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Abstract. In this talk we want to present the recent results of [DK]. We construct several smooth
classical denotational models of Linear Logic: they are smooth as non-linear proofs are interpreted
as infinitely differentiable functions, and they feature an involutive linear negation. The starting
point of this work consists in noticing that the multiplicative disjunction corresponds to the well-
known Schwartz’ epsilon product. Requiring its associativity then asks for a completeness notion,
while the linear involutive negation is ensured by considering a good topology (the Arens topology)
on the dual, ensuring that the linear involutive negation works as an orthogonality relation.

1. Introduction

Since the discovery of linear logic by Girard [Gir87], thirty years ago, many attempts have
been made to obtain denotational models of linear logic in the context of some classes of vector
spaces with linear proofs interpreted as linear maps [Blu96, Ehr02, Gir04, Ehr05, BET]. Models
of linear logic are often inspired by coherent spaces, or by the relational model of linear logic.
Coherent Banach spaces [Gir99], coherent probabilistic or coherent quantum spaces [Gir04] are
Girard’s attempts to extend the first model, as finiteness spaces [Ehr05] or Köthe spaces [Ehr02]
were designed by Ehrhard as a vectorial version of the relational model. Following the construction
of Differential linear logic [ER06], one would want moreover to find natural models of it where
non-linear proofs are interpreted by some classes of smooth maps. This requires the use of more
general objects of functional analysis which were not directly constructed from coherent spaces.
We see this as a strong point, as it paves the way towards new computational interpretations of
functional analytic constructions, and a denotational interpretation of continuous or infinite data
objects.

Three difficulties appear in this semantical study of linear logic. The equivalence between a for-
mula and its double negation in linear logic asks for the considered vector spaces to be isomorphic
to their double duals. This is constraining in infinite dimension. This infinite dimensionality is
strongly needed to interpret exponential connectives.Then one needs to find a good category with
smooth functions as morphisms, which should give a Cartesian closed category. This is not at
all trivial, and was solved by using a quantative setting, i.e. power series as the interpretation for
non-linear proofs, in most of the previous works [Gir99, Gir04, Ehr05, Ehr02]. Finally, imposing
a reflexivity condition to respect the first requirement usually implies issues of stability by natural
tensor products of this condition, needed to model multiplicative connectives. This corresponds
to the hard task of finding ∗-autonomous categories [Ba79]. As pointed out in [Ehr16], the only
model of differential Linear logic using smooth maps [BET] misses annoyingly the ∗-autonomous
property for classical linear logic.

Our paper solves all these issues simultaneously and produces several denotational models of
classical linear logic with some classes of smooth maps as morphism in the Kleisli category of the
monad.
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2. A minimal model ofMALL with the ε product

Consider a smooth and classical denotational model of Linear Logic in which formulas are
interpreted by locally convex and separated topological IR-vector spaces (lcs). The dual of a space
E is denoted by E′, and the space of smooth functions between E and F is denoted by C∞(E, F).
We denote by L(E, F) the space of linear continuous functions between two lcs. Then the co-
monad ! must verify, by involutivity of the linear negation:

!E ' (!E)′′

' L(!E, IR)′

' C∞(E, IR)′

Thus the exponential !E identifies to a space of linear scalar maps defined on the space of scalar
smooth functions C∞(E, IR), that is to a space of distributions.

In historical denotational models of Linear Logic, the linear negation is interpreted as an orhtog-
onality. For example, in Kothe spaces [Ehr02], the dual E⊥ of a space of sequence E ⊂ KI is

E⊥ = {y ∈ KI |∀x ∈ E,
∑

I

|xiyi| converges}.

Defined through a focused orthogonality, we have E⊥⊥⊥ = E⊥ and thus one can complete a space
by double negation, making it isomorphic to its double dual.

In the theory of topological vector spaces, it is not the case in general that E′′′ ' E′. Thus there
is no trivial way to make a tensor product of two space isomorphic to its bidual, and to obtain a
classical model of MLL. In this paper we consider the Arens dual E′c, that is the vector space E′

endowed with the topology of uniform convergence on absolutely convex compact subsets of E.
In that particular case, we have always ((E′c)

′
c)
′
c ' E′c. Thus this dual behaves like an orthogonality,

and leaves hope for a smooth and classical model of LL.
The interpretation of the multiplicative conjunction ⊗ in an algebraic setting is straightforward

: it’s the tensor product, which enjoys a universal property with respect to bilinear functions.
However, with topological vector spaces several notions of bilinear functions exists (continuous,
separately continuous, hypocontinuous with respect to some bornology ...), and through it sev-
eral notions of tensor product. However, the interpretation for the multiplicative disjunction is
straightforward.

So as to construct distributions with values in any vector spaces, Schwartz [S] identifies a ε
product, such that

C∞(IRn, IR)εE ' C∞(IRn, E).

This product has thus exactly the behaviour wanted for the `.

Definition 2.1. The ε product is defined as EεF = L(E′c, F) endowed with the topology of uniform
convergence on equicontinuous subsets of E′.

