
Transitive Closure Logic:

Infinitary and Cyclic Proof Systems

Reuben N. S. Rowe1 and Liron Cohen2

1 School of Computing, University of Kent, Canterbury, UK
r.n.s.rowe@kent.ac.uk

2 Dept. of Computer Science, Cornell University, NY, USA
lironcohen@cornell.edu

Abstract

We present a non-well-founded proof system for Transitive Closure (TC) logic, and
also consider its subsystem of cyclic proofs. TC logic is an extension of first-order logic
with an operator for forming the transitive closure of (relations induced by) arbitrary
formulas, allowing it to capture all first-order definable finitary inductive definitions. While
the existing, ‘explicit’ induction proof system is only sound for a Henkin-style semantics,
the ‘implicit’ infinitary and cyclic systems are sound for the standard semantics. When
including arithmetic, provability in the explicit and cyclic systems coincides. This mirrors a
similar relationship between explicit induction and cyclic proof systems for Martin-Löf-style
inductive definitions. Surprisingly, though, a construction that shows the inequivalence of
these systems, with respect to particular sets of Martin-Löf productions, does not appear
to work for TC logic, which has all inductive definitions available ‘at once’.

1 TC Logic and its Semantics

Transitive closure (TC) logic has been identified as a potential candidate for a minimal, ‘most
general’ system for inductive reasoning, which is also very suitable for automation [1, 7, 8]. TC
adds to first order logic a single operator for forming binary relations: specifically, the (reflexive
and) transitive closures of arbitrary formulas (more precisely, the transitive closure of the binary
relation induced by a formula with respect to two distinct variables).

Definition 1 (The language LRTC). Let σ be some first-order signature, whose terms are ranged
over by s and t and predicates by P , and let x, y, z, etc. range over a countable set of variables.
The language LRTC consists of the formulas defined by the grammar:

ϕ,ψ ::= ⊥ | s = t | P (t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ∀x.ϕ | ∃x.ϕ | (RTC x,y ϕ)(s, t)

Note that in the formula (RTC x,y ϕ)(s, t) free occurrences of x and y in ϕ are bound.

The semantics of LRTC are defined by extending those of standard first-order logic.

Definition 2 (Standard Semantics). Let M = 〈D, I〉 be a first-order structure (i.e. D is a
non-empty domain and I an interpretation function), and v an assignment in M (extended to
terms in the standard way). We define the satisfaction relation |= for LRTC in the usual way
for the standard first-order components, and for RTC formulas as:

M, v |= (RTC x,y ϕ)(s, t)⇔ v(s) = v(t) ∨
∃a0, . . . , an ∈ D.v(s) = a0 ∧ v(t) = an ∧ ∀i < n.M, v[x := ai, y := ai+1] |= ϕ

We also give a Henkin-style semantics for LRTC, by considering frames 〈D, I,D〉, which are
first-order structures 〈D, I〉 together with some subset D ⊆ 2D of the powerset of its domain
(called its set of admissible subsets).

Transitive Closure Logic: Infinitary and Cyclic Proof Systems Reuben N. S. Rowe and Liron Cohen

Definition 3 (Frame Semantics). We define the satisfaction relation |=H for LRTC in the
usual way for the standard first-order components, and for RTC formulas as follows, where
M = 〈D, I,D〉 is a frame:

M, v |=H (RTC x,y ϕ)(s, t)⇔ for every A ∈ D, if v(s) ∈ A and

(∀a, b ∈ D.a ∈ A ∧M, v[x := a, y := b] |=H ϕ→ b ∈ A), then v(t) ∈ A

Henkin structures are frames whose set of admissible subsets is closed under definability.

Definition 4 (Henkin structures). A Henkin structure is a frame M = 〈D, I,D〉 such that
{a ∈ D | M,v[x := a] |= ϕ} ∈ D for every ϕ, and v in M .

We refer to the semantics induced by quantifying over the (larger) class of Henkin structures
as the Henkin semantics.

The modest addition of the RTC operator affords enormous expressive power: namely it
provides a uniform way of capturing inductive principles. If an induction scheme is expressed
by a formula ϕ, then the elements of the inductive collection it defines are those ‘reachable’
from the base elements x via the iteration of the induction scheme. That is, those y’s for which
(x, y) is in the transitive closure of ϕ. Thus, bespoke induction principles do not need to be
added to the logic; instead, all induction schemes are available within a single, unified language.

