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In pursuit of a logic that has canonicity and is comprised of dualized proof rules, we introduce a
sequent calculus system, 2Intx, that is inspired by Wansing’s bi-intuitionistic propositional logic
2Int. Though 2Int has canonicity and duality, it defines only natural deduction proof rules and
employs an unintuitive Kripke semantics that allows atomic formulas to be both true and false. In
addition to defining the sequent calculus rules of 2Intx, we also define a Kripke semantics that only
admits models in which atomic formulas are either true or false, but not both. Finally, we prove
soundness of 2Intx.

1 Motivation: Non-canonicity in BiInt

We are seeking a canonical sequent calculus with dualized proof rules (as in [1]) because this results in
fewer rules, can be useful for induction and coinduction, and is relevant to our interest in constructive
control operators (analogous to the classical control operators found in the λ µ-calculus[2]).

Though a bi-intuitionistic (or BiInt) sequent calculus may consist of dualized proof rules, the logic
lacks the property of canonicity. For example, the formula A∨ (⊺*A) is valid in BiInt, but the BiInt
derivation 1 shown in Figure 1 is not a canonical proof of A∨(⊺*A) because it represents an object that
is not necessarily either a proof of A, or a proof of ⊺*A. Here the connective * denotes dual-intuitionistic
implication (the dual connective of→), and the formula ⊺*A is called the dual-intuitionistic negation of
A.2. The dual of intuitionistic implication is also sometimes called “subtraction”, “co-implication”, and
“exclusion”.3

The derivation of A∨ (⊺*A) demonstrates that BiInt does not have canonicity, so we must investigate
alternative dualized logics. In [4], Wansing introduces a logic 2Int that is a conservative extension of
intuitionistic logic (with respect to validity) and dual-intuitionistic logic (with respect to dual validity),
and also has both canonicity and duality. However, the proof system for 2Int is not a sequent calculus.
Additionally, the semantics of 2Int allows models in which an atomic formula is true and false at the
same time.

1This derivation is constructed using the inference rules of Pinto and Uustalu’s presentation of a multiple conclusion
“Dragalin style” BiInt sequent calculus from [3]. This sequent calculus is not complete without cut, but they go on to provide
a complete cut-free system in which A∨(⊺*A) is also a theorem.

2The formulas −A and ∼ A are both common shorthand notations for the formula ⊺*A.
3Though the meaning of the subtraction connective is somewhat subtle in BiInt, the equivalence in classical logic between

A*B and A∧¬B provides a helpful hint.
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⊢ ⊺,A ⊺R A ⊢ A,⊺*A
hyp

⊢ ⊺*A,A *R 4

⊢ A∨(⊺*A)
∨R

Figure 1: Derivation of A∨(⊺*A) in Dragalin-style sequent calculus

Polarities p ∶∶= + ∣ −

Formulas F ∶∶= σ ∣ ⊺p ∣ F1∧p F2 ∣ F1→p F2

Figure 2: Syntax of polarities and 2Intx formulas

In this paper we introduce a sequent calculus proof system–called 2Intx–that derives proofs of bi-
intuitionistic propositional formulas and consists of dualized inference rules (Section 2). In Section 3
we define a Kripke semantics for 2Intx that is distinct from the semantics given to 2Int, in that atomic
formulas cannot be both true and false in a particular world. We also prove soundness of 2Intx, and
examine some of its properties. We are optimistic that 2Intx has the property of canonicity because the
formula A∨(⊺*A) is not valid with respect to the given semantics.

2 Proof System

The 2Intx proof system is a single conclusion propositional sequent calculus that incorporates a notion
of polarity into both formulas and connectives in order to derive proofs of bi-intuitionistic propositional
formulas. The proof rules for introducing logical connectives are dual by definition, such that a sequent
that concludes a formula that introduces a connective is derived using the same rule as a sequent that
concludes the dual of that formula. Logical connectives are annotated with positive and negative polari-
ties, such that each polarity is dual to the other (see Figure 3). Additionally, sequents also annotate the
formulas in both the conclusion position as well as the assumption positions. However, these annotations
use a related but different form of polarity that allows for the possibility of “uncertainty”.

