
Coinductive Uniform Proofs: An Extended Abstract
Yue Li and Ekaterina Komendantskaya∗

Heriot-Watt University, Edinburgh, Scotland, UK
{yl55,ek19}@hw.ac.uk

1 Introduction
Automating coinductive reasoning in Horn clause logic is a challenge. The operational semantics of
Horn clause logic is given by the SLD-resolution [3]. Given a possibly non-terminating SLD derivation,
the problem is to prove automatically that the derivation does not terminate. Consider the following
example of a Horn clause that defines an infinite stream of zeros:

∀x zeros x⊃ zeros (scons 0 x)

Given a goal zeros x, the initial steps of an infinite SLD-derivation are: zeros x x:=scons 0 x′→ zeros x′→ ···
In order to coinductively prove that the above derivation does not terminate, we must find an invariant

of this potentially infinite derivation. The state of the art is CoLP [5, 2], that unifies (without occurs
check) the two subgoals zeros (scons 0 x′) and zeros x′, computing the unifier x′ :=(scons 0 x′). The term
that solves this equation is a fixed-point of the function (λy .scons 0 y), denoted as (fix λy .scons 0 y).
Then the coinductive invariant found by CoLP is (zeros (fix λy .scons 0 y)). It is well known that this
method can only find invariants in regular derivations. When subgoals do not unify, the method fails to
produce any proof.

To circumvent this limitation, Fu et al [1] proposed an additional heuristic. For example, given the
Horn clause

∀x p (s x)⊃ p x

it gives rise to an infinite SLD-derivation: p a→ p (s a)→ ···
Fu et al’s algorithm can suggest the coinductive invariant ∀x (p x), which is then proven in a specially
suggested calculus. The limitation of this approach is that it works for Horn clauses and derivations that
admit resolution steps by term-matching only, i.e. steps not involving substitutions to the initial goal or
any of the subgoals. In particular, this method does not work for clauses defining streams, like in our
first example.

Of course Horn clause logic is Turing complete, and an automated discovery of coinductive invari-
ants is an undecidable problem in theory and a hard task in practice. However, we claim that a more
principled, proof theoretic [4], approach to the problem could help to advance the current state of the
art. We propose a meta-theory for categorizing non-terminating SLD-derivations in terms of the abstract
language in which their suitable coinductive invariants are formulated. This new meta-theory can be re-
garded as a unifying proof-theoretic formalization of the two existing but distinct coinductive invariant
discovery algorithms. Moreover, it is a pre-requisite for formulating more general algorithms.

The next example, defining an infinite irregular stream [0,(s 0),(s (s 0)), . . .], cannot be handled by
either of the existing approaches.

∀xy from (s x) y⊃ from x (scons x y)

The infinite derivation for it is given by from 0 y
y:=scons 0 y′→ from (s 0) y′→ ·· ·

∗The work is supported by EPSRC grant EP/N014758/1.

Coinductive Uniform Proofs: An Extended Abstract Li and Komendantskaya

All three given examples can be given a uniform and proof-theoretic rendering using the proposed
meta-theory called coinductive uniform proof. It is an extension of the uniform proof theory by Miller et
al [4] with two more elements: fixed-point terms built using the fix primitive, as in (fix λy .scons 0 y), to
help denote infinite objects; and a coinductive inference rule. The abstract languages by Miller et al are:
first-order Horn clause (fohc), higher-order Horn clause (hohc), first-order hereditary Harrop formula
(fohh) and higher-order hereditary Harrop formula (hohh). We obtain their coinductive extensions and
call the respective languages co-fohc, co-hohc, co-fohh and co-hohh. Note that the sense of “higher-
order” of our languages does not concern quantification over predicates, but only concerns quantification
over functions, and such quantification only occur in fixed-point terms.

Our proposed theory is sound w.r.t the greatest fixed-point (gfp) models [3], which are the greatest
sets of all ground atomic formulae that satisfy the given Horn clauses. For example, the gfp model of
the Horn clause that defines zeros contains a single atom (zeros (fix λy .scons 0 y)), the gfp model of the
Horn clause that defines p contains all finite atoms of the form (p (sn a)) for n ≥ 0, where sn denotes
composition of s with itself for n times, i.e. {p a, p(s a), p (s(s a)), . . .}, together with the infinite atom
(p (fix λy .s y)).

