimated by

X̄ =
1

n

n∑
i=1

Xi.

One factor that plays an important role in determining
how many samples are needed for the algorithm to be
confident in its answer is the variance. Informally, the lower
the variance of the estimate, the more likely the estimate is
to be close to the actual mean, and therefore, the algorithm
requires fewer samples. In general, the variance of the
estimate is given by

Var
[
X̄
]

=
1

n2

n∑
i=1

Var [Xi] +
2

n2

n∑
i=1

n∑
j=i+1

Cov [Xi, Xj ] .

If the samples are i.i.d., then the covariance is 0, and the
variance is given by

Var
[
X̄
]

=
1

n
Var [X] .



Fig. 1. Independent samples v.s. stratified samples on unit
square

However, as can be seen from the above expression, the
variance can be reduced if the samples are negatively
correlated, i.e.,

n∑
i=1

n∑
j=i+1

Cov [Xi, Xj ] ≤ 0.

A common way to generate such negatively correlated
samples with negligible additional computational cost is
stratified sampling, which has been popular among the
statistics community in improving the accuracy of statisti-
cal estimation (Liu, 2008; Hermanns et al., 2012; Maginnis
et al., 2016). The general idea is to partition the sample
space into different cells and draw one sample from each
one of them. The stratified samples are repellent to each
other — a sample occupying some cell forbids other sam-
ples entering the cell. Therefore, the stratified samples will
be negatively correlated. For example, we can draw 10 000
stratified samples uniformly from the unit square [0, 1]2

by first partitioning the area into 100 × 100 small cells,
each of size 0.01×0.01, and then draw exactly one sample
from each cell. Figure 1 shows graphically that compared
to 10 000 independent samples, 10 000 stratified samples
are negatively correlated, hence distribute more evenly on
[0, 1]2.

In this paper, we present a statistical model checking
algorithm for checking finite horizon PCTL properties
on discrete time Markov chains (DTMC) using stratified
sampling. To ensure a lucid exposition of the main ideas,
we only consider PCTL formulas of the form P∼pφ, where
φ is a formula without probabilistic operator; in other
words, φ’s truth can be determined on single path. PCTL
formulas in general form with nested probabilistic oper-
ators can be handled in the standard manner using the
approach proposed in (Sen et al., 2004, 2005b,a). The main
contribution of this paper is a sequential probability ratio
test that works when samples are drawn using stratified
sampling, which helps reduce the total number of samples
(number of strata× number of blocks of stratified samples)
needed for a statistical model checker to be confident in
its answer.

The rest of the paper is organized as follows. The prelimi-
naries on discrete-time Markov chains, probabilistic com-
putational tree logic and stratified sampling are given in
Section 2. In Section 3, we propose a sequential hypothesis
testing algorithm using stratified sampling that gives the
desired confidence level asymptotically. We have imple-
mented this algorithm, and our preliminary experiments

on several benchmarks are presented in Section 4. Finally,
we conclude this work in Section 5.

2. PRELIMINARIES

We denote the set of natural numbers and real numbers
by N,R. We take the convention that 00 = 1. For n ∈ N,
let [n] = {1, 2, . . . , n}. A permutation of [n] is a bijection
π : [n]→ [n]. For p ∈ Rn, the ith entry of p is denoted by
pi. For M ∈ Rn×m, the entry in the ith row, jth column of
M is denoted by Mij .

2.1 Markov Chains

Consider a discrete-time (homogeneous) Markov chain
M of n numbered states with initial state s ∈ [n] and
transition probability matrix M , in which Mij defines the
transition probability from i to j. For any j ∈ [n],

n∑
i=1

Mij = 1. (1)

For a sample path X = {X(t)}t∈N ⊆ [n] of the Markov
chain, we can write

X(t+ 1) = f(X(t), E(t)), t ∈ N (2)

where E(t) ∼ U[0,1). Generally, a discrete-time Markov
chain M can be represented in (2) in multiple ways. In
this work, we choose the following representation

f(i, e) =

{
1, if 0 ≤ e < Mi1

j, if
∑j−1
k=1Mij ≤ e <

∑j
k=1Mij .