2.1 Polarities and syntax of formulas

Figure 2 shows the syntax of polarities and formulas. A polarity p appears in a logical connective as
a syntactic parameter that determines between one of two duals. A connective with a positive polarity
functions in the typical way, and a connective with a negative polarity functions as its dual. For example,
the dual logical connective of ∧ is ∨, so a ∧− (resp. ∧+) that appears in a 2Intx formula will function as
∨ (resp. ∧). Figure 4 provides a recursive definition of a function that translates formulas from BiInt to
2Intx syntax. This mapping determines the dual for each logical connective of typical bi-intuitionistic
propositional logic.

Figure 3 defines inversion on polarities.

4The persistence of the ⊺*A conclusion in the right premise is purely a technicality because Pinto and Uustalu define this
particular rule to also serve as a contraction rule for subtraction conclusions.
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+ = −

− = +

Figure 3: Inverse of a polarity

⌜σ⌝ = σ

⌜⊺⌝ = ⊺+
⌜⊥⌝ = ⊺−
⌜F1∧F2⌝ = ⌜F1⌝∧+ ⌜F2⌝

⌜F1∨F2⌝ = ⌜F1⌝∧− ⌜F2⌝

⌜F1→ F2⌝ = ⌜F1⌝→+ ⌜F2⌝

⌜F2*F1⌝ = ⌜F1⌝→− ⌜F2⌝

Figure 4: Translation from standard syntax for BiInt to 2Intx syntax

2.2 Uncertain Polarities

A u-polarity (see Figure 5) appears only as an annotation on formulas in sequents of 2Intx proof deriva-
tions, and determines a kind of knowledge status/sense regarding its associated formula. The u-polarity
attached to a formula indicates two orthogonal aspects of the formula: whether it is “positive” or “nega-
tive”, and also whether the formula is “certain” or “uncertain”. The descriptions below convey intuitions
about the meaning of each of the four unique combinations of u-polarity aspects. The meaning of “for-
ward” and “backward persistent” assumptions will become clear in section 2.3 where we discuss abstract
Kripke structures. That section will explain that every formula in a sequent’s context represents an as-
sumption (resp. counter-assumption) that only pertains to a specific “state” of knowledge, along with
every other “state” of knowledge that is “forwardly” (resp. “backwardly”) “connected” to it.

• “negative” and “certain”: A formula annotated with a u-polarity of − denotes a certainly false
(or falsified) formula. A derivation ending with an empty context sequent that concludes with a
formula at this u-polarity disproves that formula, and a sequent that has a formula at this u-polarity
in its context has that formula as a backward persistent counter-assumption.

• “positive” and “certain”: A formula annotated with a u-polarity of + denotes a certainly true
(or verified) formula. A derivation ending with an empty context sequent that concludes with a
formula at this u-polarity proves just that formula, and a sequent with a formula at this u-polarity
in its context has that formula as a forward persistent assumption.

• “negative” and “uncertain”: A formula annotated with a u-polarity of −? denotes an uncertainly
false (or not verified) formula. A derivation ending with an empty context sequent that concludes
with a formula at this u-polarity proves the non-existence of a proof of that formula, and a sequent
that has a formula at this u-polarity in its context has the intuitionistic negation of that formula as

U-polarities u ∶∶= + ∣ − ∣ +? ∣ −?

Figure 5: Syntax U-polarities (polarities with uncertainty)
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⌊+⌋ = +

⌊−⌋ = −

⌊+?⌋ = +

⌊−?⌋ = −

Figure 6: Truncation of a u-polarity

+̃ = −?
−̃ = +?
+̃? = −

−̃? = +

Figure 7: Inverse of a u-polarity

a backward persistent assumption.5.

