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Abstract

We propose LMSO, a proof system inspired from Linear Logic, as a proof-theoretical framework to

extract finite-state stream transducers from linear-constructive proofs of omega-regular specifications.

We advocate LMSO as a stepping stone toward semi-automatic approaches to Church’s synthesis com-

bining computer assisted proofs with automatic decisions procedures. LMSO is correct in the sense

that it comes with an automata-based realizability model in which proofs are interpreted as finite-state

stream transducers. It is moreover complete, in the sense that every solvable instance of Church’s

synthesis problem leads to a linear-constructive proof of the formula specifying the synthesis problem.

1 Introduction

Church’s synthesis [5] consists of the automatic extraction of stream transducers (or Mealy
machines) from input-output specifications. Ideally, these specifications would be written in
Monadic Second-Order Logic (MSO) on ω-words [18, 19]. MSO on ω-words is a decidable logic
thanks to Büchi’s Theorem [3], whose proof is originally based on an effective translation of
MSO formulae to non-deterministic Büchi automata (NBAs). This logic subsumes non-trivial
logics used in verification such as LTL (see e.g. [17, 1]). Church’s synthesis for (subsystems of)
LTL has also been substantially studied (see e.g. [8, 6, 2]).

Traditional theoretical solutions to Church’s synthesis start from an ω-word automaton
recognizing the specification (typically an NBA), and apply McNaughton’s Theorem [9] to obtain
an equivalent deterministic (say parity) automaton on ω-words. There are then essentially two
methods (see e.g. [18, 19]). The first one turns the deterministic automaton into a game graph,
in which the Opponent O (∀bélard) plays input characters to which the Proponent P (∃löıse)
replies with output characters. Solutions to Church’s synthesis are then given by the Büchi-
Landweber Theorem [4], which says that in such games, either P or O has a finite-state winning
strategy. The second one goes via infinite trees [13], noting that a causal function from say Σ
to Γ can be represented by an infinite Γ-labeled Σ-ary tree.

In this work, extending [11], we advocate an approach to Church’s synthesis in the frame-
work of program extraction from proofs (in the sense of e.g. [16]). We propose a constructive
deduction system for (an expressively equivalent variant of) MSO, based on a complete ax-
iomatization of MSO on ω-words as a subsystem of second-order Peano arithmetic [15] (see
also [14]). The formal proofs in this deduction system are interpreted in an automata-based
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realizability semantics, along the lines of the Curry-Howard proofs-as-programs correspondence.
Our system is correct, in the sense that from a proof of a ∀∃-specification one can extract a
Mealy machine implementing the specification. It is moreover complete, in the sense that it
proves all ∀∃-specifications which are realizable by Mealy machines.

The crux of our approach is that on the one hand the correctness proof of our realizability
interpretation relies on McNaughton’s Theorem, while on the other hand the extraction of
realizers from formal proofs does not invoke it.

In the context of MSO, using a deduction system may avoid the systematic translation of
formulae to automata, and may allow for human intervention and compositional reasoning. In
a typical usage scenario, the user interactively performs some proofs steps and delegates the
generated subgoals to automatized synthesis procedures. The partial proof tree built by the
user is then translated to a combinator able to compose the transducers synthesized by the
algorithms.

The deduction system SMSO proposed in [11] was based on intuitionistic logic. While SMSO
is correct and complete for Church’s synthesis, it suffers from a very limited set of primitive
connectives (∧, ¬, ∃) so that formal proofs may be cumbersome without resorting to a negative
translation from the complete axiomatization of MSO in classical logic. We propose a deduction
system LMSO inspired from (intuitionistic) Linear Logic [7] (see also [10]). LMSO has a rich set
of connectives (with primitive ⊗,`,(, !, ?,∃,∀), with a straightforward interpretation as usual
automata constructions.1 The system LMSO is moreover based on an extension MSO+ of MSO
with primitive function symbols for Mealy machines, allowing for a more efficient extraction of
realizers from proofs.

The work discussed in this abstract is covered by [12]. The presentation at the workshop
will emphazise proof-theoretical aspects relating deduction in the logical system LMSO with
the realizability model, and in particular properties of LMSO provided by the model.
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