
Teaching Your Rooster to Crow in C

Jason Gross

Coq Workshop 2018

Abstract

Coq’s notation system is both extremely powerful and confusingly ad-
hoc. While powerful enough to pretty-print abstract syntax trees in most
domain-specific languages, how to do so does not seem to be common
knowledge. Typical questions arising from such an endeavor might include
“How do I pick notation levels?”, “Why are these notations clashing?”,
“Which things should be marked as symbols?”, “How do I use boxes in
format?”, and “How do I get parentheses to show up (only) where I want
them to?” This interactive presentation aims to serve as a guide to these
questions and more, by demonstrating and explaining how to pretty-print
subsets of C using only Coq’s Notation mechanism.

My goal in this presentation is to give the audience enough familiarity with
Notations to use them in their own projects for pretty-printing DSLs, or at
least to know what sorts of experiments to execute to discover what they want.
As such, I intend this to be a very interactive presentation. I plan to explain
the basics of using Notations, a selection of features, and present a number
of tricks for getting things to work. The audience will be encouraged to ask
questions and propose things they’d like to see me do with notations, and the
presentation will take place in a prepared ProofGeneral buffer.

I expect to cover the following things, in roughly the following order, as time
permits:

• Syntax of notations (e.g., Infix "+" := add.; Notation "a + b" :=

(add a b).)

– Notation bodies must be parenthesized

• How to use levels and associativity, how to pick levels, how to discover
levels of existing notations (Print Grammar constr)

• Controlling display: format, extra spaces, quoting symbols, boxes in
format for display of indentation, newlines, and whitespace

• Recursive notations: .. for pair- and λ-like things

• Reserved Notation and only printing, useful for ensuring that nota-
tions don’t conflict

1

• Using single-variable only-printing notations for hiding identifiers

• Abbreviations vs notations (what it means when your Notation doesn’t
have quotes, and why you might want this)

• Notation scopes, useful for overloading notations and selecting the right
one automatically (Bind Scope, Delimit Scope, Open Scope)

• Using binders for destructuring pairs

• Parenthesizing notations: when to use parentheses, and when to use levels

• Deliberate ordering of notations: how to express wildcard and negation in
notation matching

Examples By the end of the presentation, I intend for the audience to under-
stand, or at least feel comfortable experimenting with, notations that look like
any of the following:

Infix "+" := Add.

Notation "T x = A ; b" := (LetIn (tx:=T) A (fun x => b))

(at level 200, b at level 200, format "T x = A ; ’//’ b").

Notation "T x = A ; ’return’ (b0 , b1 , .. , b2)"

:= (LetIn (tx:=T) A (fun x => Pair .. (Pair b0%expr b1%expr) .. b2%expr))

(at level 200, format "T x = A ; ’//’ ’return’ (b0 , b1 , .. , b2)").

Notation "x" := (Var x) (only printing).

Notation "’slet’ x .. y := A ’in’ b"

:= (LetIn A%expr (fun x => .. (fun y => b%expr) ..)) : expr_scope.

Notation "(x * y)" := (Op (Mul _ _ _) (Pair x y))

(format "(x * y)") : expr_scope.

Notation "(x * ’(uint8_t)’ y)"

:= (Op (Mul (TWord _) (TWord (S _)) (TWord 1)) (Pair x (Var y)))

(at level 40, y at level 9, format "(x * ’(uint8_t)’ y)") : expr_scope.

Motivating Example A sort of “motivating example” driving this presen-
tation, an answer to the question of “what can we do with this?”, is turning a
syntax tree that looks like

Abs (fun ’(x8, x9, x7, x5, x3, (x16, x17, x15, x13, x11)) =>

LetIn (Op (Mul (TWord 6) (TWord 6) (TWord 7)) (Pair (Var x3) (Var x11)))

(fun x18 : var (TWord 7) => ...

into

λ ’(x8, x9, x7, x5, x3, (x16, x17, x15, x13, x11))%core,

uint128_t x18 = ((uint128_t)x3 * x11);

...

2