TC logic is intermediate between first- and second-order logic. Furthermore, the RTC
operator is a particular instance of a (least) fixed point operator. Thus TC logic is also subsumed
by fixed-point logics such as the first-order µ-calculus [11]. However its appeal lies in the fact
that despite its minimality it retains enough expressivity to capture inductive reasoning, as well
as to subsume Peano arithmetic.

2 Proof Systems for TC

Since TC logic subsumes arithmetics, by Gödel’s result, any effective proof system for it must
necessarily be incomplete for the standard semantics. Notwithstanding, a natural, effective
proof system which is sound for TC logic was shown to be complete with respect to the Henkin-
semantics defined above [6]. This proof system, RTCG, is obtained by adding the following
rules to Gentzen’s sequent calculus LK for classical logic with equality and substitution.

Γ⇒ ∆, (RTC x,y ϕ)(s, s) (1)

Γ⇒ ∆, (RTC x,y ϕ)(s, r) Γ⇒ ∆, ϕ
{
r
x , t

y

}
Γ⇒ ∆, (RTC x,y ϕ)(s, t)

(2)

Γ, ψ(x), ϕ(x, y)⇒ ∆, ψ
{
y
x

}
Γ, ψ

{
s
x

}
, (RTC x,y ϕ)(s, t)⇒ ∆, ψ

{
t
x

} x 6∈ fv(Γ,∆) and y 6∈ fv(Γ,∆, ψ) (3)

Rule (3) is a generalized induction principle. It states that if the extension of ψ is closed
under the relation induced by ϕ, then it is also closed under the reflexive transitive closure
of that relation. In the case of arithmetic this rule captures the induction rule of Peano’s
Arithmetics PA (see [8]).

Following similar developments in other formalizations for fixed point logics and inductive
reasoning (see e.g. [3, 4, 5, 10, 13, 14, 16, 17]), we have developed an infinitary proof theory for
TC logic which, as far as we know, is the first system that is (cut-free) complete with respect

2

Transitive Closure Logic: Infinitary and Cyclic Proof Systems Reuben N. S. Rowe and Liron Cohen

to the standard semantics. More specifically, our system employs infinite-height, rather than
infinite-width proofs, whose soundness is underpinned by the principle of infinite descent : proofs
are permitted to be infinite, non-well-founded trees, but subject to the restriction that every
infinite path in the proof admits some infinite descent. The descent is witnessed by tracing
RTC formulas.

The infinitary proof system RTCωG for LRTC is defined like RTCG, but replacing Rule (3) by:

Γ, s = t⇒ ∆ Γ, (RTC x,y ϕ)(s, z), ϕ
{
z
x , t

y

}
⇒ ∆

Γ, (RTC x,y ϕ)(s, t)⇒ ∆
(4)

where z is fresh, i.e. z does not occur free in Γ, ∆, or (RTC x,y ϕ)(s, t).
An RTCωG pre-proof is a possibly infinite (i.e. non-well-founded) derivation tree formed

using the inference rules. A path in a pre-proof is a possibly infinite sequence of sequents
s0, s1, . . . (, sn) such that s0 is the root sequent of the proof, and si+1 is a premise of si for
each i < n. We track RTC formulas through a pre-proof, allowing to formalize inductive
arguments via infinite descent. If τ and τ ′ are RTC formulas occurring in the left-hand side of
the conclusion s and a premise s′, respectively, of an inference rule then (τ, τ ′) is said to be a
trace pair for (s, s′) if the rule is:
• the substitution rule, and τ = τ ′θ where θ is the associated substitution;
• the equality rule, and τ ′ = τ ′′

{
t
x , s

y

}
where s = t is the equality introduced by the rule

and τ ′′ is such that τ = τ ′′
{
s
x , t

y

}
;

• Rule (4) and either: τ is the principal formula of the rule instance and τ ′ is the immediate
ancestor of τ (in which case we say that the trace pair is progressing); or τ = τ ′.

• any other rule, and τ = τ ′.
A trace is a (possibly infinite) sequence of RTC formulas. We say that a trace τ1, τ2, . . . (, τn)
follows a path s1, s2, . . . (, sm) in a pre-proof P if, for some k ≥ 0, each consecutive pair of
formulas (τi, τi+1) is a trace pair for (si+k, si+k+1). If (τi, τi+1) is a progressing pair we say that
the trace progresses at i, and we say that the trace is infinitely progressing if it progresses at
infinitely many points. Proofs, then, are pre-proofs which satisfy a global trace condition.

