Proof Construction for Coq by Tactic Learning

Lasse Blaauwbroek*

Czech Institute for Informatics, Robotics and Cybernetics,
Czech Republic
lasse@blaauwbroek.eu

Abstract

We present some early work being done to utilize Artificial Intelligence for proof search
in the Coq theorem prover. In a similar vein as the TacticToe project for HOL4 [2], we are
working on a system that finds proofs of goals on the tactic level, by learning from previous
tactic scripts. Learning on the level of tactics has several advantages over more low-level
approaches. First, this allows for much coarser proof steps, meaning that during proof
search more complicated proofs can be found. Second, it allows for the usage of custom
built, domain specific tactics that where previously defined and used in the development.
This will allow for better performance of the system in very specialized domains. The rest
of this abstract will describe the required components of our system. Since a number of
technical issues need to be addressed, we hope to solicit feedback from the Coq developers
at the workshop.

Proof Recording The first component of the system is the recording of previous proofs. As
said, this is done on the level of tactics. When a tactic script is executed, we record the goal
state before and after the execution of each tactic. The diff between the state before and after
the tactic then represents the action that has been performed by a tactic. By recording many
of these instances for a tactic, we create a database that contains an approximation of the
semantic meaning of tactics.

A major question here is what exactly constitutes a tactic in Coq. One option is to decom-
pose a script into a series of primitive tactic invocations, and record those. On the other side
of the extreme, one could view every vernacular command as one whole tactic. The first option
means that the advantages of the system are greatly diminished, because then we are working
on a very low level and no custom tactics will be recorded. The second option means that
almost all tactics will be unique. The best solution is likely to lie somewhere in between. Our
current approach is to fully decompose tactic scripts but never to unfold identifiers. Another
issue is how tactic parameters are treated. For now, the same tactic invocation with different
arguments is seen as a completely different tactic.

Recording the proof states before and after every tactic is a major technical challenge. A
very early prototype of our system took the source code of a Coq development and added
the recording of tactics before and after every tactic invocation. This approach has many
disadvantages. First, correctly parsing a Coq source file is a rather tricky undertaking. Second,
the workflow for the end-user is awkward because an external tool must be run to transform
the source code, and then the whole development must be re-run through the Coq toplevel.
To improve upon this, we are now working to perform the recording via a Coq plugin. This
has required us to program a hook into the Coq source code to intercept the execution of each
tactic vernacular. However, we can now take advantage of the Coq parser and have a tighter
integration.

*This work was supported by the European Regional Development Fund under the project AI&Reasoning
(reg. no. CZ.02.1.01/0.0/0.0/15.003/0000466)



Proof Construction for Coq by Tactic Learning Blaauwbroek

Tactic Prediction After creating a database of tactics and recorded proof states, we now
wish to predict the correct tactic to use in order to make progress in a new, unseen proof state.
For this, we must find a proper characterization of the proof states. For our initial prototype,
we have opted to reuse feature characterization that is already present in the CogHammer
system [1]. CoqHammer characterizes a formula as a vector containing all identifiers and pairs
of adjacent identifiers in the abstract syntax tree. To find a list of likely matches for a new
goal, a fast k-nearest neighbor algorithm is run on the vectors.

Proof Search It has to be acknowledged that it is unlikely that the tactic prediction will
predict the correct tactic every time. For this reason, a proof search must be performed. In the
TacticToe system, initially an A*-style algorithm was used to guide the search. Later, taking
inspiration from AlphaGo Zero [3] a Monte Carlo Tree Search algorithm was used. In our initial
implementation, we are using a simple breadth first search algorithm. However, in the future
we intend to move in the same direction as the TacticToe system.

Proof Reconstruction When the proof search successfully finds a proof, the final step is to
create a reconstruction of the proof. Conceptually, we just backtrack trough our search tree
and list every tactic in our path. However, an important feature of a tactic-level system is that
when a proof is found, a tactic script is built that represents this proof. This will allow the
user to inspect, understand and modify the proof easily. In order to make this work, the script
needs to be short and intuitively understandable. Hence, it is not acceptable if the proof is just
a listing of tacticals for each branch and sub-branch of the proof. For this, we must deduplicate
subproofs, use short names for tactics and automatically combine tactics into more complicated
expressions.

Future Extensions After the initial implementation is finished, we plan on creating several
extensions that should improve the effectiveness of the system. In the case of TacticToe, it
has been shown that the system is much more effective when combined with a Hammer. We
therefore intend to interface our system with CoqgHammer [1]. The idea is that during proof
search, sometimes a short invocation of the CoqHammer is made to attempt to finish the proof.
Another avenue of extension is to try learning the correct parameters that need to be supplied
to tactics. In TacticToe this has been an ongoing challenge, so we expect similar difficulties
here.

Finally, we would like to investigate the possibility to do speculative proving. The motivation
for this idea is that when one tries to prove a theorem, this often requires a lemma that one
has forgotten to formalize before starting proof on the theorem. We propose that during the
proof search, the system should sometimes make small leaps of faith. For example, when the
goal and a assumption look very similar, the system might assume that they can be proven
equal. With this assumption, the proof search can then continue. When one or more proofs are
found, the user will be presented with these proofs and the holes that still need to be filled to
complete the proof.

References

[1] Lukasz Czajka and Cezary Kaliszyk. Hammer for coq: Automation for dependent type theory.
Journal of Automated Reasoning, pages 1-31, 2018.

[2] Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. Tactictoe: Learning to reason with HOL4
tactics. In LPAR-21, 21st International Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning, Maun, Botswana, May 7-12, 2017, pages 125-143, 2017.

[3] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,

Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.