• “positive” and “uncertain”: A formula annotated with a u-polarity of +? denotes an uncertainly
true (or not falsified) formula. A derivation ending with an empty context sequent that concludes
with a formula at this u-polarity proves the non-existence of a disproof of that formula, and a
sequent that has a formula at this u-polarity in its context has the dual-intuitionistic negation of
that formula as a forward persistent counter-assumption.

The latter two descriptions are justified in Section 2.5. Also note that a context that contains a formula at
a “negative” and “uncertain” u-polarity is meaningfully distinct from a context that contains the intuition-
istic negation of that formula at a “positive” and “certain” polarity precisely because of the difference in
the persistence direction associated to each of the formulas by their respective u-polarities.

Figure 6 defines a truncation function that maps a u-polarity to a polarity by eliminating uncertainty.
Figure 7 defines an involution on u-polarities that maps each u-polarity to its dual by inverting both its
certainty and its polarity. This mapping corresponds with the interpretation of u-polarities given above
in a natural way. For example, +̃ = −? because the dual of a verified (or certainly true) formula is a not
verified (or certainly not true, or weakly false) formula, which is equivalent to a formula that is either
falsified or has a completely unknown truth value.

2.3 Contexts and Abstract Kripke Structures

Every sequent of a 2Intx proof derivation is a triple of a finite binary relation R over a set of symbols,
a finite set of assumed formulas Γ, and a conclusion formula F . We call the relation R an abstract
Kripke structure, and we call the symbols related by R abstract worlds. Every formula in the sequent is
annotated with a u-polarity as well as an abstract world, and we denote the formula F at u-polarity u and
abstract world n by uF @n.

5This is distinct from counter-assuming the formula because we are in an intuitionistic setting. Verifying the intuitionistic
negation of a formula establishes only that the formula is not verified, and does not establish that the formula is falsified (a
strictly stronger notion). In other words, verifying the intuitionistic negation of a formula eliminates the possibility of verifying
that formula (because that would form a contradiction) and is, of course, consistent with falsifying that formula, but it does not
necessarily imply the falsification of that formula.



Anthony Cantor & Aaron Stump 5

n ≺+ n′ = (n,n′)
n ≺− n′ = (n′,n)
R ⊢ e ⇔ e ∈ R∗

Figure 8: Polarized edges and accessibility in abstract Kripke structures

The 2Intx inference rules contain certain side conditions that correspond to the structure of a Kripke se-
mantics, and serve the purpose of preventing the 2Intx system from being able to prove non-intuitionistic
formulas. These side conditions enforce relations between the abstract Kripke structure of a rule’s con-
clusion sequent, and the abstract Kripke structures of its premise sequents. The abstract Kripke structures
of these sequents determine a directed graph that describes a kind of “connectedness” relationship on the
set of abstract worlds. Similar to the notion of a u-polarity annotation (introduced in section 2.2), an
abstract world that annotates a formula enhances the meaning of the formula by refining its knowledge
status/sense. Broadly speaking, each inference rule relates its conclusion formula at abstract world n
to only those assumed formulas at abstract worlds that can reach n (we will define reach precisely be-
low). This is similar to the systems found in [3] and [1]. However, the 2Intx inference rules use abstract
Kripke structures differently than those systems because the precise meaning of an abstract world being
able to reach another abstract world depends on the polarity of the conclusion formula. For example,
suppose that the conclusion has polarity + or +? and is annotated by abstract world n′. In this case an
abstract world n reaches n′ iff (n,n′) is in the reflexive-transitive closure of the abstract Kripke structure.
Otherwise, when the u-polarity is negative, n reaches n′ iff (n′,n) is in the reflexive-transitive closure.

