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Various logical settings have been introduced to reason about inductive and coinductive
statements, both at the level of the logical languages modelling (co)induction (Martin Löf’s in-
ductive predicates vs. fixed-point logics, that is µ-calculi) and at the level of the proof-theoretical
framework considered (finite proofs with (co)induction à la Park vs. infinite proofs with fixed-
point/inductive predicate unfoldings) [8, 10, 11, 5, 2, 3]. Moreover, such proof systems have
been considered over classical logic [8, 11], intuitionistic logic [12], linear-time or branching-time
temporal logic [19, 18, 24, 25, 13, 15, 16] or linear logic [21, 17, 5, 4, 15].

In all those proof systems, the treatment of inductive and coinductive reasoning brings some
highly complex proof figures. For instance, in proof systems using (co)induction rules à la Park,
the rules allowing to derive a coinductive property (or dually to use an inductive hypothesis)
have a complex inference of the form of fig. 1 (when presented in the setting of fixed-point logic –
here we follow the one-sided sequent tradition of MALL). This inference breaks the subformula
property, i. e. it is hiding a cut: at each coinduction rule, one has to guess an invariant (in
the same way as one has to guess an appropriate induction hypothesis in usual mathematical
proofs) which is problematic for automation of proof search.

Figure 1: Coinduction rule
à la Park
` Γ, S ` S⊥, F [S/X]

(νinv)
` Γ, νX.F

Infinite (non-wellfounded) proofs have been proposed as an
alternative in recent years [8, 10, 11]. By replacing the coinduc-
tion rule with simple fixed-point unfoldings and allowing for non-
wellfounded branches, those proof systems address the problem
of the subformula property for the cut-free systems. The cut-
elimination dynamics for inductive-coinductive rules is also much
simpler. Among those non-wellfounded proofs, circular proofs, that have infinite but regular
derivations trees, retain the simplicity of the inferences of non-wellfounded proof systems while
having simple finite representations, making it possible to have an algorithmic treatment of
those proof objects.

However, in those proof systems when considering all possible infinite, non-wellfounded
derivations (a. k. a. pre-proofs), it is straightforward to derive any sequent Γ (see example be-
low). Such pre-proofs are therefore unsound and one needs to impose a validity criterion to
distinguish, among all pre-proofs, those which are logically valid proofs from the unsound ones.
This condition will actually reflect the inductive and coinductive nature of our two fixed-point
connectives: a standard approach is to consider a pre-proof to be valid if every infinite branch
is supported by a progressing thread. However, doing so, the logical correctness of circular
proofs becomes a non-local property, much in the spirit of proof nets correctness criteria, and
one has to check the validity at each cycle in the proof (obtained by placing what we will call
a back-edge in the following).

Despite the need for a validity condition, circular proofs have recently received increasing
interest with the simultaneous development of their applications and meta-theory: infinitary
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proof theory is now well-established in several proof-theoretical frameworks such as Martin
Löf’s inductive predicates, linear logic with fixed-points, etc. ...

(µ)
` µX.X

...
(ν)

` νX.X,Γ
(Cut)

` Γ

What we will present is a contribution to two directions in
the field of circular proofs:

1. the relationship between finite and circular proofs (at the
level of provability and at the level of proofs themselves)
and

2. the certification of circular proofs, that is the production
of fast and/or small pieces of evidence to support validity
of a circular pre-proof.

Comparing the finite and infinite proofs is very natural. In informal words, it amounts to
wondering what is the relative strength of inductive reasoning versus infinite descent: while
infinite descent is a very old form of mathematical reasoning which appeared already in Eu-
clid’s Elements and was systematically investigated by Fermat, making precise its relationship
with mathematical induction is still an open question for many proof formalisms, known as
Brotherston–Simpson’s conjecture. While it is fairly straightforward to check that infinite de-
scent (circular proofs) prove at least as many statements as inductive reasoning, the converse
is complex and remains largely open. Last year, Simpson [22] on the one hand and Berardi
and Tatsuta [6, 7] on the other hand made progress on this question but only in the framework
of Martin Löf’s inductive definitions, not in the setting of µ-calculi circular proofs in which
invariant extraction is highly complex and known only for some fragments.