2 Meta-theory: Coinductive Uniform Proofs
Our term system extends simply typed lambda terms (typically M,N) by allowing constructs of the form
fix λx . M, which shall satisfy standard guarding conditions to denote infinite objects. We use =fixβ for
equivalence of two infinite objects (formal details omitted). For example,

fix λy .s y =fixβ s(fix λy .s y) =fixβ s(s(fix λy .s y)) =fixβ · · ·

The infinite stream [0, (s 0), s(s 0), s(s(s 0)), . . .] is defined by the higher-order term

((fix λ f n . scons n (f (s n))) 0)

for which we write fr str 0 as a short hand, and which satisfies the following relations

fr str 0 =fixβ scons 0 (fr str(s 0)) =fixβ scons 0
(
scons(s 0)

(
fr str

(
s2 0

)))
=fixβ · · ·

The rest of syntax specifications follow the uniform proof theory. We use simple types involving the
formula type o, and terms are built using constants from a signature Σ and variables from the countably
infinite set Var. An atomic formula B : o has the form (h N1 . . . Nn) where h is either a constant different
from ∧,∨,∀τ ,∃τ and ⊃, or a variable; B is rigid (respectively, flexible) if h is a constant (respectively,
variable). A term is closed if it does not have free variables. We use ≡ for syntactical identity modulo
α−equivalence, =β for β−equivalence. We define U Σ

1 as the set of all terms over Σ that do not contain
∀τ and ⊃, and U Σ

2 as the set of all terms over Σ that do not contain ⊃. Table 1 defines, for each of the
four languages, the set D of program clauses and the set G of goals. Given a signature Σ, a program P
is a finite set of closed D-formulae over Σ.

We have two kinds of sequents. One kind of sequents are in the form Σ;P −→ G, encoding the
proposition that the closed goal formula G is provable in intuitionistic logic from the program P on
Σ. We use Miller et al’s uniform proof rules (with slight extension to support the =fixβ relation, see
Figure 1) to prove sequents of this kind. We are interested in proving the other kind of sequents, which
are in the form Σ;P # G, encoding that the closed goal formula G is coinductively provable from the
program P on Σ.

Proving sequents on # is closely related to proving sequents on −→, and for this point we give
both formal and informal explanations. Informally, consider the scenario where we begin with proving

2

Coinductive Uniform Proofs: An Extended Abstract Li and Komendantskaya

Σ;P # G, which amounts to prove Σ;P,G−→G next, but the way we can apply inference rules to prove
Σ;P,G −→ G is more restricted, compared to a related but different scenario in which we begin with
proving Σ;P,G −→ G. The motivation for such restriction is to ensure consistency, i.e. to avoid erro-
neously making arbitrary formulae coinductively provable. Formally, we use the CO-FIX rule (Figure 2)
for sequents on #, and we introduce the notation 〈〉 in the CO-FIX rule, so that a formula marked with
〈〉 is guarded1 and a sequent with guarded formulae shall be reduced using rules in Figure 3, which
encodes the restriction we mentioned in the earlier informal account.

A (coinductive uniform) proof is a finite tree such that the root is labeled with Σ;P # M, and leaves
are labeled with initial sequents which are sequents that can occur as a lower sequent in the rules INITIAL
or INITIAL〈〉. A proof is constructed in co-fohc if all formulae in the proof satisfy the language syntax
of co-fohc. Proofs constructed in co-fohh, co-hohc, or co-hohh are defined similarly.

Program Clauses Goals

co-fohc D ::= A1 | G⊃ D | D∧D | ∀Var D G ::=> | A1 | G∧G | G∨G | ∃Var G

co-hohc D ::= Ar | G⊃ D | D∧D | ∀Var D G ::=> | A | G∧G | G∨G | ∃Var G

co-fohh D ::= A1 | G⊃ D | D∧D | ∀Var D G ::=> | A1 | G∧G | G∨G | ∃Var G | D⊃ G | ∀Var G

co-hohh D ::= Ar | G⊃ D | D∧D | ∀Var D G ::=> | A | G∧G | G∨G | ∃Var G | D⊃ G | ∀Var G

Table 1: D- and G-formulae. A and Ar denote atoms and rigid atoms, respectively. A1 denote first-order atoms. In the setting
of co-hohc, A and Ar are from U Σ

1 ; in the setting of co-hohh, A and Ar are from U Σ
2 .

