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Abstract

In recent years schematic representations of proofs by induction have been studied for
their interesting proof theoretic properties, i.e. allowing extensions of Herbrand’s theorem
to certain types of inductive proofs. Most of the work concerning these proof theoretic
properties presented schematic proofs as sets of proofs connected by links together with a
global soundness condition. Recently, the SiLK-calculus was introduced which provides
inferences for expanding the sets of proofs within a schematic proof as well as introducing
links without violating the soundness condition. In this work we discuss a simplification of
the SiLK-calculus which isolates the essential mechanisms and provides a path towards
the automated construction of schematic proofs.

1 Introduction

Proof schemata can be thought of as a recursive representation of an infinite sequence of finite
proofs. This is in contrast to the formalism of Brotherston and Simpson [1] which concerns
infinitely deep proof constructions. Proof schemata comprise of a set of proof components
which are G3c-proofs [11] allowing additional initial sequents referred to as links referring to
other proof components in the set associated with the given proof schemata. There are rules
concerning the linking structure providing a sufficient condition for soundness, though not a
necessary condition. The development of a calculus with an implicit soundness condition which
is both sufficient and necessary was addressed in [4]. In this work the so called SiLK-calculus
was developed which allows one to expand the set of proof components and link proofs soundly.
The core idea of the SiLK-calculus is to prove a pair of sequents where the first sequent in the
pair (the base case) defines a goal for the second sequent in the pair (the step case). The goal is
defined by the œ rule or “cycling” rule. If one is able to use the rules of the SiLK-calculus to
match the step case sequent with the goal than one is able to close the pair and has constructed
a proof schema component. Interestingly enough the semantic interpretation of the objects
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resulting from a SiLK-derivation perfectly matches the construction provided by Gentzen in [8]
thus providing intuition concerning the nature of proof schema.

Unfortunately, the SiLK-calculus is quite complex and hard to use in practice. However,
this mechanized approach to the construction of proof schemata begs the question, can a SiLK-
calculus like approach to proof schema construction be used for inductive theorem proving. In
this abstract, we provide an improved SiLK-calculus based on so called super sequents. Like
SiLK-proofs, super sequent proofs can be translated to proof schemata and thus are equivalent
to certain types of proof by induction. Also the intuition behind the “cycling” rule is essentially
the same. Furthermore, super sequents go beyond the current understanding of proof schema
by allowing certain types of mutual recursion. In what follows, we give a short introduction to
super sequents and how they can be used for inductive theorem proving.

2 A Brief Introduction to Schematic Languages

In the following sections, G3c-calculus refers to the calculus of [11] for first-order logic. For the
construction of proof schema, we extend the G3c-calculus by introducing two term sorts, links
as initial sequents and an equational rule for recursive defined symbols. The standard first order
individual sort will be denoted by ι, and ω will denote the numeric sort, which only contains
terms constructed from tsp¨q, 0u. Each sort will have its own countably infinite set of variables
Vι and Vω, respectively. Links can technically be any sequent, and in some sense are a theory
extension. In order to guarantee soundness and consistency, we restrict links to proofs which
are contained in the proof component set of a proof schema (see [4]).

There are two types of defined symbols, defined function symbols and defined predicate
symbols which allow primitive recursive constructions in the language. We assume a set of
convergent rewrite rules E (equational theory) for defined function and predicate symbols. The

rules of E are of the form pfpt̄q “ E, where t̄ contains no defined symbols, and either pf is a

function symbol and E is a term or pf is a predicate symbol and E is a formula schema. The rules
can be applied in both directions, i.e. the E-rule is reversible. The extension of the G3c-calculus
incorporating the above constructions is referred to as the G3cS-calculus.

A proof schema is a set of pairs of G3cS-calculus (a basecase and stepcase proof) connected
by links such that replacement of Vω variables by numerals results in a G3c-proof after
normalization. For more details see one of the following works [2, 3, 4, 5, 7, 9](Instead of the
G3c-calculus, they use the LK-calculus as a basis).

3 A Super Sequent Approach

Super sequents are a variant of the abstraction introduced by [6] for modal logic which the
author referred to as leveled sequents. A leveled sequent of order n is a sequent containing
sequents of order less than n. This allows one to define inference rules specifically for sequents of
a particular order. We use the leveled sequent concept to differentiate between sequents which
have logical meaning, i.e. schematic sequents, and sequents which need to be assumed in order
to justify the schematic sequents, what we refer to as meta sequents.

Schematic sequents, as in previous work, are pairs of multisets of formula schemata ∆, Π
denoted by ∆ $ Π, where formula schemata are first order formulas which may contain defined
symbols. To deal with mutual recursion as we do in our even/odd example, both of these
concepts can be extended to hyper schematic (meta) sequents or a list of schematic (meta)



sequents. Note that hyper sequents differ from leveled sequents in that they do not consider a
stratification of the meta-level syntax [10].