Definition 5 (Infinite Proofs). An RTCωG proof is a pre-proof in which every infinite path is
followed by some infinitely progressing trace.

Clearly, we cannot reason effectively about such infinite proofs in general. In order to do
so we need to restrict our attention to those proof trees which are finitely representable. These
are the regular infinite proof trees, which contain only finitely many distinct subtrees.

Definition 6 (Cyclic Proofs). The cyclic proof system CRTCωG for LRTC is the subsystem of
RTCωG comprising of all and only the finite and regular infinite proofs (i.e. those proofs that
can be represented as finite, possibly cyclic, graphs).

Note that it is decidable whether a cyclic pre-proof satisfies the global trace condition, using
a construction involving an inclusion between Büchi automata (see, e.g., [3, 15]).

Infinitary proof theories such as this generally subsume systems of explicit induction in
expressive power, but also offer a number of advantages. Most notably, they can ameliorate the
primary challenge for inductive reasoning: finding an induction invariant. In explicit induction
systems, this must be provided a priori, and is sometimes stronger than the goal one aims to
prove. However, in implicit systems the inductive hypotheses may be encoded in the cycles of a
proof, so cyclic proof systems seem better for automation. The TC framework takes us another
step further: the inductive schemes themselves (i.e. inductive definitions) do not have to be
chosen a priori since they are constructed using the RTC operator.

3

Transitive Closure Logic: Infinitary and Cyclic Proof Systems Reuben N. S. Rowe and Liron Cohen

3 Results

The finitary and infinitary proof systems are sound and complete.

Theorem 7 (Soundness and Completeness). RTCG is sound for standard semantics, and sound
and complete for Henkin semantics. RTCωG is sound and (cut-free) complete for standard se-
mantics.

Rule (3) is derivable in CRTCωG, which leads to the following result.

Theorem 8. CRTCωG ⊇ RTCG, and is thus complete w.r.t. Henkin semantics.

We can syntactically identify a proper subset of cyclic proofs which is also complete w.r.t.
Henkin semantics. The criterion we use is based on the notion of overlapping cycles.

Theorem 9. Let NCRTCωG be the subsystem of RTCωG comprising of all and only the cyclic
proofs containing no overlapping cycles. Then, NCRTCωG ⊇ RTCG.

The restriction to non-overlapping proofs has a potential advantage for automation, since
one has only to search for cycles in one single branch.

The cyclic and explicit induction systems are equivalent under arithmetic. We define the
systems RTCG+A and CRTCωG+A for LRTC by adding to RTCG and CRTCωG, respectively,
the standard axioms of PA together with the RTC -characterization of the natural numbers,
i.e. (i) sx = 0 ⇒ (ii) sx = s y ⇒ x = y (iii) ⇒ x+ 0 = x (iv) ⇒ x+ s y = s (x+ y) and
(v) ⇒ (RTCw,u sw = u)(0, x).

Theorem 10. RTCG+A and CRTCωG+A are equivalent.

Our results largely mirror known results for finitary (LKID), infinitary (LKIDω), and cyclic
(CLKIDω) proof systems for first-order logic with Martin-Löf style inductive definitions. The
point at which they differ is in considering the equivalence of RTCG and CRTCωG in general.

The general equivalence conjecture between LKID and CLKIDω was refuted in [2], by pro-
viding a concrete example of a statement which is provable in the cyclic system but not in the
explicit one. The statement (called 2-Hydra) involves a predicate encoding a binary version
of the ‘hydra’ induction scheme for natural numbers given in [12], and expresses that every
pair of natural numbers is related by the predicate. However, a careful examination of this
counter-example reveals that it only refutes a strong form of the conjecture, according to which
both systems are based on the same set of productions. In fact, already in [2] it is shown
that if the explicit system is extended by another inductive predicate, namely one expressing
the ≤ relation, then the 2-Hydra counter-example becomes provable. Therefore, the less strict
formulation of the question, namely whether for any proof in CLKIDωφ there is a proof in LKIDφ′

for some φ′ ⊇ φ, has not yet been resolved. Notice that in TC the equivalence question is of
this weaker variety, since the RTC operator ‘generates’ all inductive definitions at once. That
is, there is no a priori restriction on the inductive predicates one is allowed to use. Indeed, the
2-Hydra counter-example from [2] can be expressed in LRTC and proved in CRTCωG. However,
this does not produce a counter-example for TC since it is also provable in RTCG, due to the fact
that s ≤ t is definable via the RTC formula (RTCw,u sw = u)(s, t). Despite our best efforts,
we have not yet managed to settle this question, which appears to be harder to resolve in the
TC setting. In particular, it is not at all clear whether the structure that underpins the LKID
counter-model for 2-Hydra admits a Henkin model for TC.