We motivate our study by considering a typical example of a circular proof with a com-
plex validating thread structure: while this infinite proof has a regular derivation tree, its
branches and threads have a complex geometry. The circular (pre-)proof of fig. 2 derives se-
quent ` F,G,H, I, J where F = µX.(X OG) N(X OH), G = νX.X ⊕ ⊥, H = νX.⊥ ⊕ X,
I = µZ.((Z O J)⊕⊥), J = µX.(K OX)⊕⊥ and K = νY.µZ.((Z OµX.(Y OX)⊕⊥)⊕⊥).

Figure 2: Proof π∞:

`F,G,H, I, J
(ν)(⊕2)

` F,G,H, I, J
(µ)(⊕1)(O)

` F,G,H, I
(µ)(⊕2)(⊥)

` F,G,H, I, J
(O)

` F OG,H, I, J
(ν)(⊕2),(⊥)

` F OG,G,H, I, J

` F,G,H, I, J
(ν),(⊕1)

` F,G,H, I, J
(ν)

` F,G,H,K, J
(µ),(⊕1),(O)

` F,G,H, J
(µ),(⊕2),(⊥)

` F,G,H, I, J
(X)

` F,H,G, I, J
(O)

` F OH,G, I, J
(ν)(⊕1),(⊥)

` F OH,G,H, I, J
(N)

` (F OG) N(F OH), G,H, I, J
(µ)

` F ,G,H, I, J

This example of a circular derivation
happens to be valid (it is a µMALLω

proof) but the description of its validat-
ing threads is quite complex. Indeed,
each infinite branch β is validated by ex-
actly one thread (see next section for de-
tailed definitions) going through either
G, H or K depending on the shape of
the branch at the limit (infinite branches
of this derivations can be described as
ω-words on A = {l, r} depending on
whether the left or right back-edge is
taken):
(i) if β ultimately follows always the left
cycle (A? · lω), the unfolding of H vali-
dates β;
(ii) if β ultimately follows always the right cycle (A? · rω), the unfolding of G validates β;
(iii) if β endlessly switches between left and right cycles (A? · (r+ · l+)ω), K validates β.
The description of the thread validating this proof is thus complex and this is reflected in the
difficulty to provide a local way to validate this proof and in the lack of general method to be
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applied to finitize this into a µMALL proof: to our knowledge, the usual finitization methods
(working only for fragments of µMALL circular proofs) do not apply here.
Contributions of this work. After providing the necessary background of infinitary and
circular proof theory of multiplicative additive linear logic with least and greatest fixed points
(respectively µMALL∞ and µMALLω), we will introduce an approach to validity of circular
proofs based on labellings of greatest fixed points, whose validity is expressed by local conditions,
in contrast to the global nature of thread conditions. We will present a family of labelling
systems for finite representation of circular proofs and investigate how such labellings ensure
validity of a labellable proof, turning a global and complex problem into a local and simpler one.
Indeed, validity-checking is far from trivial in circular fixed-points proof-theory, the best known
bound for this problem being PSPACE. Our labellings rely essentially on the three following
rules:

` Γ[νa−X.A]
(Rec)

` Γ[νX.A]

` A[νa+X.A],∆
(ν)

` νa−X.A,∆
(

y

)
` Γ[νa+X.A]

where a back-edge in the representation must go from the conclusion of a (

y

) to the premisse of
a (Rec).

Next we turn to alternative characterizations of those circular proofs which can be labelled
so as to provide elements concerning decidability and algorithmic construction of a labelling for
a given circular representation.