Σ;P,D−→ G
Σ;P−→ D⊃ G

⊃R
c : τ,Σ;P−→ G [x := c]

Σ;P−→ ∀τ x G
∀R

Σ;P−→ G [x := N]

Σ;P−→ ∃τ x G
∃R

Σ;P−→ G1

Σ;P−→ G1 ∨G2
∨R

Σ;P−→ G2

Σ;P−→ G1 ∨G2
∨R

Σ;P−→ G1 Σ;P−→ G2

Σ;P−→ G1 ∧G2
∧R

Σ;P D−→ A Σ;P−→ G

Σ;P G⊃D−→ A
⊃L

Σ;P
D1−→ A

Σ;P
D1∧D2−→ A

∧L
Σ;P

D2−→ A

Σ;P
D1∧D2−→ A

∧L
Σ;P

D[x:=N]−→ A

Σ;P
∀τ x D−→ A

∀L

Σ;P D−→ A
Σ;P−→ A

DECIDE
Σ;P A′−→ A

INITIAL

Σ;P−→> >R

Figure 1: Uniform proof rules. Rule restrictions: in ∃R and ∀L, N : τ is a closed term on Σ. Moreover, if used in co-fohc or
co-fohh, then N is first order; if used in co-hohc, then N ∈U Σ

1 ; if used in co-hohh, then N ∈U Σ
2 . In ∀R, c : τ /∈ Σ (c is also known

as an eigenvariable). In DECIDE, D ∈ P. In the rule INITIAL, A =fixβ A′.

Σ;P,〈M〉 −→ 〈M〉
Σ;P # M

CO-FIX co-fohc M := A1 |M∧M co-fohh M := A1 |M∧M |M ⊃M | ∀Var M

co-hohc M := Ar |M∧M co-hohh M := Ar |M∧M |M ⊃M | ∀Var M

Figure 2: The coinductive fixed-point rule and syntax for core formulae. Note: In the upper sequent of CO-FIX rule, the
left occurrence of M is called a coinductive hypothesis, and the right occurrence of M is called a coinductive goal. The formula
M occurs on both sides of the upper sequent in the CO-FIX rule, therefore M must satisfy the syntax of both program clauses and
goals. Formulae with such syntactic character as M are called core formulae [4].

1There are two distinct notions of guard in coinductive uniform proof: one is for the syntax of fixed-point terms, to ensure
that they model infinite objects; the other is for formulae in certain sequents, to ensure consistency.

3

Coinductive Uniform Proofs: An Extended Abstract Li and Komendantskaya

Σ;P,〈M1〉 −→ 〈M2〉
Σ;P−→ 〈M1 ⊃M2〉

⊃R〈〉
c : τ,Σ;P−→ 〈M [x := c]〉

Σ;P−→ 〈∀τ x M〉
∀R〈〉

Σ;P−→ 〈M1〉 Σ;P−→ 〈M2〉
Σ;P−→ 〈M1 ∧M2〉

∧R〈〉

Σ;P∗ D−→ A Σ;P∗ −→ G

Σ;P G⊃D−→ 〈A〉
⊃L〈〉

Σ;P
D1−→ 〈A〉

Σ;P
D1∧D2−→ 〈A〉

∧L〈〉
Σ;P

D2−→ 〈A〉

Σ;P
D1∧D2−→ 〈A〉

∧L〈〉
Σ;P

D[x:=N]−→ 〈A〉

Σ;P ∀x D−→ 〈A〉
∀L〈〉

Σ;P D∗−→ 〈A〉
Σ;P−→ 〈A〉

DECIDE〈〉
Σ;P A′−→ 〈A〉

INITIAL〈〉

Figure 3: Rules for guarded coinductive goals. Rule restrictions: In DECIDE〈〉, D∗ must be a formula without 〈〉 mark. In
⊃L〈〉, P∗ results from erasing all 〈〉 marks in P. The restrictions for INITIAL〈〉, ∀L〈〉 and ∀R〈〉 are the same as for INITIAL, ∀L
and ∀R respectively. Note: Formulae added to the left-hand side by CO-FIX and⊃R〈〉 are guarded, so that they are not selected by
the DECIDE〈〉 rule for back-chaining with guarded atomic goals. The ⊃L〈〉 rule frees all formulae from being guarded for each
upper sequent, then rules in Figure 1 become applicable in further sequent reductions.