(3)

2.2 Stratified Sampling

As shown in (2), the Markov chain is driven by the random
seed E(t) uniformly sampled from the interval U[0,1].
Therefore, there is a bijection between the space of sample
paths of the Markov chainM of length T and [0, 1]T . The
stratified sampling algorithm generates m sample paths
simultaneously. At each time t, the interval [0, 1) can be
partitioned into m sub-intervals, namely [0, 1] = [0, 1

m ] ∪
. . .∪[m−1

m , 1). Thus, a sample can be drawn from each sub-
interval. To avoid correlation between steps, we generate
a permutation π on [n] uniformly at each time t, and then

assign the sub-interval [π(i)−1
m , π(i)

m ) to the ith path. The
random seeds of them-stratified sample paths are repellent
to each other in [0, 1]T , hence, due to the choice of f(i, e)
in (3), the m-stratified sample paths are repellent to each
other in the space of sample paths. This is summarized by
Definition 1 and Algorithm 1. Compared to i.i.d. samples,
the additional computational cost for generating stratified
samples is negligible.

Definition 1. {Xi}i∈[m] is called m-stratified samples if
they are generated by Algorithm 1.

2.3 PCTL

Probabilistic computational tree logic (PCTL) is com-
monly used to express probabilistic properties of discrete-
time Markov chains. In this paper, we only consider PCTL
formulas in finite time horizon. The syntax and semantics
of the logic is given below.



Algorithm 1 m-stratified sampling

Require: Number of strata m, number of steps T , and
initial state s

1: t = 0
2: for i ∈ [m] do
3: Xi(0) = s
4: end for
5: for t = 1, . . . , T − 1 do
6: Take π as a permutation of [m]
7: for i ∈ [m] do
8: Take Ei ∼ U

[
π(i)−1
m ,

π(i)
m )

9: Xi(t+ 1) = f(Xi(t), Ei(t))
10: end for
11: end for
12: return {Xi}i∈[m]

Definition 2. (Syntax). Let Ω be a given set of atomic
propositions. A PCTL formula is generated recursively by

φ ::= Ω|¬φ|φ ∧ ψ|P∼p(Xφ)|P∼p(φU≤Tψ), (4)

where ω ∈ Ω is an atomic proposition, ∼∈ {<,>,≤,≥},
p ∈ (0, 1) is a probability threshold, T ∈ N is a time bound.

Remark 1. When p = 0, 1, the PCTL formula reduces to
a CTL formula. In this work, we only consider p ∈ (0, 1).
Other common temporal operators can be constructed by
composing the temporal logic operators given in Defini-
tion 2.

Definition 3. (Semantics). Let L : [n] → 2Ω be a given
labeling function where [n] is the states of the Markov
chain M. A random trajectory starting from the state
s ∈ [n] is denoted by s(0) = s, s(1), s(2), . . .. The semantics
of PCTL is defined recursively by

s |= ω iff ω ∈ L(s)

s |= ¬φ iff s 6|= φ

s |= φ ∧ ψ iff s |= φ and s |= ψ

s |= P∼p(Xφ) iff P [s(1) |= φ] ∼ p
s |= P∼p(φU≤Tψ) iff

P [∃t ≤ T : s(0) |= φ, . . . , s(t− 1) |= φ, s(t) |= ψ] ∼ p
(5)

3. STATISTICAL VERIFICATION USING
STRATIFIED SAMPLES

Now, we propose a sequential hypothesis testing algorithm
using stratified sampling that gives the desired confidence
level asymptotically. As mentioned in Section 1, we only
consider PCTL formulas of the form P∼pφ, where φ is a
formula without probabilistic operator. In other words, the
correctness of φ can be determined for any trajectory X
generated by the Markov chainM. We define with a slight
abuse of notation that

φ(X) =

{
1, if X satisfies φ,

0, otherwise.
(6)

Consequently, checking P<pφ is equivalent to a composite
hypothesis testing problem

H0 : P [φ(X)] < p,

H1 : P [φ(X)] ≥ p. (7)

As with other literature in this area, we assume some a
priori knowledge on the distance |P [φ(X)]− p|.