2.4 Proof rules

The inference rules for 2Intx are defined in Figure 9. In addition to depending on proof derivations, some
inference rules of 2Intx also depend on the satisfaction of side conditions that are denoted by a premise
enclosed by square brackets ([⋅]). The following describes the precise meaning of these side conditions
with respect to any rule in which they might appear. A 2Intx rule can require a relation between the
abstract world of its conclusion and the abstract worlds of its assumptions via a side condition of the
form R ⊢ n ≺p n′. An inference rule that depends on this form of side condition requires that an abstract
world n′ is reachable from another abstract world n via edges (of the reachability relation R) polarized at
polarity p (see Figure 8). An inference rule that requires that a polarity p′ is equal to a truncated uncertain
polarity u will depend on the condition p′ = ⌊u⌋. If it requires that p′ is equal to the inverse of truncated
u, then it will depend on the condition p′ = ⌊u⌋. For an inference rule that requires that the u-polarity of a
formula be equivalent to polarity p′, p′F @n will denote the formula at u-polarity u such that u ∈ {+,−}
and p′ = ⌊u⌋. Finally, an inference rule that requires that an abstract world n is not a member of a set A
of abstract worlds will depend on the condition n ∉ A. In particular, a rule that requires that an abstract
world is “fresh” will depend on a side condition of this form with occurrences of the sets field(R) and
worlds(Γ): field(R) will denote the set of abstract worlds that occur in either the domain or the range of
the abstract Kripke structure R; and worlds(Γ) will denote the set of abstract worlds n such that uF @n
is in the context Γ, for some u-polarity u and formula F .

The use of explicit polarities allows us to cut the number of rules that would otherwise be required at
least in half, although it does result in more dense rules. Here are some example deductions, using the
usual non-polarized syntax (Figure 4). First, let Γ be the context containing just +(⊺→ ⊺)→ r@n. Then



6 (Short Paper) Towards a Dualized Sequent Calculus with Canonicity

[R ⊢ n ≺p′ n′] [p′ = ⌊u⌋]
R;Γ, p′F @n ⊢ uF @n′

Assume≺
R;Γ,uF @n ⊢ uF @n Assume

R;Γ ⊢ uF @n
R;Γ,u′F ′@n′ ⊢ uF @n

Weaken
[p′ = ⌊u⌋]

R;Γ ⊢ u⊺p′@n Unit

R;Γ ⊢ uF1 @n R;Γ ⊢ uF2 @n [p′ = ⌊u⌋]
R;Γ ⊢ uF1∧p′ F2 @n And

R;Γ ⊢ uFi @n [p′ = ⌊u⌋] [i ∈ {1,2}]
R;Γ ⊢ uF1∧p′ F2 @n And

R∪(n ≺p′ n′);Γ, p′F1 @n′ ⊢ uF2 @n′ [p′ = ⌊u⌋] [n′ /∈ {n}∪field(R)∪worlds(Γ)]

R;Γ ⊢ uF1→p′ F2 @n
Implies

R;Γ ⊢ p′F1 @n′ R;Γ ⊢ uF2 @n′ [p′ = ⌊u⌋] [R ⊢ n ≺p′ n′]
R;Γ ⊢ uF1→p′ F2 @n Implies

R;Γ, ũF1 @n ⊢ p′F2 @n′ R;Γ, ũF1 @n ⊢ p̃′F2 @n′ [p′ = ⌊u⌋]
R;Γ ⊢ uF1 @n Cut

Figure 9: Inference Rules for 2Intx
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we have

Γ ⊢ +(⊺→ ⊺)→ r@n
∅;Γ,−?r@n ⊢ +(⊺→ ⊺)→ r@n

∅,(n,n′);Γ,−?r@n,+⊺@n′ ⊢ +⊺@n′

∅;Γ,−?r@n ⊢ +⊺→ ⊺@n ∅;Γ,−?r@n ⊢ −?r@n
∅;Γ,−?r@n ⊢ −?(⊺→ ⊺)→ r@n

∅;Γ ⊢ +r@n Cut

An example of φ → (ψ → φ) (eliding side conditions):

∅,(n0,n1),(n1,n2) ⊢ n1 ≺+ n2 + = ⌊+⌋

∅,(n0,n1),(n1,n2);∅,+φ @n1,+ψ @n2 ⊢ +φ @n2
Assume≺

. . .