3 Discussion
Using coinductive uniform proofs, we can categorize infinite SLD-derivations, and we can uniformly
and proof-theoretically formalize the coinductive reasoning performed by the two algorithms mentioned
earlier. For instance, in the CoLP example, we need co-fohc to express and prove the coinductive invari-
ant (zeros (fix λy .scons 0 y)), and the root sequent for the uniform proof is Σ1;P1 # (zeros (fix λy .scons 0 y));
in the example for Fu et al’s algorithm, we need co-fohh to express and prove the coinductive invariant
∀x (p x), and the root sequent is Σ2;P2 # ∀x (p x); in the third example, we need co-hohh to express and
prove the coinductive invariant ∀x from x (fr str x), with the root sequent Σ3;P3 # ∀x from x (fr str x).
The full sequent proof for the last example is given in Appendix A.

We omit technical details of the proof of soundness of coinductive uniform proofs w.r.t the gfp mod-
els. Intuitively, the proof proceeds by defining a scheme by which we can reconstruct a corresponding
non-terminating derivation, and then showing that the proofs are sound w.r.t the gfp models. However,
in contrast with CoLP, the reconstruction is generally more complicated and involves (i) a construction
of a function that generates countably many different substitution instances for the derivation scheme,
and (ii) showing that these instances can be composed in a certain way in order to restore the full infinite
derivation. The proof is constructive, and in addition uses a coinductive proof principle when showing
correspondence of the derivation schemes to the gfp model construction.

The fact that the CO-FIX rule can only be applied once and as the first step in a proof, is a simpli-
fication that helps to highlight the basic coinductive argument performed by the coinductive uniform
proofs. The absence of nested coinduction in the meta-theory can be mitigated by allowing using the
already proven coinductive invariants as lemmas to prove further coinductive conclusions.

References
[1] P. Fu, E. Komendantskaya, T. Schrijvers, and A. Pond. Proof relevant corecursive resolution. In FLOPS’16,

pages 126–143. Springer, 2016.
[2] E. Komendantskaya and Y. Li. Productive corecursion in logic programming. J. TPLP (ICLP’17 post-proc.),

17(5-6):906–923, 2017.
[3] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.
[4] D. Miller and G. Nadathur. Programming with Higher-order logic. Cambridge University Press, 2012.
[5] L. Simon, A. Mallya, A. Bansal, and G. Gupta. Coinductive logic programming. In ICLP, pages 330–345,

2006.

4

Coinductive Uniform Proofs: An Extended Abstract Li and Komendantskaya

A Detailed proof for the example
We give the co-hohh proof2 for the sequent Σ3;P3 # ∀x(from x (fr str x)). Note that f r str is defined in
Section 2, Z is an arbitrary eigenvariable, CH abbreviates the coinductive hypothesis ∀x(from x (fr str x)),
and the step marked by X indicates involvement of the relation

from Z (scons Z (f r str (s Z))) =fixβ from Z (fr str Z)

The two ∀L〈〉 steps involve the substitutions x := Z,y := (f r str (s Z)). The ∀L step involves the
substitution x := s Z.

Z,Σ;P,CH
from Z (scons Z (f r str (s Z)))−→ from Z (fr str Z)

INITIALX

Z,Σ;P,CH
from (s Z) (fr str (s Z))−→ from (s Z) (fr str (s Z))

INITIAL

Z,Σ;P,CH CH−→ from (s Z) (fr str (s Z))
∀L

Z,Σ;P,CH −→ from (s Z) (fr str (s Z))
DECIDE

Z,Σ;P,〈CH〉 from (s Z)(fr str (s Z)) ⊃ from Z (scons Z (fr str (s Z)))−→ 〈from Z (fr str Z)〉
⊃ L〈〉

Z,Σ;P,〈CH〉 ∀xy from (s x) y⊃from x (scons x y)−→ 〈from Z (fr str Z)〉
∀L〈〉(2 times)

Z,Σ;P,〈CH〉 −→ 〈from Z (fr str Z)〉
DECIDE〈〉

Σ;P,〈CH〉 −→ 〈∀x(from x (fr str x))〉
∀R〈〉

Σ;P # ∀x(from x (fr str x))
CO-FIX

2We omit the subscript 3 for Σ,P in the proof.

5

	Introduction
	Meta-theory: Coinductive Uniform Proofs
	Discussion
	Detailed proof for the example