Assumption 1. Let |P [φ(X)] − p| > δ for some known
indifference parameter δ > 0. The interval (P [φ(X)] −
δ,P [φ(X)] + δ) is called the indifference Region.

Due to Assumption 1, the PCTL formulas P<pφ and P≤pφ,
or P>pφ and P≥pφ are equivalent. To be concrete, we
consider P<pφ in the rest of this section; formulas in other
forms can be deal with in similar ways.

With Assumption 1, the composite hypothesis testing
problem can be simplified to a simple hypothesis testing
problem by testing between the worst cases in the two
hypothesis H0 and H1,

H ′0 : P [φ(X)] ≤ p− δ,
H ′1 : P [φ(X)] ≥ p+ δ.

(8)

When the sample paths X1, X2, . . . are drawn indepen-
dently, the hypothesis testing problem (8) can be solved
efficiently with a sequential probability ratio test (SPRT)
as shown in (Sen et al., 2004, 2005b,a). Specifically, for a
confidence level of type I error

α = P [choose H ′1|P [φ(X)] = p− δ] > 0, (9)

and type II error

β = P [choose H ′0|P [φ(X)] = p+ δ] > 0, (10)

we consider the probability ratio

Λ(X(n)) = Πn
i=1

(p+ δ)φ(Xi)(1− p− δ)1−φ(Xi)

(p− δ)φ(Xi)(1− p+ δ)1−φ(Xi)
, (11)

where X(n) = (X1, . . . , Xn). H0 is accepted if Λ(X(n)) >
β

1−α ; H0 is accepted if Λ(X(n)) > 1−β
α ; otherwise, draw a

new sample Xn+1.

3.1 Properties of Stratified Samples

To implement the SPRT onm-stratified samples {Xi}i∈[m],
we consider the statistics

Y =

m∑
i=1

φ(Xi)/m, i = 1, 2, . . . . (12)

By the generation of the stratified samples in Algorithm 1,
we first note that

E [Y ] = E

[
m∑
i=1

φ(Xi)/m

]
= E [φ(Xi)] . (13)

In addition, we show below that for certain PCTL for-
mulas φ, φ(X1

i ), . . . , φ(Xm
i ) can be generated negatively

correlated, such that

Var [Y ] ≤ Var

[
m∑
i=1

φ(Xi)/m

]
= Var [φ(Xi)] /m. (14)

By the syntax of PCTL, φ is either of the form Xψ or
φ = ψ1U≤Tψ2, where ψ1 and ψ2 are directly checkable on
the states of the Markov chain M. We denote the set of
states where ψ holds by

Vψ = {s ∈ [n]|ψ ∈ L(s)} . (15)

Assumption 2. For a PCTL formula of the form φ =
ψ1U≤Tψ2, we assume (i) Vψ2

⊆ Vψ1
; (ii) The states of

the Markov chain M are numbered such that Vψ1
= [n1]

and Vψ2
= [n2] where n1 ≥ n2.

Theorem 1. With Assumption 2, let {Xi}i∈[m] be m-
stratified samples from Markov chain M and φ be a



probabilistic-operator-free PCTL formula with satisfac-
tion probability p, then for any and i ∈ [m],

(i) E [
∑m
i=1 φ(Xi)/m] = P [φ(X)];

(ii) Cov [φ(Xi), φ(Xj)] ≤ 0 for i 6= j,

where X is a sample path drawn naively from the Markov
chain M.

Now, the hypothesis testing problem (8) can be converted
to

H ′0 : E [Y ] = p− δ,
H ′1 : E [Y ] = p+ δ.