Definition 1. Let Π $ ∆ be a schematic sequent and VarωpΠY∆q “ tx1, ¨ ¨ ¨ , xnu the set of
variables over the numeric sort. The sequent @x1, ¨ ¨ ¨ , xn pΠ $ ∆q is a schematic meta sequent.

Meta sequents represent possibly valid sequents, i.e. a temporary theory extension. A super
sequent is a construction of the form F V G where G is a schematic hyper sequent and F is a
schematic meta hyper sequent. Super sequents are to be interpreted as

ISpF V G q “ I p
Ź

SPF IM pSq $
Ž

SPG IpSqq IpΠ $ ∆q “
´

Ž

fPΠ f
¯

_

´

Ž

fP∆ f
¯

IM pΠ $ ∆q “ @x1, ¨ ¨ ¨ , xn pIpΠ $ ∆qq, for VωpΠ $ ∆q “ tx1, ¨ ¨ ¨ , xnu.
An interesting and important example is the super sequent $ P pmq V $ P pnq which

when interpreted results in IS
`

$ P pmqV $ P pnq
˘

“ p @mP pmqq _ P pnq. A formula which
is obviously derivable in the G3c-calculus.

We will refer to the following calculus as the Super G3c-calculus being that derivations in
the calculus are trees of super sequents. When the specific sequent structure is not necessary for
understanding we will abbreviate sequents by capital latin characters.

The idea behind a super sequent construction is that the super antecedent represents the
necessary theory allowing the super succedent to hold. In the above case, given that $ P pmq
holds, it is obvious that for any n, P pnq holds. If we are able to construct P pspnqq from P pnq
and if P p0q is provable, then the theory is not necessary and can be dropped implying that P pnq
is provable by induction alone without any assumptions. The calculus is as follows:

AxV Γ, A $ A,∆
AxV Γ $ J,∆

We introduce two special parameter types, active and passive for the Super LK-calculus.
Active parameters are introduced by the œ rule and will be represented by lowercase latin
characters. The intuition behind these variables is that they represent iteration of the induction
invariant and thus are treated as a special constant which cannot be quantified. Passive
parameters (bold lower case greek letters think eigenvariables) are either introduced by the
axiom rule or by the ó rule. In the following m is the only active parameter, αααα is a fresh passive
parameter, T is a sequent, and Sp0q is active parameter free.

F V G
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ Sp0q
œ

Spxq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ F V G
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ Spmq ˝ T 1
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ˇ
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ˇ

ˇ F V G
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ Spspmqq
ó

F V G
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ S pααααq ˝ T
Note that Spspmqq should only contain the active parameter m. Once a sequent succedent of

the super sequent is active parameter free it essentially becomes part of the background theory
allowing us to use it as an initial sequent. Thus we allow the following rules which mimics
external weakening & contraction:

F V G
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ Spα1, . . . , αnα1, . . . , αnα1, . . . , αnα1, . . . , αnq
Th

F V G
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ Spα1, . . . , αnα1, . . . , αnα1, . . . , αnα1, . . . , αnq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ Spt1, . . . , tnq ˝ T

F V G
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ Spα1α1α1α1 , ¨ ¨ ¨ , αnαnαnαnq ˝ T
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ Spt1, ¨ ¨ ¨ , tnq
Kn

F V G
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ Spα1α1α1α1 , ¨ ¨ ¨ , αnαnαnαnq ˝ T

F V G
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ Spα1α1α1α1 , ¨ ¨ ¨ , αnαnαnαnq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ Qpββββ1, ¨ ¨ ¨ , ββββnq
Gen

F V G
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ Spγ1γ1γ1γ1 , ¨ ¨ ¨ , γnγnγnγnq _Qpγ1γ1γ1γ1 , ¨ ¨ ¨ , γnγnγnγnq
where Spα1α1α1α1 , . . . , αnαnαnαnq is active parameter free and t is an arbitrary numeric term.
While these external rules are reasonable given their existence within the standard hyper

sequent calculi for modal logics, concepts such as communication do not fit our interpretation.

1pΓ1 $ ∆1q ˝ pΓ2 $ ∆2q “ Γ1,Γ2 $ ∆1,∆2



Essentially, when we say S
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ Q we mean both S and Q can be constructed from the given
input. The Gen captures part of this meaning by introducing a disjunction over a fresh unified
eigenvariable.

Unary rules of the first order G3c-calculus may be applied to any sequent of the hyper
sequent in the succedent of the super sequent. Binary rules of the first order G3c-calculus may
be applied between two super sequents by choosing one sequent from the hyper sequent in the
succedent and join the hypersequents of the antecedent and succedent of the super sequents
together. When applying these rules the number of active parameters in the sequents of hyper
sequent in the succedent of the super sequents must remain at most one. This can be managed
by renaming if necessary.

