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The (stochastic) Chemical Reaction Network (CRN) model is commonly used
in molecular programming to represent both real and abstract systems. Abstract
CRNs can be designed to perform tasks ranging from simple tasks, such as com-
paring two counts [1] or oscillating with a given period [4], to complex tasks such
as simulating Turing machines [10]. To make CRNs practical, there are multiple
ways to construct a DNA strand displacement (DSD) system that implements a
given abstract CRN [11, 3]. From this perspective the CRN model can be used as
a programming language, with the various DSD implementation schemes taking
the role of compilers. With compilers comes a desire for verification that the
compiled programs are correct. Reaction enumerators such as Visual DSD [8]
and Peppercorn [5] enumerate an “implementation CRN” that models a given
DSD system, at which point there are a number of formal verification methods
to compare an implementation CRN to the original “formal CRN”, including
pathway decomposition [9], serializability analysis [7], and CRN bisimulation
[6]. This talk focuses on CRN bisimulation, and is based largely on our previ-
ously published work on the topic [6], but also covers some practical uses of CRN
bisimulation not mentioned in that paper.

CRN bisimulation takes a formal CRN with species S and reactionsR, and an
implementation CRN with species S ′ and reactions R′, and asks whether there is
an “interpretation” of the implementation species as multisets of formal species
under which the implementation CRN “looks like” the formal CRN. If so, then
the implementation is correct, and the verifying interpretation is called “a CRN
bisimulation”. Algorithms to find such an interpretation, and to check whether
such an interpretation is a bisimulation, are given in our previous work, but they
are intractable: PSPACE- or NP-complete depending on the assumptions used
[6]. To help make checking bisimulation more tractable, we proved a transitivity
property and a modularity condition for CRN bisimulation [6]. Transitivity states
that the composition of two interpretations that are CRN bisimulations is a
CRN bisimulation; thus a correct implementation of a correct implementation
of a formal CRN is a correct implementation of the formal CRN. Modularity
states that if two implementation CRNs are correct implementations of their
respective formal CRNs and satisfy a certain modularity condition with respect
to the species they have in common, then combining those implementation CRNs
produces a correct implementation of the combined formal CRN. The condition is
that any implementation species can “decompose” into species common to both
implementation CRNs, ensuring the permissive condition for the combined CRN.
Formal definitions of and theorem statements for CRN bisimulation, transitivity,
and the modularity condition are given below.
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Fig. 1. Interpreted DSD implementation [11] of A + B → C + D. Figure from [6].

Definition 1 (modified from [6]). An interpretation is a function m : S ′ →
NS from implementation species to multisets of formal species. We extend this
linearly to states and reactions. If m(R′) = m(P ′) we write m(R′ → P ′) = τ .

Definition 2 (modified from [6]). Given a formal CRN (S,R) and imple-
mentation CRN (S ′,R′), an interpretation m is a CRN bisimulation if:

(i) Atomic Condition: Every A ∈ S has an sA ∈ S ′ with m(sA) = A.
(ii) Delimiting Condition: For each r′ ∈ R′, either m(r′) = τ or m(r′) ∈ R.
(iii) Permissive Condition: For r = R→ P ∈ R and implementation state S′

with m(S′) ⊇ R, an r′ with m(r′) = r can occur after τ reactions from S′.

This talk focuses on the use of transitivity and modularity to make CRN
bisimulation tractable. I discuss some use cases of transitivity for multi-step
verification. I discuss the use of modularity to break large CRNs into smaller
pieces. When the division into modules is known, such as for systematic transla-
tion schemes [11, 3], verifying this division becomes much easier. This is used for
efficient verification by the Nuskell compiler [2]; for an example 6-reaction formal
CRN with an implementation for which the non-modular bisimulation algorithm
[6] could not find an interpretation within 2 hours, the modular algorithm proved
it correct in 8 seconds.

Lemma 1 (Transitivity [6]). If m2 is a CRN bisimulation from (S ′′,R′′) to
(S ′,R′) and m1 is a CRN bisimulation from (S ′,R′) to (S,R), then m = m1◦m2

is a CRN bisimulation from (S ′′,R′′) to (S,R).

Definition 3 (Modularity Condition [6]). Let m be a CRN bisimulation
from (S ′,R′) to (S,R). Let S ′0 ⊂ S ′ and S0 ⊂ S where y ∈ S ′0 ⇒ m(y) ⊂ S0. We
say m is a modular interpretation with respect to the common (implementation
and formal) species S ′0 and S0 if for all x ∈ S ′ there is a sequence of τ reactions

x
τ
=⇒ Y +Z where Y ⊂ S ′0 and m(Z)∩S0 = ∅, that is, all common formal species

in m(x) are extracted into (interpretations of) common implementation species.
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1Fig. 2. An implementation CRN satisfying the modularity condition. Green arrows are
reactions necessary to satisfy the modularity condition in Definition 3. Figure from [6].

Theorem 1 (Modularity [6]). Let m1 be a CRN bisimulation from (S ′1,R′
1)

to (S1,R1) and m2 be a CRN bisimulation from (S ′2,R′
2) to (S2,R2) where m1

and m2 agree on S ′1 ∩ S ′2. Let S ′ = S ′1 ∪ S ′2, R′ = R′
1 ∪ R′

2, S = S1 ∪ S2, and
R = R1 ∪ R2, and m : S ′ → NS equal m1 on S ′1 and m2 on S ′2. If m1 and
m2 are both respectively modular with respect to some common implementation
species S ′0 ⊂ S ′1∩S ′2 and common formal species S0 ⊂ S1∩S2, then m is a CRN
bisimulation from (S ′,R′) to (S,R) that is modular with respect to S ′0 and S0.
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