
Computing properties of stable configurations
of thermodynamic binding networks?

Keenan Breik1, Chris Thachuk2, Marijn Heule1, David Soloveichik1

1 University of Texas at Austin
2 California Institute of Technology

Abstract. The promise of chemical computation lies in controlling sys-
tems incompatible with traditional electronic micro-controllers, with
applications in synthetic biology and nano-scale manufacturing. Compu-
tation is typically embedded in kinetics—the specific time evolution of a
chemical system. However, if the desired output is not thermodynamically
stable, basic physical chemistry dictates that thermodynamic forces will
drive the system toward error throughout the computation. The ther-
modynamic binding network (TBN) model was introduced to formally
study how the thermodynamic equilibrium can be made consistent with
the desired computation, and it idealizes binding interactions subject
to enthalpy and entropy tradeoffs. Here we consider the computational
complexity of natural questions about TBNs and develop a practical
algorithm for verifying the correctness of constructions by translating the
problem into propositional logic and solving the resulting formula. The
TBN model together with automated verification tools will help inform
strategies for error reduction in molecular computing, including the ex-
tensively studied models of strand displacement cascades and algorithmic
tile assembly.

1 Introduction

Similar to digital electronics, advances in engineering of molecular computation
have relied on a distinctive set of abstractions and models. DNA strand displace-
ment cascades (formalized as [6]) made it possible to rationally design molecular
reaction pathways, and this model has been used to engineer a wide range of
molecular devices, logic and neural circuits, and dynamical systems [10, 8]. Like-
wise, the formalism of algorithmic tile assembly [3] enabled the self-assembly of
complex 2D and 3D nanostructures [5, 2].

The widely studied models of chemical computing such as strand displacement
cascades and algorithmic tile assembly are essentially kinetic as they describe a
desired time evolution of an information processing chemical system. However,
unlike electronic computation, chemical computation operates in a Brownian
environment subject to powerful thermodynamic driving forces. If the desired
? See a draft of the full paper at https://arxiv.org/abs/1709.08731



output happens to be a meta-stable configuration, then thermodynamic driving
forces will inexorably drive the system toward error. For example, leak in most
strand displacement systems occurs because the thermodynamic equilibrium of a
strand displacement cascade favors incorrect over the correct output, or does not
discriminate between the two [9]. In tile assembly, thermodynamically favored
assemblies that are not the intended self-assembly program execution are likewise
a major source of error [7, 2].

2 Model

The TBN model abstracts chemical systems at the thermodynamic equilibrium [4].
The model is simple and general due to its two main features: (1) abstracting
away of “geometry”, and (2) the simplification of thermodynamics to a tradeoff
between enthalpy (equated with the number of bonds) and entropy (equated with
the number of complexes). If entropy and enthalpy conflict, we assume enthalpy
wins. Many systems studied in molecular programming operate in this limit: in
particular, DNA systems with long domains at relatively low concentrations [9].

Formally, a TBN is a triple (D, ∗, T ). Here D is a finite set we call the site
types; ∗ : D → D is an involution, so the complement of site type a∗ is (a∗)∗ = a;
and T is a finite multiset of monomer types, where a monomer type is a finite
multiset over D. We often call T alone a TBN when D and ∗ are to be inferred.

a∗ b∗

a b

a b

a∗ b∗

a b

a b

a∗ b∗

a b

a b

a∗ b∗

a b

a b

a∗ b∗

a b

a b

a b

a∗ b∗

a b

a∗ b∗

a b

a b

a∗ b∗

a b

a b

stable

saturated

3 polymers 2 polymers

1
bo

nd
2
bo

nd
s

Fig. 1. All configurations of the TBN T = {{a}, {b}, {a, b}, {a∗, b∗}} with at least one
bond. An edge between sites indicates that they pair in that configuration. A panel
indicates a polymer. The saturated configurations maximize the number of bonds. The
stable configuration further maximizes the number of polymers.

As Figure 1 illustrates, a configuration γ of a TBN is a matching among its
complementary sites. Two sites pair in γ if they are matched. Two monomers bind
in γ if some of their sites pair. A polymer of γ is a connected component with
respect to binding. The configuration γ is saturated if the matching is maximal.
γ is stable if it is saturated and no saturated configuration has more polymers.



3 Results
In this work we consider the computational complexity of certain natural questions
concerning TBNs and develop a software package to answer those questions [1].

The most basic question is how can we distinguish stable configurations from
unstable ones. In the TBN model, the hard part of this is determining whether
the system can reconfigure to increase the number of polymers, thereby increasing
entropy, without reducing the total number of bonds.
Definition 1. (T, k) is in SaturatedConfig if some saturated configuration of the
TBN T has at least k polymers. S(T ) is the greatest such k.
Claim 1. SaturatedConfig is in NP-complete.
Claim 2. S has no nδ factor approximation algorithm running in time polyno-
mial in n for any δ < 1/2 unless P = NP, where n counts the monomers.

In DNA strand displacement cascades, output is usually represented by the
release of a previously bound DNA strand. The question of whether releasing
the output is favorable corresponds to the problem of deciding whether a given
monomer is free in some stable configuration of the TBN model. We show this
problem is complete for PNP

‖ (which is P with parallel access to an NP oracle).
Definition 2. (T,p) is in StablyFree iff p can be stably free in T .
Claim 3. StablyFree is in PNP

‖ -complete.
Despite these worst-case negative results, we develop a software package

accompanying this paper that can answer many questions in practice [1]. The
package computes a non-trivial reduction to the boolean satisfiability problem
(SAT) which is then passed to a SAT solver. We use it to verify a “counter” tile
assembly system [4] and a strand displacement AND gate [9] from prior work.

References
1. https://bitbucket.org/ksbtex/tbnsolverm/.
2. R. D. Barish, et al. An information-bearing seed for nucleating algorithmic self-

assembly. Proceedings of the National Academy of Sciences, 2009.
3. D. Doty. Theory of algorithmic self-assembly. Communications of the ACM, 2012.
4. D. Doty, et al. Thermodynamic binding networks. In DNA Computing and Molecular

Programming: 23rd International Conference, 249–266. Springer, 2017.
5. L. L. Ong, et al. Programmable self-assembly of three-dimensional nanostructures

from 10,000 unique components. Nature, 2017.
6. A. Phillips, et al. A programming language for composable DNA circuits. Journal

of the Royal Society Interface, 2009.
7. R. Schulman, et al. Programmable control of nucleation for algorithmic self-assembly.

SIAM Journal on Computing, 2009.
8. N. Srinivas, et al. Enzyme-free nucleic acid dynamical systems. Science, 2017.
9. C. Thachuk, et al. Leakless DNA strand displacement systems. In Proceedings of

DNA Computing and Molecular Programming 21, 133–153. Springer, 2015.
10. D. Y. Zhang, et al. Dynamic DNA nanotechnology using strand-displacement

reactions. Nature chemistry, 2011.