4 Automating Abstractions

Consider the equational theory E “ tP pspnqq “ Q pnq _ Q pspnqq , P p0q “ J, Q pspnqq “
P pnq ^ Q pnq , Q p0q “ Ju. We prove @x.P pxq _ Q pxq. In order to illustrate this, we try to
prove the example by starting at the bottom:

???

V $ P pγq , Q pγq

V $ P pγq _Q pγq

V $ @x.P pxq _Q pxq

Notice that in this case, we are not able to apply any rule of the G3c-calculus to the sequent
V $ P pγq , Q pγq. But there might be a subterm t of the numeric sort s.t. replacing this term
by 0 makes $ P pγq _ Q pγq provable. In order to find such a term, we consider the theory
of both P and Q and check whether we can substitute a term of the sequent such that it is
provable and can be the auxiliary sequent of a cycling rule, note that replacement by spnq and
replacement by 0 works for both predicate symbols. Thus, each predicate has a proper auxiliary
sequent for the cycling rule and now we need to consider the various possible proof constructions
which lead to an application of the cycling inference rule. There are two possibilities which we
present below:

Ax
V $ J

E
V $ Q p0q

œ
$ Qpxq V $ Q pnq

Ax
V $ J

E
V $ P p0q

œ
$ P pxq V $ Qpnq, P pnq

Ax
V $ J

E
V $ Q p0q

œ
$ Qpxq V $ Qpnq, Qpnq

^ : r
$ P pxq ; $ Qpxq V $ Qpnq, P pnq ^ Qpnq

E
$ P pxq ; $ Qpxq V $ Qpnq, Qps pnqq

_ : r
$ P pxq ; $ Qpxq V $ Qpnq _ Qps pnqq

E
$ P pxq ; $ Qpxq V $ P ps pnqq

ó
$ Qpxq V $ P pααααq

Th
$ Qpxq V $ P pααααq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ $ P pnq
^ : r

$ Qpxq V $ P pααααq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ $ P pnq ^ Q pnq
E

$ Qpxq V $ P pααααq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ $ Q pspnqq
ó

V $ P pααααq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ $ Q pββββq
Gen

V $ P pγγγγq _ Q pγγγγq
Th

V $ P pδq _ Q pδq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ $ P pγγγγq _ Q pγγγγq
@ : r

V $ @x.P pxq _ Q pxq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ $ P pγγγγq _ Q pγγγγq



Ax
V $ J

E
V $ Q p0q

œ
$ Qpxq V $ Q pnq

Ax
V $ J

E
V $ P p0q

œ
$ P pxq V $ P pnq

^ : r
$ P pxq; $ Qpxq V $ Q pnq ^ P pnq

E
$ P pxq; $ Qpxq V $ Q pspnqq

ó
$ P pxq V $ Q pββββq

Th
$ P pxq V $ Q pnq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ $ Q pββββq
_ : r

$ P pxq V $ Q pnq _ Q pspnqq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ $ Q pββββq
E

$ P pxq V $ P pspnqq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ $ Q pββββq
ó

V $ P pααααq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ $ Q pββββq
Gen

V $ P pγγγγq _ Q pγγγγq
Th

V $ P pδq _ Q pδq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ $ P pγγγγq _ Q pγγγγq
@ : r

V $ @x.P pxq _ Q pxq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ $ P pγγγγq _ Q pγγγγq

Notice that we could also replace γγγγ in V $ P pγγγγq _Q pγγγγq with 0. This would lead to the
super sequent

$ P pxq _Q pxq V $ P ps pnqq _Q ps pnqq

but the idea of the current calculus is to reduce the inductive statement as much as possible.
This probably makes the proof search simpler. The interested reader may try to prove the super
sequent above. Moreover, note that the presented proofs create as a by-product the theory
extension P pγγγγq _Q pγγγγq.

Of course, this is a trivial example, but even in more complex frameworks, we only have to
compare the defined terms and formulas of the equational theory with the terms and formulas
of the sequent. Checking the provability of the basecase is a normal proof search in the G3c-
calculus. As soon as we try to prove the stepcase, we have to allow additional inductions, i.e.
additional applications of such replacements. In general, if we want to prove

F V G
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ S ptq

we can exchange t with 0 and check whether S p0q is provable. If this is provable, we proceed
with

@xS pxq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ F V G
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ S pspnqq

In order to find reasonable applications of œ inferences we keep track of the various defined
symbols and check for possible term instantiations allowing the construction of an auxiliary
sequent of the cycling rule. We plan to continue these investigations in future work.
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