∅,(n0,n1);∅,+φ @n1 ⊢ +ψ → φ @n1
Implies

. . .

∅;∅ ⊢ +φ → (ψ → φ)@n0
Implies

Let R = {(n0,n1),(n1,n2)} for some abstract worlds n0,n1,n2, and let Γ = {+φ @n1,+¬φ @n2} for some
formula φ (some side conditions are omitted):

R;Γ,−?�@n2 ⊢ +¬φ @n2

R;Γ,−?�@n2 ⊢ +φ @n2
As.≺ R;Γ,−?�@n2 ⊢ −?�@n2

Assume

R;Γ,−?�@n2 ⊢ −?¬φ @n2
Implies

R;Γ ⊢ +�@n2
Cut

∅,(n0,n1);∅,+φ @n1 ⊢ +¬¬φ @n1
Implies

∅;∅ ⊢ +φ → ¬¬φ @n0
Implies

2.5 Relationship Between ũF @n and uF @n

In Section 2.2, we described an empty context proof derivation with conclusion formula at a negative
(resp. positive) uncertain u-polarity as a proof of the non-existence of a proof (resp. disproof) of that
formula. This description is justified because a proof of a formula at polarity u can be combined with
a proof of that formula at polarity ũ to derive a contradiction. For example suppose that there exists
a proof derivation D1 ending with the sequent R;Γ ⊢ −?φ @n. The existence of another derivation D2
ending with R;Γ ⊢ +φ @n would permit the following derivation of R;Γ ⊢ +�@n 6:

D2
R;Γ ⊢ +φ @n

R;Γ,−?�@n ⊢ +φ @n Wkn.

D1
R;Γ ⊢ −?φ @n

R;Γ,−?�@n ⊢ −?φ @n Wkn.
+ = ⌊+⌋

R;Γ ⊢ +�@n Cut

By the soundness theorem (stated in Section 3.3), the existence of derivation D1 either implies the non-
existence of derivation D2, or implies that the context R;Γ is inconsistent. The empty context cannot
be inconsistent, so therefore a proof derivation of ⋅; ⋅ ⊢ uF @n precludes the existence of a derivation of
⋅; ⋅ ⊢ ũF @n.

6It is easy to check that a proof derivation ending with R;Γ ⊢ +?φ @n causes a similar dual result, corresponding naturally
with the description given in Section 2.2 of an “uncertain” and “positive” polarity.



8 (Short Paper) Towards a Dualized Sequent Calculus with Canonicity

3 The Semantics of 2Intx

In the following sections we define Kripke models for 2Intx, claim soundness of 2Intx with respect to
the Kripke models, and then observe some properties of 2Intx.

3.1 Kripke Models

The definitions below describe a polarized semantic interpretation of any 2Intx formula as a truth state of
“unknown”, “verified”, or “falsified”. This interpretation indicates established knowledge of a formula by
the “verified” state, or by its dual, the “falsified” state. By proving a soundness theorem for 2Intx, we will
see that the u-polarities that annotate the conclusions of sequents formally correspond with the semantic
polarity in the expected way. For example, an empty context proof of a formula at u-polarity +, −, +?, or
−?, should imply that the formula is valid, dually valid, unfalsifiable, or unverifiable (respectively).

Like the models defined by Wansing for 2Int, the interpretation utilizes Kripke models endowed with
two valuation functions instead of just one. A “verifier” function determines the worlds at which an
atomic formula is verified, and a “falsifier” function determines the worlds at which an atomic formula
is falsified. However, properties 2, 3, and 4 of Definition 1 distinguish the Kripke models of 2Intx from
those of 2Int: property 2 persists backwards instead of forwards, and the other two together prohibit
models with inconsistent verifier and falsifier functions.
Definition 1. Let Σ be an enumerable set of atomic formulas. We define a structure M as a tuple ⟨I,≤
,v+,v−⟩, where I is a non-empty set, ≤ is a preorder relation on the set I, and v+,v− are both functions
that map each atomic formula σ ∈ Σ to a subset of I. Additionally, v+,v− must satisfy:

