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Abstract Engineering biological devices to perform computation is of major
interest due to the potential to utilize inherent parallelism in biological com-
ponents to speed computation, construct low energy consuming devices and
interface with biological material, opening up potential diagnostic and medi-
cal applications. The foundations of a parallel computing paradigm is presented
in [6], where a given combinatorial problem is encoded into a graphical, mod-
ular network that is embedded in a nanofabricated planar device. Exploring
the network in a parallel fashion using a large number of independent, biolog-
ical agents, allows to solve the mathematical problem. This approach, which is
termed network-based biocomputation (NBC), can use low energy compared to
standard computing devices and has the potential to be scaled up relying on
available nano-design and manufacturing technology. As the complexity of the
networks designed grows, and new problem encodings are explored, it is crucial
to ensure that the planned devices are indeed correct and do not contain any
logical design errors. Towards this goal we have developed a formal verification
prototype tool that can establish the correctness of NBC devices or identify de-
sign problems, and have applied this framework to new circuits developed in [1].
We envision that simulation and formal verification tools will play an important
role in the design process and validation of novel NBC devices.

1 Introduction

Many combinatorial problems of practical importance, such as the design and
verification of circuits, the folding and design of proteins, and optimal network
routing, require exploring a large number of candidate solutions to check the
existence of a satisfying solution. Algorithms in which the time required for
solving the problem grows exponentially with the problem size, may be infeasi-
ble to run using conventional electronic computers, which operate sequentially.
One strategy to solve such problems is to utilize efficient parallel-computation
approaches. The foundations of an alternative, parallel computing paradigm is
presented in [6], where a given combinatorial problem, the Subset Sum Problem
(SSP), was encoded into a graphical, modular network that was embedded in a
nanofabricated planar device. Exploring the network in a parallel fashion using
a large number of independent, biological agents, then solved the mathematical
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problem. This approach can use low energy compared to standard computing
devices and has the potential to be scaled up relying on available nano-design
and manufacturing technology.

Fig. 1. [6] Computation network for the SSP instance {2, 5, 9}, the network enables
to solve the decision problem and compute the existence of a subset sum for any
T ∈ {0 · · · 16}. The agents (molecular-motor-propelled protein filaments) enter the
network from the top-left corner. Filled circles represent split-junctions where agents
can either continue straight ahead or turn, a stochastic decision that occurs with ap-
proximately equal probability. Empty circles represent pass-junctions, where agents
continue straight ahead in the direction they were travelling without turning. Moving
diagonally down and right at a split-junction corresponds to selecting a number to the
subset and adding the number to the sum (numbers 2 and 9 for the path highlighted
in yellow). Thus the actual value of the integer potentially added at a split-junction is
determined by the number of rows of pass-junctions until the next split-junction. The
exit numbers correspond to the target sums T (potential sums with positive solutions)
represented by each exit. Correct results for this particular set {2, 5, 9} are labelled in
green, and incorrect results (where no agents should arrive) are labelled in magenta.

The SSP decision problem asks, given a set of integers S = {a1, a2, · · · an}
and a target sum T, is there a subset S′ = {ai1 , ai2 , · · · aik} such that the sum

of the numbers in S′ is exactly equal to T , i.e.,
∑k

j=1 aij = T . For example,
given the set S = {2, 5, 9} and the target T = 7, selecting the subset S′ = {2, 5}
would sum up to 2 + 5 = T , while for T = 13 there is no subset that would sum
up to T . The network encoding of the SSP problem for S = {2, 5, 9} is shown
in Fig. 1. The main idea is that the network consists of two types of junctions,
split-junctions and pass-junctions. A split-junction allows an agent to make a
stochastic decision whether to continue moving in the current direction it is
travelling or to take a turn, and in the SSP network this decision corresponds
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to a decision whether to include a given ai in the subset or not. A pass junction
directs an agent to continue moving in the current direction without turning,
thus it will continue moving diagonally and add the number ai if it was selected
in the previous split junction, or continue down until reaching the next split
junction, where a decision about the next number ai+1 will be made, assuming
i < n. The SSP problem is an NP-complete problem [5, 3], thus no polynomial
algorithm for it is known nor is likely to be found. Since SSP is an NP complete
problem, all other problems in NP can be converted to SSP in polynomial time.
In recent work we have shown how to encode the Exact Cover (ExCov) problem
using network based computation, and are working to manufacture NBC circuits
that are larger than the device designed and implemented in [6].

2 Verification Toolset

Formal verification methods are now widely used in the hardware industry [4,
7], enabling to verify the correctness of hardware circuits even before they are
manufactured, which can lead to more robust systems and save money, as late
detection of errors is extremely costly. As part of the Bio4Comp project [1] we
are developing verification algorithms, tools and methodologies to enable similar
advantages for Network-Based Biocomputation. Our first version of a toolset
enables to verify correctness of SSP and EXCOV problems. The method encodes
the networks created in the project as a model within the NuSMV model checker
[2], and then uses temporal logic formulas to check if a filament can exit through
a specific exit, ensuring e.g., that for an SSP problem only legal sums can be
observed as filaments exiting at the required network positions.
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