(16)

In addition, the mean of m-stratified samples within
each block are more concentrated than the mean of m
independent samples with the same mean,

Var [Yi] =
1

m2
Var

 m∑
j=1

φ(Xj
i )


=

1

m
Var

[
φ(Xj

i )
]

+
1

m

m∑
k=1,k 6=j

Cov
[
φ(Xj

i ), φ(Xk
i )
]

≤ 1

m
Var

[
φ(Xj

i )
]
.

(17)

Theorem 1 shows that compared to the mean m indepen-
dent samples, the mean a group of m-stratified samples
has the same mean, but smaller or at least equal variance.
In addition, it shows that refining stratification always re-
duces the variance. Specifically, given an m-stratification,
by refining each stratum into n strata, we can derive an
mn-stratification. The new mn-stratified sampling algo-
rithm will be no worse than the old m-stratified sampling
algorithm.

Finally, we show that there is no loss of statistical in-
formation by considering Yi given by (12) instead of
(X1

i , . . . , X
m
i ).

Theorem 2. Let π(x1, . . . , xm) be the joint probability
mass function of φ(X1), . . . , φ(Xm), then the value of p
only depends on

∑m
i=1 xi.

3.2 Sequential Probability Ratio Test

By Theorem 2, we only need to consider Yi to solve (8).
Now given Y (n) = (Y1, . . . , Yn) ⊆ {0, 1/m, . . . , 1}, we can
construct an SPRT algorithm similar to (11),

Λ′(Y (n)) = Πn
i=1

πH1
(Y (n))

πH0
(Y (n))

. (18)

where πH1
and πH0

are the probability mass function of
Yi under hypothesis H0 and H1 respectively.

However, unlike the i.i.d. case in (11), the exact form of
πH1

and πH0
is hard to derive. Therefore, for simplicity, we

take an asymptotic approach via Central Limit Theorem.
Let ν(Y (n)) be the empirical distribution given Y (n),
then the Wald statistics converges to normal distribution
N(0, 1) for large n

Zn =
Ȳi − θ
σi

→ N(0, 1) (19)

where θ = E [Y ] and

Ȳi =
1

i

i∑
k=1

Yk, σ2
i =

1

i

i∑
k=1

(Yk − Ȳi)2 (20)

are the sample mean and sample variance respectively.
Therefore, the probability ratio in (18) converges to

Λ′(Y (n))→ Ce
− 2(Ȳi−p)δ

σ2
i , n→∞, (21)

for some normalizing constant C. In practice, this approxi-
mation is sufficiently accurate when the number of samples
n ≥ 30 and E [Y ] is not close to the end points 0 and
1, since the converge of probability ratio (21) is faster.
When E [Y ] is close to 0 or 1, the distribution π(y) of Y
will become skew, and the convergence is slower (Agresti
and Coull, 1998; Tony Cai, 2005). When the number of
strata m = 1, the probability ratio (21) is equal (11) in
large sample limit n→∞. Using (21), we can construct a
sequential hypothesis testing algorithm (Algorithm 2).

Algorithm 2 SPRT using stratified samples

Require: Number of strata m, Probability threshold p,
Indifference Parameter δ, Confidence level α, β > 0,
Minimal number of samples N

1: r ← 0
2: ν ← {0, . . . , 0} ∈ Zm+1

3: while true do
4: r ← r + 1
5: Take m-stratified samples {X1,r, . . . , Xm,r}
6: Yr ←

∑m
i=1 φ(Xi,r)

7: ν(Yr)← ν(Yr) + 1
8: if r ≥ N/m then

9: µr ←
∑m+1

i=1

i−1
m ν(i)∑m+1

i=1
ν(i)

10: σ2
r ←

(∑m+1

i=1
( i−1
m )

2
ν(i)∑m+1

i=1
ν(i)