Schwartz shows that this product is associative and commutative on quasi-complete spaces (that
is spaces in which every bounded Cauchy net converges). However, reading his proofs, it is
enough for spaces to be k-quasi-complete :

Definition 2.2. A lcs is k-quasi-complete when the closed absolutely convex hull of a compact
space is still compact.
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Thus we have a monoidal category of k-quasi-complete spaces and continuous linear maps,
with ε as monoidal operator. We have a functorial idempotent operation ˆk of k-quasi-completion
making any lcs k-quasi-complete. If E is a k-quasi-complete space, we write:

E⊥ := ˆ(E′c)
k

Proposition 2.3. For a k-quasi-complete space E, (E⊥)′c is again k-quasi-complete space. Thus
E⊥⊥⊥ = E⊥.

We call k-reflexive spaces the lcs such that E ' E⊥⊥. We denote by k − Ref the category of k-
reflexive spaces and continuous linear maps. We define E ⊗k F := (E⊥εF⊥)⊥, which is k-reflexive
by the above proposition. We obtain thus a ∗-autonomous category, whcih is easily enriched with
product and co-product, making it a model of MALL.

3. Smooth functions

Kriegl and Michor [KM] define smooth function s as the functions f : E → F between lcs E
and F preserving smooth curves: if c : IR→ E is everywhere infinitely differentiable, then f ◦ c :
IR→ F must be everywhere infinitely differentiable. This definition has the noticeable advantage
to result in a cartesian closed category of Mackey-complete spaces and smooth functions, and was
used in [BET] to construct an intuitionnistic model of DiLL.

Definition 3.1. A lcs is Mackey-complete if for every absolutely convex and closed bounded set
B, the vector space EB generated by B is complete for the norm pB : x 7→ sup{λ ∈ IR|λx ∈ B}.

Here we take a slighly different notion of smooth functions, similar to the one by Meise [Me],
which behave better with respect to the Arens dual.

Definition 3.2. For X, F separated lcs we call C∞co(X, F) the space of infinitely many times Gâteaux-
differentiable functions with derivatives continuous on compacts with value in the space Ln+1

co (E, F) =

Lco(E, Ln
co(E, F)) with at each stage the topology of uniform convergence on compact sets. We put

on it the topology of uniform convergence on compact sets of all derivatives in the space Ln
co(E, F).

Proposition 3.3. For any space X1, X2 ∈ k − Ref and any Mackey-complete lcs F we have:

C∞co(X1 × X2, F) ' C∞co(X1,C∞co(X2, F)).

4. Smoothness: new models from universal generators

From this preceding notion of smoothness and completeness, one defines (at least) two smooth
and classical models of LL. Consider C ⊂ k − Ref a small category, and define for E and F
Mackey-complete spaces:

C∞C (E, F) := { f : E → F|∀X ∈ C ,∀c ∈ C∞co (X, E), f ◦ c ∈ C∞co (X, F)}
This space is endowed with the inductive topology induced by the family of C∞co (X, F), for all

X∈C and all c ∈C∞co (X, E). We show that linear functions are in particular of that type of smooth
functions, and thus the inclusion E′ ⊂ C∞C (E, IR) induces a topology on E′, which we denote by
E′C . This new definition for smooth functions defines also a new topology on E which we describe
now.

We first consider C ⊂ k − Ref a full Cartesian subcategory.
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Let C∞ be the smallest class of locally convex spaces containing C∞co(X,K) for X ∈ C (X = {0}
included) and stable by products and subspaces. Consider SC the functor on LCS of associated
topology in this class described by [Ju, 2.6.4]. This functor maps a lcs E to the vector space E
endowed with the finest topology, coarser than the original one on E, such that SS (E) ∈ C∞.

Then if E is Mackey complete we have E′C ' SC (E′c). In the article, we construct moreover an
inductive Mackey-completion procedure ˆM which is functorial with respect to continuous linear
maps. We define then for E Mackey-complete:

E⊥C := ŜC (E′c)
M

We say that a space is C -reflexive if E⊥C⊥C ' E. We have in particular that E⊥C is always
C -reflexive.

Theorem 4.1. Consider C a small category containing finite dimensional vector spaces and con-
tained in Banach spaces. Then the category of C -reflexive spaces is ∗-autonomous, with tensor
product E⊗̂C F := (E⊥C εE⊥C )⊥C . It is a model of LL, with exponential:

!C E := C∞C (E, IR)⊥C .

We have two concrete examples of models smooth models of LL generated this way:

Example 4.1. If C consists in the category of all finite dimensional spaces, then C∞co(IRn,K) ' sIN

[V82, (7) p 383], where s denotes the Köthe space of rapidly decreasing sequences. This space
is a universal generator for nuclear lcs, meaning that every nuclear lcs is a subset of a product of
copies of s. Thus the associated topology functor is N (E) = SFin(E)., and our model consists of
Nuclear Mackey-complete spaces which equals their double C -dual.

Example 4.2. If C is the category of Banach space, then C∞ is the category of all Schwartz spaces,
and our model consists of all Mackey-complete Schwartz space which equals their double C -dual.

5. Differentiation

Smooth linear maps in the sense of Frölicher are bounded but not necessarily continuous. Taking
the differential at 0 of functions in C∞(E, F) thus would not give us a morphisms in k − Ref,
thus we have no interpretation for the codereliction d of DiLL. In the paper, we thus restrict the
definition of smooth functions to those which admits continuous differentials.
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