Then we provide evidence on the usability of such labellings as a helpful guide in the gener-
ation of (co)inductive invariants which are necessary to translate a circular proof into a finitary
proof system with (co)induction rules à la Park. We provide a full finitization method in a
fairly restricted labelling system which contains at least all the translations of µMALL proofs
and we show how these ideas allow to translate the proof π∞ into a finitary proof with roughly
the same structure.
Related and future works. We discuss related works as well as perspectives for pursuing
this work along the above mentioned directions:

Labelling and local certification is the basis of our approach. The idea of labelling µ-
formulas to gather information on fixed-points unfoldings is naturally not new, already
to be found in fixed-points approximations methods (see [14] for instance). The closest
work in this direction is Stirling’s annotated proofs [23] and the application Afshari and
Leigh [1] made of such proofs in obtaining completeness for the modal µ-calculus. Our
labelling system works quite differently since only fixed-points quantifiers are labelled
while, in Stirling’s annotated proofs, every formula is labelled and labels are transmitted
to immediate subformulas with a label extension on greatest fixed-points.
Even though our labelling system has a very different label management from that of
Stirling, one shall investigate further their relationships (in particular the role of the
annotation restriction rule of Stirling’s system, Definition 4 of [23]).
A less immediately connected topic is the connection between size change termination [20]
and thread validity in µ-calculi: connections between those fields are not yet well under-
stood despite early investigations from Dax et al.[14] for instance. More than a connection,
this looks like an interplay: size-change termination is originally shown decidable by using
Büchi automata and size-change graphs can be used to show validity of circular proofs [14].
There seems to be connections with our labelling system too.
In addition to investigating more closely those connections, we have several directions
for improving our labelled proof system. Our first task shall be to lift the presented
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results to the extended labelling system. Indeed, for the more restricted fragment and
given a circular proof presented as a graph with back-edges, we provided a method to
effectively check that one can assign labels. It is therefore natural to expect extending
these results to the relaxed framework. Another point we plan to investigate is whether
every circular µMALL proof can be labelled. Even though this can look paradoxical given
the complexity of checking validity of circular proofs, one should keep in mind that it
might well be the case that, in order to label a circular proof presented as a tree with
back-edges, one has to unfold some of the back-edges, or possibly pick a different finite
representation of the proof which may result in a space blow up. Related to this question
is the connection of our labelling methods with size-change termination methods. Indeed,
in designing the extended labelling, one got closer to the kind of constructions one finds
in SCT-based approaches: this shall be investigated further since it may also be a key for
our finitization objective. Note that the previous two directions would lead to a solution
to the Brotherston-Simpson conjecture.

Finitization of circular proofs has been recently a very active topics with many research
effort on solving the so-called Brotherston-Simpson’s conjecture. The following recent con-
tributions were made in the setting of Martin-Löf’s inductive definitions: firstly, Berardi
and Tatsuta proved [6] that, in general, the equivalence is false by providing a counter-
example inspired by the Hydra paradox. Secondly, Simpson [22] on the one hand and
Berardi and Tatsuta [7] on the other hand provided a positive answer in the restricted
frameworks when the proof system contains arithmetics. While Simpson’s used tools
from reverse mathematics and internalized circular proofs in a fragment of second-order
arithmetics, ACA0, with comprehension axiom on arithmetical statements, Tatsuta and
Berardi proved an equivalent result by a direct proof translation relying on an arithmetical
version of Ramsey theorem and Podelsky-Rybalchenko theorem.

A very natural question for future work is of course to extend the still ad hoc finitization
method presented in the last section to the whole fragment of relaxed labelled proofs.

Circular proof search triggered interest compared to proof system with explicit inductive
invariants (lacking subformula property). This has actually been turned to practice by
Brotherston and collaborators [9]. We wish to investigate the potential use of labellings
in circular proof-search. Indeed, there are several different labellings for a given finite
derivation with back-edges where the labels are weakened. When labelling a circular
representation, there are different strategies in placing the labels, which have different
properties with respect to the ability to form back-edges or to validate the proof that one
may exploit in proof-search.
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