− µ2
r

)
/r

11: if µr − p < −σ
2
r

2δ ln( 1−α
β ) then

12: Return H0

13: else if µr − p > σ2
r

2δ ln( 1−β
α ) then

14: Return H1

15: end if
16: end if
17: end while

4. SIMULATION

The sequential probability ratio test algorithm using strat-
ified samples (Algorithm 2) is implemented on a small scale
toy example and several more complicated benchmarks
from (PRISM). In all the simulations, we set the type
I (9) error and type II error (10) to be 0.05, namely, the
probability of the algorithm to make an error is always
less than 5%. To guarantee sufficient accuracy of the
probability ratio approximation (21), a minimal number
of N = 256 samples is set for each run. The number of
strata are taken to be 1, 2, 4, 8. Accordingly, the minimal
number of blocks are 256, 128, 64, 32; which are sufficient
for large sample approximation (see Section 3.2) to hold.

Algorithm 2 is also compared with the sequential probabil-
ity ratio test with independent samples proposed in (Sen
et al., 2005a, 2004, 2005b), which is represented by SPRT
in Table 2. The details of the simulation setups are given
in Table 1.



Toy: A discrete-time Markov chain of three states
uniquely labeled by {1, 2, 3} with probability transition
matrix [

0.583 0.333 0.084
0.417 0.417 0.166
0.278 0.444 0.278

]
.

Check
P>p(s 6= 2)U[0,10](s = 1),

namely, whether the probability that a path avoids state 2
and finally returns back to state 1 within 10 steps is greater
than p. The estimated probability for (s 6= 2)U[0,10](s = 1)
to hold is 0.794956586 by the average of 1 000 000 000 i.i.d.
samples. Therefore, we set the experiment for the following
three cases

(p, δ) =


(0.794956586− 0.010002, 0.01),

(0.794956586− 0.005002, 0.005),

(0.794956586− 0.001002, 0.001).

where δ is the indifference parameter serving as an input
to Algorithm 2.

One Die: A fair die modeled by a discrete-time Markov
chain of 13 states and 20 transitions proposed in (Knuth
and Yao, 1976). Each state is labeled by only one of
s = 1, . . . , s = 7. Check

P>pF[0,3](s > 6),

The estimated probability for P>pF[0,3](s > 7) to hold is
0.749987868 by the average of 1 000 000 000 i.i.d. samples.
Therefore, we set the experiment for the following three
cases

(p, δ) =


(0.749987868− 0.010002, 0.01),

(0.749987868− 0.005002, 0.005),

(0.749987868− 0.001002, 0.001).

Two Dice: The sum of two fair dice modeled by a discrete-
time Markov chain of 45 states and 79 transitions proposed
in (Knuth and Yao, 1976). Similar to One Die, the states
are either transient with at most two transitions with equal
probability or sinks. Each state is labeled by only one of
s = 1, . . . , s = 34. Check P>pF[0,4](s = 5). The estimated
probability for F[0,4](s = 5) to hold is 0.249983470 by the
average of 1 000 000 000 i.i.d. samples. Therefore, we set
the experiment for the following three cases

(p, δ) =


(0.249983470− 0.010002, 0.01),

(0.249983470− 0.005002, 0.005),

(0.249983470− 0.001002, 0.001).

Election: Synchronous leader election protocol of 4 pro-
cessors and 5 candidates proposed in (Itai and Rodeh,
1990), which is modeled by a discrete-time Markov chain
of 1933 states and 2557 transitions. Check P>pF[0,1](600 <
s < 630), where s is a numbering of the states. The
estimated probability for F[0,1](600 < s < 630) to hold is
0.040002770 by the average of 1 000 000 000 i.i.d. samples.
Therefore, we set the experiment for the following three
cases

(p, δ) =


(0.040002770− 0.010002, 0.01),

(0.040002770− 0.005002, 0.005),

(0.040002770− 0.001002, 0.001).