1. for any w,w′ ∈ I with w ≤w′: if w ∈ v+(σ) then w′ ∈ v+(σ)

2. for any w,w′ ∈ I with w ≥w′: if w ∈ v−(σ), then w′ ∈ v−(σ)

3. for any w ∈ I: if w ∈ v+(σ), then w ∉ v−(σ)

4. for any w ∈ I: if w ∈ v−(σ), then w ∉ v+(σ)

Properties 1 and 2 cause the verification (resp. falsification) of a symbol at some world to persist to
all reachable (resp. inversely reachable) worlds. Properties 3 and 4 ensure that the function v+ (repre-
senting a verification perspective) and the function v− (representing a falsification perspective) can never
contradict each other. That is, no symbol can ever be verified and falsified at the same world.

The following definition interprets a 2Intx formula with respect to particular world of a Kripke model.
Definition 2. For a structure M, world w, and formula F, the relation M,w ⊧+ F and M,w ⊧− F is
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inductively defined by:

M,w ⊧+ σ iff w ∈ v+(σ)

M,w ⊧− σ iff w ∈ v−(σ)

M,w ⊧+ ⊺+
M,w ⊭+ ⊺−
M,w ⊧− ⊺−
M,w ⊭− ⊺+
M,w ⊧+ F1→+ F2 iff for every w′ ≥w ∶M,w′ ⊭+ F1 or M,w′ ⊧+ F2
M,w ⊧− F1→+ F2 iff there exists w′ ≥w ∶M,w′ ⊧+ F1 and M,w′ ⊧− F2
M,w ⊧+ F1→− F2 iff there exists w′ ≤w ∶M,w′ ⊧− F1 and M,w′ ⊧+ F2
M,w ⊧− F1→− F2 iff for every w′ ≤w ∶M,w′ ⊭− F1 or M,w′ ⊧− F2
M,w ⊧+ F1∧+F2 iff M,w′ ⊧+ F1 and M,w′ ⊧+ F2
M,w ⊧− F1∧+F2 iff M,w′ ⊧− F1 or M,w′ ⊧− F2
M,w ⊧+ F1∧−F2 iff M,w′ ⊧+ F1 or M,w′ ⊧+ F2
M,w ⊧− F1∧−F2 iff M,w′ ⊧− F1 and M,w′ ⊧− F2

A formula F is valid (resp. dually valid) in structure M iff for all w ∈ I we have M,w ⊧+ F (resp.
M,w ⊧− F). M ⊧+ F (resp. M ⊧− F) denotes that formula F is valid (resp. dually valid) in structure
M. A formula F is unverifiable (resp. unfalsifiable) in structure M iff for all w ∈ I we have M,w ⊭+ F
(resp. M,w ⊭− F). M ⊭+ F (resp. M ⊭− F) denotes that formula F is unverifiable (resp. unfalsifiable)
in structure M. A formula is valid (resp. dually valid) in 2Intx iff it is valid (resp. dually valid) in
every structure. ⊧+ F (resp. ⊧− F) denotes that formula F is valid (resp. dually valid). A formula F is
unverifiable (resp. unfalsifiable) iff it is unverifiable (resp. unfalsifiable) in every structure. ⊭+ F (resp.
⊭− F) denotes that formula F is unverifiable (resp. unfalsifiable).

In the introduction we established that BiInt lacks canonicity by observing that the formula A∨(⊺*A) is
valid in BiInt, and is a theorem in some example BiInt proof systems. Naturally, now that we have given
a semantics for 2Intx formulas we will verify that A∨ (⊺*A) is not valid in 2Intx with the following
countermodel: M = ⟨{w0},{(w0,w0)},σ ↦ ∅,σ ↦ ∅⟩ is a structure for 2Intx, and clearly the formula
⌜σ ∨(⊺*σ)⌝ = σ ∧− (σ →− ⊺+) is not verified in this structure because M ⊭+ σ and M ⊭+ σ →− ⊺+.