A full technical report of this extended abstract is available [9].

4

Transitive Closure Logic: Infinitary and Cyclic Proof Systems Reuben N. S. Rowe and Liron Cohen

References

[1] A. Avron. Transitive Closure and the Mechanization of Mathematics. In F. D. Kamareddine,
editor, Thirty Five Years of Automating Mathematics, volume 28 of Applied Logic Series, pages
149–171. Springer, Netherlands, 2003.

[2] Stefano Berardi and Makoto Tatsuta. Classical System of Martin-Löf’s Inductive Definitions Is
Not Equivalent to Cyclic Proof System. In Proceedings of FOSSACS, Uppsala, Sweden, April
22–29, 2017, pages 301–317, Berlin, Heidelberg, 2017. Springer.

[3] James Brotherston. Formalised Inductive Reasoning in the Logic of Bunched Implications. In
Proceedings of SAS, Kongens Lyngby, Denmark, August 22–24, 2007, pages 87–103, 2007.

[4] James Brotherston, Richard Bornat, and Cristiano Calcagno. Cyclic Proofs of Program Termi-
nation in Separation Logic. In Proceedings of POPL, San Francisco, California, USA, January
7–12, 2008, pages 101–112, 2008.

[5] James Brotherston and Alex Simpson. Sequent Calculi for Induction and Infinite Descent. Journal
of Logic and Computation, 21(6):1177–1216, 2010.

[6] Liron Cohen. Completeness for Ancestral Logic via a Computationally-Meaningful Semantics. In
Proceedings of TABLEAUX, Braśılia, Brazil, September 25–28, 2017, pages 247–260, 2017.

[7] Liron Cohen and Arnon Avron. Ancestral Logic: A Proof Theoretical Study. In U. Kohlenbach,
editor, Logic, Language, Information, and Computation, volume 8652 of Lecture Notes in Computer
Science, pages 137–151. Springer, 2014.

[8] Liron Cohen and Arnon Avron. The Middle Ground–Ancestral Logic. Synthese, pages 1–23, 2015.

[9] Liron Cohen and Reuben N. S. Rowe. Infinitary and Cyclic Proof Systems for Transitive Closure
Logic. CoRR, abs/1802.00756, 2018.

[10] Anupam Das and Damien Pous. A Cut-Free Cyclic Proof System for Kleene Algebra. In Proceed-
ings of TABLEAUX, Braśılia, Brazil, September 25–28, 2017, pages 261–277, 2017.

[11] Ryo Kashima and Keishi Okamoto. General Models and Completeness of First-order Modal µ-
calculus. Journal of Logic and Computation, 18(4):497–507, 2008.

[12] Laurie Kirby and Jeff Paris. Accessible Independence Results for Peano Arithmetic. Bulletin of
the London Mathematical Society, 14(4):285–293, 1982.

[13] Reuben N. S. Rowe and James Brotherston. Automatic Cyclic Termination Proofs for Recursive
Procedures in Separation Logic. In Proceedings of CPP, Paris, France, January 16–17, 2017,
pages 53–65, 2017.

[14] Luigi Santocanale. A Calculus of Circular Proofs and Its Categorical Semantics. In Proceedings of
FOSSACS, Grenoble, France, April 8–12, 2002, pages 357–371. Springer Berlin Heidelberg, 2002.

[15] Alex Simpson. Cyclic Arithmetic Is Equivalent to Peano Arithmetic. In Proceedings of FOSSACS,
Uppsala, Sweden, April 22–29, 2017, pages 283–300, 2017.

[16] Christoph Sprenger and Mads Dam. On the Structure of Inductive Reasoning: Circular and Tree-
Shaped Proofs in the µ-Calculus. In Proceedings of FOSSACS, Warsaw, Poland, April 7–11, 2003,
pages 425–440. Springer Berlin Heidelberg, 2003.

[17] Gadi Tellez and James Brotherston. Automatically Verifying Temporal Properties of Pointer
Programs with Cyclic Proof. In Proceedings of CADE, Gothenburg, Sweden, August 6–11, 2017,
pages 491–508, 2017.

5

	TC Logic and its Semantics
	Proof Systems for TC
	Results