The description of the simulation setups is summarized by
Table 1. The simulation results for the above examples are

Table 1. Summary of example models and testing formu-
las

Model States Transitions Testing Formula

Toy 3 9 P>p(s 6= 2)U[0,10](s = 1)

One Die 13 20 P>pF[0,3](s > 7)

Two Dice 45 79 P>pF[0,4](s = 5)

Election 1933 2557 P>pF[0,1](600 < s < 630)

Table 2. Average number of samples needed and error
probabilities for SPRT with independent samples and
Algorithm 2 for different strata sizes on the examples.

Case 1 2 3

Strata Samples Error Samples Error Samples Error

SPRT 2054.4 4.68% 8276.8 4.38% 185310.9 2.74%
1 2275.5 5.13% 8708.4 4.66% 186778.3 2.80%
2 2283.6 5.33% 8684.3 4.41% 187172.8 2.76%
4 2083.6 5.63% 8038.4 4.33% 174372.5 2.99%
8 1485 4.93% 5692.3 4.55% 123723.0 2.79%

(a) Toy

Case 1 2 3

Strata Samples Error Samples Error Samples Error

SPRT 2403.7 4.65% 9470.1 4.40% 218546.6 2.90%
1 2638.6 4.64% 9956.6 5.14% 221318.4 3.25%
2 1759.7 3.94% 6772.1 4.01% 149272.3 3.08%
4 1898.1 4.48% 7474.6 4.32% 162201.5 2.91%
8 1803.7 4.56% 7027.1 4.27% 155766.0 2.88%

(b) One Die

Case 1 2 3

Strata Samples Error Samples Error Samples Error

SPRT 2573.5 4.82% 10019.2 4.54% 221101.3 2.67%
1 2605.9 3.67% 9878.5 3.86% 220478.8 3.17%
2 1753.0 4.14% 6702.0 4.54% 148054.3 2.81%
4 1180.1 4.02% 4499.1 4.38% 98349.0 3.03%
8 994.7 4.41% 3843.9 4.21% 84064.6 3.00%

(c) Two Dice

Case 1 2 3

Strata Samples Error Samples Error Samples Error

SPRT 661.4 4.21% 2310.8 4.05% 45765.1 2.81%
1 586.4 1.33% 1976.1 1.91% 44506.4 2.20%
2 572.4 1.20% 1896.6 2.08% 42118.4 2.20%
4 535.8 1.57% 1758.4 2.22% 39154.0 2.43%
8 453.4 1.97% 1462.5 2.73% 31370.4 2.44%

(d) Election

shown in Table 2. The error probability and average sam-
ple size are derived by repeatedly running the algorithm
for 10 000 to ensure statistical significance. The sample
standard errors for the error probabilities and the average
sample sizes are omitted in these tables for compactness.

The average sample size for Algorithm 2 for 1 stratum
is approximately equal to the SPRT algorithm using
independent samples. The former is always slightly larger
than the latter, because there is a constraint on the
minimal sample size. In all the cases, the actual type I
error and type II error are controlled approximately below
0.05 with tolerable excess. These confirm that the large
sample approximation used in Algorithm 2 is reasonable.

The reduction of sample size by stratification, as shown
in Table 2a-2d, is visualized in Figure 2 below. The result
shows that stratified sampling reduces the number of total
samples (number of strata × number of blocks of stratified



(a) δ = 0.01. (b) δ = 0.005. (c) δ = 0.001.

Fig. 2. Summary of reduction in average sample sizes for
the toy, one die, two dice and election examples for
three choices of indifference parameter δ.

samples), compared to independent sampling. Specifically,
Algorithm 2 for 8 strata reduces the number of total
samples by 30%− 60% in the four examples.

5. CONCLUSION

In this work, we propose a stratified sampling method
to statistically check probabilistic computation tree logic
formulas on discrete-time Markov chains with sequential
probability ratio test. Compared to previous statistical
verification methods using independent sampling, our al-
gorithm uses stratified samples. They are negatively cor-
related, thus give a lower variance, while the additional
computational cost for generating them is negligible. The
experiments show that the latter uses 30% − 60% fewer
samples (number of strata × number of blocks of stratified
samples) than the former for a given confidence level on
the benchmark examples.
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