3.2 Semantics of Sequents

We now define semantic relations between structures, annotated formulas, sets of annotated formulas,
and sequents.

Definition 3 (Abstract Bridge function). Let M = ⟨I,≤,v+,v−⟩ be a structure, and let R be a finite relation
on a set of abstract worlds. An abstract bridge function for structure M is a function h ∶ R→ I, such that
for all (n,n′) ∈ R: h(n) ≤ h(n′).

Let u be a u-polarity, F be a formula, and n be an abstract world. The relation M,h ⊧ uF @n is defined
as follows:
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Definition 4.
M,h ⊧ +F @n iff M,h(n) ⊧+ F
M,h ⊧ −F @n iff M,h(n) ⊧− F
M,h ⊧ +?F @n iff M,h(n) ⊭− F
M,h ⊧ −?F @n iff M,h(n) ⊭+ F

Let Γ be a set of annotated functions, then M,h ⊧ Γ iff for every annotated formula uF @n in Γ we have
M,h ⊧ uF @n.

A structure M = ⟨I,≤,v+,v−⟩ is a model of a sequent R;Γ ⊢ uF @n iff for every abstract bridge function
h ∶ R→ I: if M,h ⊧ Γ, then M,h ⊧ uF @n.

A sequent R;Γ ⊢ uF @n is valid iff every structure M is a model of the sequent. A valid sequent is
denoted R;Γ⊩ uF @n.

3.3 Soundness of 2Intx

Theorem 5 (Soundness of 2Intx). If there exists a 2Intx proof derivation of the sequent R;Γ ⊢ uF @n,
then that sequent is valid.

Proof: We have constructed a proof of this theorem in the Agda programming language.

3.4 Theorems of 2Intx and 2Int

We now observe that there exists a theorem of 2Intx that is not a theorem of 2Int. The proof derivation
below proves that (φ *φ)→ ψ is a theorem in 2Intx. Let R = {(n0,n1)} for any abstract worlds n0 and
n1, and let Γ = {+φ *φ @n1,−?ψ @n1} for any formulas φ and ψ .

R;Γ ⊢ +φ *φ @n1
As.

R,(n1,n2) ⊢ (n2 ≺− n2) − = ⌊−?⌋
R,(n1,n2);Γ,−φ @n2 ⊢ −?φ @n2

As.≺
− = ⌊−?⌋

R;Γ ⊢ −?φ *φ @n1
Im.

+ = ⌊+⌋

R;∅,+φ *φ @n1 ⊢ +ψ @n1
Cut

∅;∅ ⊢ +(φ *φ)→ψ @n0
Im.

However, (φ *φ)→ψ is not a theorem of 2Int. Let I = {w0} and M = ⟨I,{(w0,w0)},v+,v−⟩ be a structure
for 2Int, where v+,v− are functions from the set of atomic formulas {σ0,σ1} to the set of information
states I, and are defined by v+ = v− = {(σ0,I),(σ1,∅)}. According to the Kripke semantics of 2Int,
M,w0 ⊧

+
σ0 *σ0 because M,w0 ⊧

+
σ0 and M,w0 ⊧

−
σ0. However M,w0 ⊭

+ (σ0 *σ0)→ σ1 because at
world w0 we have M,w0 ⊧

+
σ0*σ0 and M,w0 ⊭

+
σ1. This implies that (φ *φ)→ψ is not a theorem of

2Int, since M is a countermodel.

4 Future Work

In the future, we intend to continue analysis of 2Intx, working toward our goal of a dualized logic with
canonicity. Specifically, we intend to investigate whether 2Intx has the property of canonicity, and look
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into term assignment with respect to the Curry-Howard isomorphism. Additionally, we plan on proving
a completeness theorem for 2Intx.
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